Behzad Razavi, RF Microelectronics, Prentice Hall PTR, 1998

Size: px
Start display at page:

Download "Behzad Razavi, RF Microelectronics, Prentice Hall PTR, 1998"

Transcription

1 2008/Sep/17 1

2 Text Book: Behzad Razavi, RF Microelectronics, Prentice Hall PTR, 1998 References: (MSR) Thomas H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2/e, Cambridge University Press, Contents: (Oscillators) (PA) 3. IC (LNA) (Mixer) 2

3 Homework: % A4 80% : 35% : 35% : 20% ycchiang1970@nchu.edu.tw : : : (Lab. 717) 3

4 Introduction What is Radio Frequency? Frequency (Hz) Long wave radio AM broadcast radio Shortwave radio VHF TV FM broadcast radio Microwaves Far Infrared Infrared Visible light Traditional definition: Wavelength (m) Frequency range for radio and television transmission (1MHz 1GHz) 4

5 Band Name & Abbr. Frequency & λ Introduction Example Uses Very Low Frequency Low Frequency Medium Frequency High Frequency Very High Frequency Ultra High Frequency Super High Frequency Extremely High Frequency 3 30 khz 0 km km khz km 1 km khz 1 km 0 m 3 30 MHz 0 m m MHz m 1 m MHz 1 m 0 mm 3 30 GHz 0 mm mm GHz mm 1 mm Submarine communication, avalanche beacons, wireless heart rate monitors Navigation, time signals, AM longwave broadcasting AM (Medium-wave) broadcasts Shortwave broadcasts and amateur radio FM and television broadcasts television broadcasts, mobile phones, wireless LAN, ground-to-air and air-to-air communications microwave devices, mobile phones (W-CDMA), WLAN, most modern Radars Radio astronomy, high-speed microwave radio relay 5

6 6 Introduction Standard Prefixes da deka h hecto k kilo M mega G giga T tera Factor Abbreviation Prefix a atto f femto p pico n nano micro m milli c centi d deci Factor Abbreviation Prefix µ

7 Introduction IC high integration trend: (Circuit Area) Die Cost = (Process (Wafer Area) Cost) E.g. A device area = 30 µ m 30 µ m 8 - inch wafer area 0.1m 0.1m π Process cost = Device cost One rule for IC design NT$ NT$ Cost of on - chip devices << Cost of # of on - chip devices Cost of customers and Use fewest off-chip devices as you can # of off off - chip - chip devices devices 7

8 IC production schedule Introduction Design phase: 2 months Layout phase: 0.5~1 month Process phase: 0.5~2 months Shipping & package phase: 0.2~0.5 month Measurement: 1 months Total duration: 4.2~6.5 months Since the IC production cycle time is very long and the time to market is very tight, the design iteration should be minimized. One iteration for digital ICs, 1~2 iteration for analog/rf ICs. 8

9 Introduction How to minimize design iteration? For Foundry Offer accurate device models Active devices: corner models, Monte Carlo models Passive devices: variation ranges For Designer Current-biased scheme for analog/rf ICs Simulate circuits with most conditions (worst-case simulation) Add design margin to overcome process variations Better circuit architectures to overcome process variations 9

10 Introduction RF designer Maxwell s Equations AC / Field analysis / time domain dbm / s-parameters / dbc Smith Chart Noise Figure in db Thermal / Flicker / Shot Noise GaAs / BiCMOS / CMOS 20-transistors ICs (for one block) Network & Spectrum analyzer Cadence SpectreRF Mentor EldoRF Agilent ADS / RFDE L Digital/Analog designer Ohm s law DC / AC Volts SPICE Noise in nv/sqrt(hz) Thermal Noise CMOS 20-transistor bias circuits Oscilloscope espice hspice L

11 Introduction Figure 1.1 (a) FM transmitter, (b) FM receiver Figure 1.2 RF section of a cellphone [1] 11

12 Design Bottleneck RF and baseband processing in a transceiver RF Section Baseband Section Although the baseband section is more complex than RF section in terms of the number of devices, the RF section is still the design bottleneck of the entire system for 3 reasons: 1. Multidisciplinary Field 2. RF Design Hexagon 3. Design Tools 12

13 Multidisciplinary Field Design Bottleneck Microwave Theory Communication Theory Random Signals Signal Propagation RF Design Transceiver Architectures Multiple Access Wireless Standards CAD Tools IC Design 13

14 RF Design Hexagon Design Bottleneck Noise Power Linearity Frequency Supply Voltage Gain Design Tools Nonlinearity, time variance, and noise in RF circuits make the SPICElike tools (linear ac analysis) no longer suitable or efficient. External components cannot be modeled by typical devices in SPICE. They can usually be characterized only by S-parameters. 14

15 Applications 15

16 Applications 16

17 Applications 17

18 Applications 18

19 Analog and Digital Systems Voice Modulator Power Amplifier Carrier (a) Audio Amplifier Downconverter Demodulator Low-Noise Amplifier Carrier (b) Figure 1.6 Block diagram of a generic analog RF system: (a) transmitter, (b) receiver. 19

20 Analog and Digital Systems Digital Power Amplifier Voice ADC Voice Compression Coding Interleaving Pulse Shaping Modulator (a) Carrier Down Converter ADC Demodulator Equalizer Carrier Digital De-interleaving Decoding Audio Amplifier DAC Voice Decompression (b) Figure 1.7 Block diagram of a generic digital RF system: (a) transmitter, (b) receiver. 20

21 Analog and Digital Systems In the simplest case: the main consideration is the distance Power delivered and sensitivity of the receiver In a realistic environment: interference, multi-path, movement, etc. Signal processing will achieve a higher performance Which parts are RF electronics?

22 GaAs Choice of Technology Higher (breakdown voltage) x (higher cutoff frequency) product, semiinsulating substrate, and high-quality inductors and capacitor. Low-yield, low integration, high-cost PA s, front-end switches BiCMOS/ SiGe BiCMOS Moderate performance and integration, moderate cost CMOS High integration, low-cost Substrate coupling / loss, modeling, etc Silicon BJT SiGe HBT 22

22. VLSI in Communications

22. VLSI in Communications 22. VLSI in Communications State-of-the-art RF Design, Communications and DSP Algorithms Design VLSI Design Isolated goals results in: - higher implementation costs - long transition time between system

More information

Technician License Course Chapter 2 Radio and Signals Fundamentals

Technician License Course Chapter 2 Radio and Signals Fundamentals Technician License Course Chapter 2 Radio and Signals Fundamentals Handling Large and Small Numbers Electronics and Radio use a large range of sizes, i.e., 0.000000000001 to 1000000000000. Scientific Notation

More information

Low Power RF Transceivers

Low Power RF Transceivers Low Power RF Transceivers Mr. Zohaib Latif 1, Dr. Amir Masood Khalid 2, Mr. Uzair Saeed 3 1,3 Faculty of Computing and Engineering, Riphah International University Faisalabad, Pakistan 2 Department of

More information

PRINCIPLES OF COMMUNICATION SYSTEMS. Lecture 1- Introduction Elements, Modulation, Demodulation, Frequency Spectrum

PRINCIPLES OF COMMUNICATION SYSTEMS. Lecture 1- Introduction Elements, Modulation, Demodulation, Frequency Spectrum PRINCIPLES OF COMMUNICATION SYSTEMS Lecture 1- Introduction Elements, Modulation, Demodulation, Frequency Spectrum Topic covered Introduction to subject Elements of Communication system Modulation General

More information

VLSI Chip Design Project TSEK01

VLSI Chip Design Project TSEK01 VLSI Chip Design Project TSEK01 Project description and requirement specification Version 1.0 Project: 250mW ISM Band Class D/E Power Amplifier Project number: 4 Project Group: Name Project members Telephone

More information

Overview and Challenges

Overview and Challenges RF/RF-SoC Overview and Challenges Fang Chen May 14, 2004 1 Content What is RF Research Topics in RF RF IC Design/Verification RF IC System Design Circuit Implementation What is RF-SoC Design Methodology

More information

Session 3. CMOS RF IC Design Principles

Session 3. CMOS RF IC Design Principles Session 3 CMOS RF IC Design Principles Session Delivered by: D. Varun 1 Session Topics Standards RF wireless communications Multi standard RF transceivers RF front end architectures Frequency down conversion

More information

Technician Licensing Class

Technician Licensing Class Technician Licensing Class Go Picture Presented These! by Amateur Radio Technician Class Element 2 Course Presentation ELEMENT 2 SUB-ELEMENTS (Groupings) About Ham Radio Call Signs Control Mind the Rules

More information

VLSI Chip Design Project TSEK06

VLSI Chip Design Project TSEK06 VLSI Chip Design Project TSEK06 Project Description and Requirement Specification Version 1.1 Project: 100 MHz, 10 dbm direct VCO modulating FM transmitter Project number: 4 Project Group: Name Project

More information

TSEK03: Radio Frequency Integrated Circuits (RFIC) Lecture 1a: Course Introduction

TSEK03: Radio Frequency Integrated Circuits (RFIC) Lecture 1a: Course Introduction TSEK03: Radio Frequency Integrated Circuits (RFIC) Lecture 1a: Course Introduction Ted Johansson, ISY ted.johansson@liu.se RFIC Main Objectives Advanced continuation of TSEK02 Radio Electronics Main focus

More information

COMM 704: Communication Systems

COMM 704: Communication Systems COMM 704: Communication Lecture 1: Introduction Dr. Mohamed Abd El Ghany, Mohamed.abdel-ghany@guc.edu.eg Course Objective Give an introduction to the basic concepts of electronic communication systems

More information

Overview: Trends and Implementation Challenges for Multi-Band/Wideband Communication

Overview: Trends and Implementation Challenges for Multi-Band/Wideband Communication Overview: Trends and Implementation Challenges for Multi-Band/Wideband Communication Mona Mostafa Hella Assistant Professor, ESCE Department Rensselaer Polytechnic Institute What is RFIC? Any integrated

More information

An Inductor-Based 52-GHz 0.18 µm SiGe HBT Cascode LNA with 22 db Gain

An Inductor-Based 52-GHz 0.18 µm SiGe HBT Cascode LNA with 22 db Gain An Inductor-Based 52-GHz 0.18 µm SiGe HBT Cascode LNA with 22 db Gain Michael Gordon, Sorin P. Voinigescu University of Toronto Toronto, Ontario, Canada ESSCIRC 2004, Leuven, Belgium Outline Motivation

More information

Antenna & Propagation. Basic Radio Wave Propagation

Antenna & Propagation. Basic Radio Wave Propagation For updated version, please click on http://ocw.ump.edu.my Antenna & Propagation Basic Radio Wave Propagation by Nor Hadzfizah Binti Mohd Radi Faculty of Electric & Electronics Engineering hadzfizah@ump.edu.my

More information

TSEK03: Radio Frequency Integrated Circuits (RFIC) Lecture 1a: Introduction

TSEK03: Radio Frequency Integrated Circuits (RFIC) Lecture 1a: Introduction TSEK03: Radio Frequency Integrated Circuits (RFIC) Lecture 1a: Introduction Ted Johansson, EKS, ISY ted.johansson@liu.se RFIC Main Objectives Advanced continuation of TSEK02 Radio Electronics Main focus

More information

RFIC Design ELEN 376 Session 1

RFIC Design ELEN 376 Session 1 RFIC Design ELEN 376 Session 1 Instructor: Dr. Allen Sweet April 3, 2002 Copy right 2002, elen376 1 General Information Instructor: Dr. Allen Sweet Email: allensweet@aol.com Home work/project submissions:

More information

RFIC Design ELEN 351 Lecture 1: General Discussion

RFIC Design ELEN 351 Lecture 1: General Discussion RFIC Design ELEN 351 Lecture 1: General Discussion Instructor: Dr. Allen Sweet Copy right 2003, ELEN351 1 General Information Instructor: Dr. Allen Sweet Email: allensweet@aol.com Home work/project submissions:

More information

Designing a 960 MHz CMOS LNA and Mixer using ADS. EE 5390 RFIC Design Michelle Montoya Alfredo Perez. April 15, 2004

Designing a 960 MHz CMOS LNA and Mixer using ADS. EE 5390 RFIC Design Michelle Montoya Alfredo Perez. April 15, 2004 Designing a 960 MHz CMOS LNA and Mixer using ADS EE 5390 RFIC Design Michelle Montoya Alfredo Perez April 15, 2004 The University of Texas at El Paso Dr Tim S. Yao ABSTRACT Two circuits satisfying the

More information

Elements of Communication System Channel Fig: 1: Block Diagram of Communication System Terminology in Communication System

Elements of Communication System Channel Fig: 1: Block Diagram of Communication System Terminology in Communication System Content:- Fundamentals of Communication Engineering : Elements of a Communication System, Need of modulation, electromagnetic spectrum and typical applications, Unit V (Communication terminologies in communication

More information

Technical Article A DIRECT QUADRATURE MODULATOR IC FOR 0.9 TO 2.5 GHZ WIRELESS SYSTEMS

Technical Article A DIRECT QUADRATURE MODULATOR IC FOR 0.9 TO 2.5 GHZ WIRELESS SYSTEMS Introduction As wireless system designs have moved from carrier frequencies at approximately 9 MHz to wider bandwidth applications like Personal Communication System (PCS) phones at 1.8 GHz and wireless

More information

frequency (Hertz)(Hz)

frequency (Hertz)(Hz) Part C Part B Part A Shedding Light on Electromagnetic Waves Name: 1. Fill in the diagram. The Electromagnetic 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11 10 12 10 13 10 14 10 15 10 16 10 17 10 18 10 19

More information

A 5 GHz CMOS Low Power Down-conversion Mixer for Wireless LAN Applications

A 5 GHz CMOS Low Power Down-conversion Mixer for Wireless LAN Applications Proceedings of the 5th WSEAS Int. Conf. on CIRCUITS, SYSTES, ELECTRONICS, CONTROL & SIGNAL PROCESSING, Dallas, USA, November 1-, 2006 26 A 5 GHz COS Low Power Down-conversion ixer for Wireless LAN Applications

More information

What is a Communications System?

What is a Communications System? Introduction to Communication Systems: An Overview James Flynn Sharlene Katz What is a Communications System? A communications system transfers an information bearing signal from a source to one or more

More information

Satellite Tuner Single Chip Simulation with Advanced Design System

Satellite Tuner Single Chip Simulation with Advanced Design System Turning RF IC technology into successful design Satellite Tuner Single Chip Simulation with Advanced Design System Cédric Pujol - Central R&D March 2002 STMicroelectronics Outline ❽ STMicroelectronics

More information

LOW COST PHASED ARRAY ANTENNA TRANSCEIVER FOR WPAN APPLICATIONS

LOW COST PHASED ARRAY ANTENNA TRANSCEIVER FOR WPAN APPLICATIONS LOW COST PHASED ARRAY ANTENNA TRANSCEIVER FOR WPAN APPLICATIONS Introduction WPAN (Wireless Personal Area Network) transceivers are being designed to operate in the 60 GHz frequency band and will mainly

More information

65-GHz Receiver in SiGe BiCMOS Using Monolithic Inductors and Transformers

65-GHz Receiver in SiGe BiCMOS Using Monolithic Inductors and Transformers 65-GHz Receiver in SiGe BiCMOS Using Monolithic Inductors and Transformers Michael Gordon, Terry Yao, Sorin P. Voinigescu University of Toronto March 10 2006, UBC, Vancouver Outline Motivation mm-wave

More information

Technician Licensing Class T5

Technician Licensing Class T5 Technician Licensing Class T5 Amateur Radio Course Monroe EMS Building Monroe, Utah January 11/18, 2014 January 22, 2014 Testing Session Valid dates: July 1, 2010 June 30, 2014 Amateur Radio Technician

More information

Packaged mm-wave GaN, GaAs and Si ICs for 5G and automotive radar

Packaged mm-wave GaN, GaAs and Si ICs for 5G and automotive radar Packaged mm-wave GaN, GaAs and Si ICs for 5G and automotive radar Eric Leclerc UMS 1 st Nov 2018 Outline Why heterogenous integration? About UMS Technology portfolio Design tooling: Cadence / GoldenGate

More information

EECS 142/242A Course Overview. Prof. Ali M. Niknejad University of California, Berkeley

EECS 142/242A Course Overview. Prof. Ali M. Niknejad University of California, Berkeley EECS 142/242A Course Overview Prof. Ali M. Niknejad University of California, Berkeley Course Logistics Instructor: Ali Niknejad (niknejad@berkeley.edu) Graduate Student Instructors: Nai-Chung Kuo and

More information

mmw to THz ultra high data rate radio access technologies

mmw to THz ultra high data rate radio access technologies mmw to THz ultra high data rate radio access technologies Dr. Laurent HERAULT VP Europe, CEA LETI Pierre Vincent Head of RF IC design Lab, CEA LETI Outline mmw communication use cases and standards mmw

More information

Amateur Wireless Station Operators License Exam

Amateur Wireless Station Operators License Exam Amateur Wireless Station Operators License Exam Study material 2017 South India Amateur Radio Society, Chennai CHAPTER 5 1 Chapter 5 Amateur Wireless Station Operators License Exam Study Material Chapter

More information

Electrical Fundamentals and Basic Components Chapters T2, T3, G4

Electrical Fundamentals and Basic Components Chapters T2, T3, G4 Electrical Fundamentals and Basic Components Chapters T2, T3, G4 Some Basic Math, Electrical Fundamentals, AC Power, The Basics of Basic Components, A Little More Component Detail, Reactance and Impedance

More information

ITRS: RF and Analog/Mixed- Signal Technologies for Wireless Communications. Nick Krajewski CMPE /16/2005

ITRS: RF and Analog/Mixed- Signal Technologies for Wireless Communications. Nick Krajewski CMPE /16/2005 ITRS: RF and Analog/Mixed- Signal Technologies for Wireless Communications Nick Krajewski CMPE 640 11/16/2005 Introduction 4 Working Groups within Wireless Analog and Mixed Signal (0.8 10 GHz) (Covered

More information

Instrumentation Receiver: Analog Signal Processing for a DSP World. Rick Campbell Portland State University

Instrumentation Receiver: Analog Signal Processing for a DSP World. Rick Campbell Portland State University Instrumentation Receiver: Analog Signal Processing for a DSP World Rick Campbell Portland State University Tonight s Talk discusses 3 questions: What is an Instrumentation Receiver? How does Rick design

More information

An Introduction to Electrical and Electronic Engineering Communication. Dr. Cahit Karakuş, 2018

An Introduction to Electrical and Electronic Engineering Communication. Dr. Cahit Karakuş, 2018 An Introduction to Electrical and Electronic Engineering Communication Dr. Cahit Karakuş, 2018 Significance of Human Communication Methods of communication: 1. Face to face 2. Signals 3. Written word (letters)

More information

Fully integrated UHF RFID mobile reader with power amplifiers using System-in-Package (SiP)

Fully integrated UHF RFID mobile reader with power amplifiers using System-in-Package (SiP) Fully integrated UHF RFID mobile reader with power amplifiers using System-in-Package (SiP) Hyemin Yang 1, Jongmoon Kim 2, Franklin Bien 3, and Jongsoo Lee 1a) 1 School of Information and Communications,

More information

What to do with THz? Ali M. Niknejad Berkeley Wireless Research Center University of California Berkeley. WCA Futures SIG

What to do with THz? Ali M. Niknejad Berkeley Wireless Research Center University of California Berkeley. WCA Futures SIG What to do with THz? Ali M. Niknejad Berkeley Wireless Research Center University of California Berkeley WCA Futures SIG Outline THz Overview Potential THz Applications THz Transceivers in Silicon? Application

More information

High-Linearity CMOS. RF Front-End Circuits

High-Linearity CMOS. RF Front-End Circuits High-Linearity CMOS RF Front-End Circuits Yongwang Ding Ramesh Harjani iigh-linearity CMOS tf Front-End Circuits - Springer Library of Congress Cataloging-in-Publication Data A C.I.P. Catalogue record

More information

The New England Radio Discussion Society electronics course (Phase 4, cont d) Introduction to receivers

The New England Radio Discussion Society electronics course (Phase 4, cont d) Introduction to receivers The New England Radio Discussion Society electronics course (Phase 4, cont d) Introduction to receivers AI2Q April 2017 REVIEW: a VFO, phase-locked loop (PLL), or direct digital synthesizer (DDS), can

More information

Radioelectronics RF CMOS Transceiver Design

Radioelectronics RF CMOS Transceiver Design Radioelectronics RF CMOS Transceiver Design http://www.ek.isy.liu.se/ courses/tsek26/ Jerzy Dąbrowski Division of Electronic Devices Department of Electrical Engineering (ISY) Linköping University e-mail:

More information

Fully integrated CMOS transmitter design considerations

Fully integrated CMOS transmitter design considerations Semiconductor Technology Fully integrated CMOS transmitter design considerations Traditionally, multiple IC chips are needed to build transmitters (Tx) used in wireless communications. The difficulty with

More information

Data and Computer Communications Chapter 4 Transmission Media

Data and Computer Communications Chapter 4 Transmission Media Data and Computer Communications Chapter 4 Transmission Media Ninth Edition by William Stallings Data and Computer Communications, Ninth Edition by William Stallings, (c) Pearson Education - Prentice Hall,

More information

RF/IF Terminology and Specs

RF/IF Terminology and Specs RF/IF Terminology and Specs Contributors: Brad Brannon John Greichen Leo McHugh Eamon Nash Eberhard Brunner 1 Terminology LNA - Low-Noise Amplifier. A specialized amplifier to boost the very small received

More information

SmartSpice RF Harmonic Balance Based and Shooting Method Based RF Simulation

SmartSpice RF Harmonic Balance Based and Shooting Method Based RF Simulation SmartSpice RF Harmonic Balance Based and Shooting Method Based RF Simulation Silvaco Overview SSRF Attributes Harmonic balance approach to solve system of equations in frequency domain Well suited for

More information

ELECTROMAGNETIC SPECTRUM ELECTROMAGNETIC SPECTRUM

ELECTROMAGNETIC SPECTRUM ELECTROMAGNETIC SPECTRUM LECTURE:2 ELECTROMAGNETIC SPECTRUM ELECTROMAGNETIC SPECTRUM Electromagnetic waves: In an electromagnetic wave the electric and magnetic fields are mutually perpendicular. They are also both perpendicular

More information

Introduction to OrCAD. Simulation Program With Integrated Circuits Emphasis.

Introduction to OrCAD. Simulation Program With Integrated Circuits Emphasis. Islamic University of Gaza Faculty of Engineering Electrical Engineering department Digital Electronics Lab (EELE 3121) Eng. Mohammed S. Jouda Eng. Amani S. abu reyala Experiment 1 Introduction to OrCAD

More information

EECS240 Spring Advanced Analog Integrated Circuits Lecture 1: Introduction. Elad Alon Dept. of EECS

EECS240 Spring Advanced Analog Integrated Circuits Lecture 1: Introduction. Elad Alon Dept. of EECS EECS240 Spring 2009 Advanced Analog Integrated Circuits Lecture 1: Introduction Elad Alon Dept. of EECS Course Focus Focus is on analog design Typically: Specs circuit topology layout Will learn spec-driven

More information

An Introduction to High-Frequency Circuits and Systems

An Introduction to High-Frequency Circuits and Systems An Introduction to High-Frequency Circuits and Systems 1 Outline The electromagnetic spectrum Review of market and technology trends Semiconductors industry Computers industry - signal integrity issues

More information

Design of the Low Phase Noise Voltage Controlled Oscillator with On-Chip Vs Off- Chip Passive Components.

Design of the Low Phase Noise Voltage Controlled Oscillator with On-Chip Vs Off- Chip Passive Components. 3 rd International Bhurban Conference on Applied Sciences and Technology, Bhurban, Pakistan. June 07-12, 2004 Design of the Low Phase Noise Voltage Controlled Oscillator with On-Chip Vs Off- Chip Passive

More information

RF2334. Typical Applications. Final PA for Low Power Applications Broadband Test Equipment

RF2334. Typical Applications. Final PA for Low Power Applications Broadband Test Equipment RF233 AMPLIFIER Typical Applications Broadband, Low Noise Gain Blocks IF or RF Buffer Amplifiers Driver Stage for Power Amplifiers Final PA for Low Power Applications Broadband Test Equipment Product Description

More information

A 1.9GHz Single-Chip CMOS PHS Cellphone

A 1.9GHz Single-Chip CMOS PHS Cellphone A 1.9GHz Single-Chip CMOS PHS Cellphone IEEE JSSC, Vol. 41, No.12, December 2006 William Si, Srenik Mehta, Hirad Samavati, Manolis Terrovitis, Michael Mack, Keith Onodera, Steve Jen, Susan Luschas, Justin

More information

Analog RF Electronics Education at SDSMT: A Hands-On Method for Teaching Electrical Engineers

Analog RF Electronics Education at SDSMT: A Hands-On Method for Teaching Electrical Engineers Analog RF Electronics Education at : A Hands-On Method for Teaching Electrical Engineers Dr., Professor Department of Electrical and Computer Engineering South Dakota School of Mines and Technology (whites@sdsmt.edu)

More information

Bridging the Gap between System & Circuit Designers

Bridging the Gap between System & Circuit Designers Bridging the Gap between System & Circuit Designers October 27, 2004 Presented by: Kal Kalbasi Q & A Marc Petersen Copyright 2003 Agilent Technologies, Inc. The Gap System Communication System Design System

More information

Design of low phase noise InGaP/GaAs HBT-based differential Colpitts VCOs for interference cancellation system

Design of low phase noise InGaP/GaAs HBT-based differential Colpitts VCOs for interference cancellation system Indian Journal of Engineering & Materials Sciences Vol. 17, February 2010, pp. 34-38 Design of low phase noise InGaP/GaAs HBT-based differential Colpitts VCOs for interference cancellation system Bhanu

More information

The wireless industry

The wireless industry From May 2007 High Frequency Electronics Copyright Summit Technical Media, LLC RF SiP Design Verification Flow with Quadruple LO Down Converter SiP By HeeSoo Lee and Dean Nicholson Agilent Technologies

More information

Foundries, MMICs, systems. Rüdiger Follmann

Foundries, MMICs, systems. Rüdiger Follmann Foundries, MMICs, systems Rüdiger Follmann Content MMIC foundries Designs and trends Examples 2 Foundries and MMICs Feb-09 IMST GmbH - All rights reserved MMIC foundries Foundries IMST is a UMS certified

More information

Small Cell, BTS PA Driver and Control and General-Purpose RF Products

Small Cell, BTS PA Driver and Control and General-Purpose RF Products Small Cell, BTS PA Driver and Control and General-Purpose RF Products FTF-NET-F0480 Mario Bokatius Product Line Manager M A Y. 2 0 1 4 TM External Use Agenda Freescale RF Introduction Cellular & Industrial

More information

CMOS Design of Wideband Inductor-Less LNA

CMOS Design of Wideband Inductor-Less LNA IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 8, Issue 3, Ver. I (May.-June. 2018), PP 25-30 e-issn: 2319 4200, p-issn No. : 2319 4197 www.iosrjournals.org CMOS Design of Wideband Inductor-Less

More information

Antenna Engineering Lecture 0: Introduction

Antenna Engineering Lecture 0: Introduction Antenna Engineering Lecture 0: Introduction ELC 405a Fall 2011 Department of Electronics and Communications Engineering Faculty of Engineering Cairo University 2 Outline 1 Why Study Antenna Engineering?

More information

SOME PHYSICAL LAYER ISSUES. Lecture Notes 2A

SOME PHYSICAL LAYER ISSUES. Lecture Notes 2A SOME PHYSICAL LAYER ISSUES Lecture Notes 2A Delays in networks Propagation time or propagation delay, t prop Time required for a signal or waveform to propagate (or move) from one point to another point.

More information

RF3375 GENERAL PURPOSE AMPLIFIER

RF3375 GENERAL PURPOSE AMPLIFIER Basestation Applications Broadband, Low-Noise Gain Blocks IF or RF Buffer Amplifiers Driver Stage for Power Amplifiers Final PA for Low-Power Applications High Reliability Applications RF3375General Purpose

More information

26.8: A 1.9GHz Single-Chip CMOS PHS Cellphone

26.8: A 1.9GHz Single-Chip CMOS PHS Cellphone 26.8: A 1.9GHz Single-Chip CMOS PHS Cellphone William W. Si, Srenik Mehta, Hirad Samavati, Manolis Terrovitis, Michael Mack, KeithOnodera, SteveJen, Susan Luschas, Justin Hwang, SuniMendis, DavidSu, BruceWooley

More information

Electronics Interview Questions

Electronics Interview Questions Electronics Interview Questions 1. What is Electronic? The study and use of electrical devices that operate by controlling the flow of electrons or other electrically charged particles. 2. What is communication?

More information

Bluetooth Receiver. Ryan Rogel, Kevin Owen I. INTRODUCTION

Bluetooth Receiver. Ryan Rogel, Kevin Owen I. INTRODUCTION 1 Bluetooth Receiver Ryan Rogel, Kevin Owen Abstract A Bluetooth radio front end is developed and each block is characterized. Bits are generated in MATLAB, GFSK endcoded, and used as the input to this

More information

Design of S-Band Double-Conversion Superheterodyne Receiver Front-End for RADAR Systems

Design of S-Band Double-Conversion Superheterodyne Receiver Front-End for RADAR Systems Cloud Publications International Journal of Advanced Electronics and Radar Technology 2015, Volume 1, Issue 1, pp. 32-37, Article ID Tech-425 Short Communication Open Access Design of S-Band Double-Conversion

More information

RF2317. Laser Diode Driver Return Channel Amplifier Base Stations. CATV Distribution Amplifiers Cable Modems Broadband Gain Blocks

RF2317. Laser Diode Driver Return Channel Amplifier Base Stations. CATV Distribution Amplifiers Cable Modems Broadband Gain Blocks CATV Distribution Amplifiers Cable Modems Broadband Gain Blocks Laser Diode Driver Return Channel Amplifier Base Stations The is a general purpose, low cost high linearity RF amplifier IC. The device is

More information

Receiver Design. Prof. Tzong-Lin Wu EMC Laboratory Department of Electrical Engineering National Taiwan University 2011/2/21

Receiver Design. Prof. Tzong-Lin Wu EMC Laboratory Department of Electrical Engineering National Taiwan University 2011/2/21 Receiver Design Prof. Tzong-Lin Wu EMC Laboratory Department of Electrical Engineering National Taiwan University 2011/2/21 MW & RF Design / Prof. T. -L. Wu 1 The receiver mush be very sensitive to -110dBm

More information

APPLICATION NOTE dBm PA and PA Predriver with 37% Efficiency for 2.4GHz FHSS WLAN Applications

APPLICATION NOTE dBm PA and PA Predriver with 37% Efficiency for 2.4GHz FHSS WLAN Applications Maxim > App Notes > WIRELESS, RF, AND CABLE Keywords: rf, pa, bluetooth, 2.4ghz wireless, rfic, wlan, fhss, lna, rf ics May 01, 2001 APPLICATION NOTE 584 +23dBm PA and PA Predriver with 37% Efficiency

More information

1 of 7 12/20/ :04 PM

1 of 7 12/20/ :04 PM 1 of 7 12/20/2007 11:04 PM Trusted Resource for the Working RF Engineer [ C o m p o n e n t s ] Build An E-pHEMT Low-Noise Amplifier Although often associated with power amplifiers, E-pHEMT devices are

More information

DESIGN OF 2.4 GHZ LOW POWER CMOS TRANSMITTER FRONT END

DESIGN OF 2.4 GHZ LOW POWER CMOS TRANSMITTER FRONT END Volume 117 No. 16 2017, 685-694 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu DESIGN OF 2.4 GHZ LOW POWER CMOS TRANSMITTER FRONT END 1 S.Manjula,

More information

Antenna Engineering Lecture 0: Introduction

Antenna Engineering Lecture 0: Introduction Antenna Engineering Lecture 0: Introduction ELCN405 Fall 2011 Communications and Computer Engineering Program Faculty of Engineering Cairo University 2 Outline 1 Electromagnetic Spectrum Recent Advances

More information

WITH advancements in submicrometer CMOS technology,

WITH advancements in submicrometer CMOS technology, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 3, MARCH 2005 881 A Complementary Colpitts Oscillator in CMOS Technology Choong-Yul Cha, Member, IEEE, and Sang-Gug Lee, Member, IEEE

More information

Design of a Low Power 5GHz CMOS Radio Frequency Low Noise Amplifier Rakshith Venkatesh

Design of a Low Power 5GHz CMOS Radio Frequency Low Noise Amplifier Rakshith Venkatesh Design of a Low Power 5GHz CMOS Radio Frequency Low Noise Amplifier Rakshith Venkatesh Abstract A 5GHz low power consumption LNA has been designed here for the receiver front end using 90nm CMOS technology.

More information

Chapter-15. Communication systems -1 mark Questions

Chapter-15. Communication systems -1 mark Questions Chapter-15 Communication systems -1 mark Questions 1) What are the three main units of a Communication System? 2) What is meant by Bandwidth of transmission? 3) What is a transducer? Give an example. 4)

More information

Including the proper parasitics in a nonlinear

Including the proper parasitics in a nonlinear Effects of Parasitics in Circuit Simulations Simulation accuracy can be improved by including parasitic inductances and capacitances By Robin Croston California Eastern Laboratories Including the proper

More information

Transistor Radio Circuit Design Lecture Notes

Transistor Radio Circuit Design Lecture Notes Transistor Radio Circuit Design Lecture Notes Proficiency in the RF circuit design profession requires significant awareness of (1) American Radio Relay League, 2015 ARRL Handbook for Radio the subject,

More information

Flexible Hybrid Electronics Fabricated with High-Performance COTS ICs using RTI CircuitFilm TM Technology

Flexible Hybrid Electronics Fabricated with High-Performance COTS ICs using RTI CircuitFilm TM Technology Flexible Hybrid Electronics Fabricated with High-Performance COTS ICs using RTI CircuitFilm TM Technology Scott Goodwin 1, Erik Vick 2 and Dorota Temple 2 1 Micross Advanced Interconnect Technology Micross

More information

Continuous Wave Radar

Continuous Wave Radar Continuous Wave Radar CW radar sets transmit a high-frequency signal continuously. The echo signal is received and processed permanently. One has to resolve two problems with this principle: Figure 1:

More information

CPET 190 Problem Solving with MATLAB. Lecture 2

CPET 190 Problem Solving with MATLAB. Lecture 2 CPET 190 Problem Solving with MATLAB Lecture 2 Introduction to MATLAB http://www.etcs.ipfw.edu/~lin August 30, 2005 Lecture 2 - By P. Lin 1 Lecture 2: Math Problem Solving with MATLAB Part I 2-1 Constants

More information

RF CMOS Power Amplifiers: Theory, Design and Implementation

RF CMOS Power Amplifiers: Theory, Design and Implementation RF CMOS Power Amplifiers: Theory, Design and Implementation THE KLUWER INTERNATIONAL SERIES IN ENGINEERING AND COMPUTER SCIENCE ANALOG CIRCUITS AND SIGNAL PROCESSING Consulting Editor: Mohammed Ismail.

More information

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2 ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2 20.2 A Digitally Calibrated 5.15-5.825GHz Transceiver for 802.11a Wireless LANs in 0.18µm CMOS I. Bouras 1, S. Bouras 1, T. Georgantas

More information

A High Gain and Improved Linearity 5.7GHz CMOS LNA with Inductive Source Degeneration Topology

A High Gain and Improved Linearity 5.7GHz CMOS LNA with Inductive Source Degeneration Topology A High Gain and Improved Linearity 5.7GHz CMOS LNA with Inductive Source Degeneration Topology Ch. Anandini 1, Ram Kumar 2, F. A. Talukdar 3 1,2,3 Department of Electronics & Communication Engineering,

More information

Mansour Keramat. * No part may be reproduced without permission from the author. 1- Application of Data Converters. Contents

Mansour Keramat. * No part may be reproduced without permission from the author. 1- Application of Data Converters. Contents Mansour Keramat Analog and Mixed Signal Laboratory Electrical & Computer Eng. Dept. University of Connecticut Storrs, CT 06269 E-mail: keramat@engr.uconn.edu URL: http://www.engr.uconn.edu/~keramat * No

More information

Chapter 1: Telecommunication Fundamentals

Chapter 1: Telecommunication Fundamentals Chapter 1: Telecommunication Fundamentals Block Diagram of a communication system Noise n(t) m(t) Information (base-band signal) Signal Processing Carrier Circuits s(t) Transmission Medium r(t) Signal

More information

CMOS Analog to Digital Converters : State-of-the-Art and Perspectives in Digital Communications ADC

CMOS Analog to Digital Converters : State-of-the-Art and Perspectives in Digital Communications ADC CMOS Analog to Digital Converters : State-of-the-Art and Perspectives in Digital Communications ADC Hussein Fakhoury and Hervé Petit C²S Research Group Presentation Outline Introduction Basic concepts

More information

Tutorial 2 Test Techniques for RFIC and Embedded Passives

Tutorial 2 Test Techniques for RFIC and Embedded Passives Tutorial 2 Test Techniques for RFIC and Embedded Passives Bruce C. Kim, Ph.D. The University of Alabama, Tuscaloosa, U.S.A. 13 th Korea Test Conference, Seoul June 27, 2012 1 Outline Introduction to RF

More information

An Introduction to Electrical and Electronic Engineering Electromagnetic. Dr. Cahit Karakuş, 2018

An Introduction to Electrical and Electronic Engineering Electromagnetic. Dr. Cahit Karakuş, 2018 An Introduction to Electrical and Electronic Engineering Electromagnetic Dr. Cahit Karakuş, 2018 Electromagnetic Spectrum Electromagnetic Spectrum Longest Wavelength Shortest Wavelength Electrical

More information

RF2667. Typical Applications CDMA/FM Cellular Systems CDMA PCS Systems GSM/DCS Systems

RF2667. Typical Applications CDMA/FM Cellular Systems CDMA PCS Systems GSM/DCS Systems RF66 RECEIVE AGC AND DEMODULATOR Typical Applications CDMA/FM Cellular Systems CDMA PCS Systems GSM/DCS Systems TDMA Systems Spread Spectrum Cordless Phones Wireless Local Loop Systems Product Description

More information

BALANCED MIXERS DESIGNED FOR RF

BALANCED MIXERS DESIGNED FOR RF BALANCED MIXERS DESIGNED FOR RF Janeta Stefcheva Sevova, George Vasilev Angelov, Marin Hristov Hristov ECAD Laboratory, Technical University of Sofia, 8 Kliment Ohsridski Str., 1797 Sofia, Bulgaria, Phone:

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK II SEMESTER/ M.E COMMUNICATION SYSTEMS CU 5201 MIC and RF System Design

More information

UNDER STANDING RADIO FREQUENCY Badger Meter, Inc.

UNDER STANDING RADIO FREQUENCY Badger Meter, Inc. UNDER STANDING RADIO FREQUENCY UNDERSTANDING RADIO FREQUENCY Regional Sales Meeting March 1-2, 2011 Brian Fiut Sr. Product Manager Itron Inc. Liberty Lake, WA August 25, 2010 RADIO PROPAGATION Radio consists

More information

CLOUDSDR RFSPACE #CONNECTED SOFTWARE DEFINED RADIO. final design might vary without notice

CLOUDSDR RFSPACE #CONNECTED SOFTWARE DEFINED RADIO. final design might vary without notice CLOUDSDR #CONNECTED SOFTWARE DEFINED RADIO final design might vary without notice 1 - PRELIMINARY SPECIFICATIONS http://www.rfspace.com v0.1 RFSPACE CloudSDR CLOUDSDR INTRODUCTION The RFSPACE CloudSDR

More information

Communications II. Mohammad Fathi Text book: J.G. Proakis and M. Salehi, Communication System Engineering (2 nd Ed) Syllabus

Communications II. Mohammad Fathi Text book: J.G. Proakis and M. Salehi, Communication System Engineering (2 nd Ed) Syllabus Communications II Mohammad Fathi mfathi@uok.ac.ir Course information Text book: J.G. Proakis and M. Salehi, Communication System Engineering (2 nd Ed) Syllabus Introduction: [1.1, 1.2, 1.3, and 1.4] Review

More information

LAB Assignment No. 6: TO STUDY GENERATION OF DOUBLE SIDE BAND AMPLITUDE MODULATE (AM) WAVEFORMS, USING DSB/SSB TRANSMITTER

LAB Assignment No. 6: TO STUDY GENERATION OF DOUBLE SIDE BAND AMPLITUDE MODULATE (AM) WAVEFORMS, USING DSB/SSB TRANSMITTER LAB Assignment No. 6: TO STUDY GENERATION OF DOUBLE SIDE BAND AMPLITUDE MODULATE (AM) WAVEFORMS, USING DSB/SSB TRANSMITTER APPARATUS: Oscilloscope DSB/SSB Traine Power supply Connecting leads THEORY: A

More information

Design Considerations for 5G mm-wave Receivers. Stefan Andersson, Lars Sundström, and Sven Mattisson

Design Considerations for 5G mm-wave Receivers. Stefan Andersson, Lars Sundström, and Sven Mattisson Design Considerations for 5G mm-wave Receivers Stefan Andersson, Lars Sundström, and Sven Mattisson Outline Introduction to 5G @ mm-waves mm-wave on-chip frequency generation mm-wave analog front-end design

More information

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5 ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.5 20.5 A 2.4GHz CMOS Transceiver and Baseband Processor Chipset for 802.11b Wireless LAN Application George Chien, Weishi Feng, Yungping

More information

Millimeter-wave CMOS Transceiver Techniques for Automotive Radar Systems

Millimeter-wave CMOS Transceiver Techniques for Automotive Radar Systems Millimeter-wave CMOS Transceiver Techniques for Automotive Radar Systems Yoichi Kawano Hiroshi Matsumura Ikuo Soga Yohei Yagishita Recently, advanced driver assistance systems (ADAS) with the keyword of

More information

Up to 6 GHz Low Noise Silicon Bipolar Transistor Chip. Technical Data AT-41400

Up to 6 GHz Low Noise Silicon Bipolar Transistor Chip. Technical Data AT-41400 Up to 6 GHz Low Noise Silicon Bipolar Transistor Chip Technical Data AT-1 Features Low Noise Figure: 1.6 db Typical at 3. db Typical at. GHz High Associated Gain: 1.5 db Typical at 1.5 db Typical at. GHz

More information

ATF-531P8 E-pHEMT GaAs FET Low Noise Amplifier Design for 800 and 900 MHz Applications. Application Note 1371

ATF-531P8 E-pHEMT GaAs FET Low Noise Amplifier Design for 800 and 900 MHz Applications. Application Note 1371 ATF-31P8 E-pHEMT GaAs FET Low Noise Amplifier Design for 8 and 9 MHz Applications Application Note 1371 Introduction A critical first step in any LNA design is the selection of the active device. Low cost

More information

Chapter 6. Case Study: 2.4-GHz Direct Conversion Receiver. 6.1 Receiver Front-End Design

Chapter 6. Case Study: 2.4-GHz Direct Conversion Receiver. 6.1 Receiver Front-End Design Chapter 6 Case Study: 2.4-GHz Direct Conversion Receiver The chapter presents a 0.25-µm CMOS receiver front-end designed for 2.4-GHz direct conversion RF transceiver and demonstrates the necessity and

More information