Femtosecond laser microfabrication in. Prof. Dr. Cleber R. Mendonca

Size: px
Start display at page:

Download "Femtosecond laser microfabrication in. Prof. Dr. Cleber R. Mendonca"

Transcription

1 Femtosecond laser microfabrication in polymers Prof. Dr. Cleber R. Mendonca

2 laser microfabrication focus laser beam on material s surface

3 laser microfabrication

4 laser microfabrication

5 laser microfabrication surface microstructuring

6 fs-micromachining photon energy < bandgap nonlinear interaction

7 fs-micromachining nonlinear interaction E gap E f = hν

8 fs-micromachining nonlinear interaction E gap E f = hν multiphoton absorption

9 introduction short pulse duration ö high intensity (even at low energy)

10 introduction how short is a femtosecond pulse? 1fs= s

11 introduction how short is a femtosecond pulse?

12 introduction Ti:Sapphire lasers 100 fs 50 fs 20 fs Very intense light Laser intensities ~ 100 GW/cm 2 1x W/cm 2 Laser pointer: 1 mw/cm 2 (1 x10-3 W/ cm 2 )

13 introduction Ti:Sapphire lasers 100 fs 50 fs 20 fs Very intense light

14 fs-laser microfabrication focus laser beam inside material

15 Two-photon absorption Nonlinear interaction provides spatial confinement of the excitation fs-microfabrication α = α 0 α = α 0 + βi

16 Two-photon absorption spatial confinement of excitation

17 femtosecond pulses Ti:Sapphire lasers 1fs= s 100 fs 50 fs 20 fs Repetition rate 1KHz 1 ms Energy mj 100 fs 12 ns 86 MHz nj 100 fs

18 femtosecond pulses amplified laser oscillator repetitive cumulative

19 fs-micromachining the longer the irradiation the longer the radius silica E. Mazur Harvard University

20 fs-micromachining: focusing NA = 0.12 μ = 7 o NA = 0.34 μ = 20 o NA = 0.87 μ = 60 o

21 what is the difference? w λ 0 = 1 NA πna 2

22 very different confocal lenght/interaction length

23 fs-micromachining microfabrication can be controlled by objective NA number of pulses scanning speed pulse energy

24 two main techniques fs-laser micromachining microfabrication via two-photon polymerization

25 fs-laser micromaching Surface Volume

26 fs-pulses for micromachining polymers Oscillator: 80 MHz, 5 nj heat diffusion time: t diff ~ 1 μs cumulative

27 Micromachining the conductive polymer MEH-PPV optical microscopy a: 0.07 nj b: 0.14 nj c: 0.34 nj d: 0.68 nj

28 Micromachining the conductive polymer MEH-PPV a 0.3 nj atomic force microscopy b 20nJ 2.0

29 Micromachining the conductive polymer MEH-PPV

30 Waveguides in azo-polymers H 2 N N N NO 2 DO3 Cl HO H 2 C H 3 C H 2 C H 2 C N N N NO 2 DR13 HO H 2 C H 2 C H 3 C H 2 C 3 2 N N N NO 2 DR1

31 Waveguides in azo-polymers (a) Optical microscope image of the waveguides micromachined (PMMA/DR1) (b) Cross-sectional view of the waveguides

32 waveguides in azo-polymers (c) Output image of the mode profile of nm light coupled through the waveguide

33 Subcellular surgery I. Maxwell, E. Mazur Harvard University

34 Subcellular surgery I. Maxwell, E. Mazur Harvard University

35 microstructuring polymer: super hydrophobic surface CCD lens mirror Pockels cell ps-laser objective 0.65 NA sample

36 microstructuring polymer: super hydrophobic surface

37 laser microfabrication: super hydrophobic surface examples of fabricated surfaces 20 μm 40 μm

38 laser microfabrication: super hydrophobic surface laser microfabrication Superhydrophobic surfaces flat surface microstructured surface

39 microstructuring polymer flat surface θ = 118º microstructured t surface θ = 160º

40 Microfabrication Novel concept: build microstructures using fs-laser and nonlinear optical processes

41 two-photon polymerization applications micromechanics waveguides microfluidics biology optical devices

42 Two-photon polymerization Monomer + Photoinitiator Polymer light Photoinitiator is excited by two-photon absorption R2 PA I The polymerization is confined to the focal volume. 2 High spatial resolution

43 Two-photon polymerization bellow the diffraction limit

44 Two-photon polymerization even higher spatial resolution

45 Two-photon polymerization setup Beam Expansion y x Scanning Mirror Laser Ti:sapphire laser oscillator 130 fs 800 nm 76 MHz 20 mw CCD camera glass (150 micron) Objective Objective z spacer resin glass (150 micron) 40 x 0.65 NA Illumination

46 Two-photon polymerization

47 Resin preparation Monomers Monomer A Monomer B reduces the shrinkage upon polymerization gives hardness to the polymeric structure Photoinitiator iti t Lucirin TPO-L Appl. Phys. A, 90, (2008)

48 Two-photon polymerization 30 µm x 30 µm x 12 µm cube polymer glass

49 Two-photon polymerization After the fabrication, the sample is immersed in ethanol to wash away any unsolidified resin and then dried

50 photonic crystal J. W. Perry two-photon polymerization 20 µm

51 Two-photon polymerization Microstructures fabricated by two-photon polymerization 50 μm 20 µm 20 μm 20 µm

52 Microstructures containing active compounds monomer monomer Optical active dye Active Polymer

53 Applications of two-photon polymerization Optics and Photonics Doping microstructures with organic molecules and metals fluorescence birefringence conductivity Bio-applications Fabrication using bio-compatible resins to biological applications tissue engineering scaffolds tissue engineering scaffolds fabrication of microneedle cell study

54 Other studies microstructures for optical storage birefringence p r dye p r dye φ N N E r Light Relax trans cis trans N N N N φ E r J. Appl. Phys., 102, (2007)

55 Other studies microstructures for optical storage birefringence Ar + ion laser irradiation nm one minute intensity it of 600 mw/cm 2

56 Other studies microstructures for optical storage birefringence The sample was placed under an optical microscope between crossed polarizers and its angle was varied with respect to the polarizer angle

57 Other studies microstructures for optical storage birefringence J. Appl. Phys., 102, (2007)

58 Microstructures containing MEH-PPV MEH-PPV Fluorescence Electro Luminescent Conductive

59 Microstructure containing MEH-PPV Appl. Phys. Lett., (2009)

60 Microstructure containing MEH-PPV

61 Microstructure containing MEH-PPV

62 Microstructure containing MEH-PPV

63 Microstructure containing MEH-PPV

64 Microstructure containing MEH-PPV (a) Scanning electron microscopy (b,c) Fluorescence microscopy of the microstructure t with the excitation ti OFF (b) and ON (c) (d) Emission of the microstructure (black line) and of a film with the same composition (red line) Appl. Phys. Lett., (2009)

65 Microstructure containing MEH-PPV Fluorescent confocal microscopy images in planes separated by 16 μm in the pyramidal microstructure.

66 Microstructure containing MEH-PPV Do we have waveguiding in the microstructure t?

67 Microstructure containing MEH-PPV Do we have waveguiding in the microstructure t?

68 Microstructure containing MEH-PPV

69 Microstructure containing MEH-PPV Appl. Phys. Lett., (2009)

70 Microstructure containing MEH-PPV

71 Microstructure containing MEH-PPV waveguiding of the microstructure fabricated on porous silica substrate (n= 1.185) Applications: micro-laser; fluorescent microstructures; conductive microstructures

72 3D cell migration 3D cell migration studies in micro-scaffolds SEM of the scaffolds 110 µm pore size 52 µm pore size Top view 110, 52, 25, 12 µm pore size Side view 25, 52 µm pore size

73 3D cell migration 50 μm pore size

74 3D cell migration 110 μm pore size

75 3D cell migration 12 μm pore size

76 3D cell migration 52 μm pore size

77 3D cell migration 3D cell migration studies in micro-scaffolds Advanced Materials, 20, (2008)

78 Optical circuit

79 Optical circuit microfabrication silica nanowires coupling microstructures 50 μm

80 Silica nanowires nanowires fabrication process

81 Silica nanowires nanowires fabrication process

82 Silica nanowires nanowires fabrication process

83 Silica nanowires

84 Silica nanowires 70 μm 1 μm

85 Silica nanowires

86 Silica nanowires

87 Silica nanowires coupling light into nanowires

88 Silica nanowires coupling light into nanowires

89 Silica nanowires coupling light into nanowires

90 Silica nanowires coupling light into nanowires

91 Silica nanowires coupling light into nanowires

92 Silica nanowires coupling light into nanowires

93 Silica nanowires Poynting vector for 800 nm nanowires Opt. Express 12, (2004)

94 Silica nanowires Poynting vector for 800 nm nanowires

95 Silica nanowires Manipulating the nanowires

96 Silica nanowires

97 Silica nanowires

98 Silica nanowires

99 Silica nanowires coupling light into nanowires

100 Silica nanowires coupling light into nanowires

101 Silica nanowires coupling light into nanowires

102 Outline microfabrication silica nanowires coupling microstructures 50 μm

103 Coupling microstructures

104 Coupling microstructures

105 Coupling microstructures

106 Coupling microstructures

107 Coupling microstructures

108 Coupling microstructures

109 Coupling microstructures

110 Silica nanowires

111 Coupling microstructures

112 Coupling microstructures

113 Coupling microstructures

114 Coupling microstructures

115 Coupling microstructures

116 Summary

117 Acknowledgments FAPESP CAPES CNPq NSF ARO

118 Thank you!

119 for a copy of this presentation presentations

Ultrafast Beams and Applications UBA July, 2017 Presenter: Arsham Yeremyan

Ultrafast Beams and Applications UBA July, 2017 Presenter: Arsham Yeremyan Laser driven facility for irradiation experiments, two-photon microscopy and microfabrication Ultrafast Beams and Applications UBA17 04-07 July, 2017 Presenter: Arsham Yeremyan Outline Parallel operation

More information

Title: Laser marking with graded contrast micro crack inside transparent material using UV ns pulse

Title: Laser marking with graded contrast micro crack inside transparent material using UV ns pulse Cover Page Title: Laser marking with graded contrast micro crack inside transparent material using UV ns pulse laser Authors: Futoshi MATSUI*(1,2), Masaaki ASHIHARA(1), Mitsuyasu MATSUO (1), Sakae KAWATO(2),

More information

Progress in ultrafast Cr:ZnSe Lasers. Evgueni Slobodtchikov, Peter Moulton

Progress in ultrafast Cr:ZnSe Lasers. Evgueni Slobodtchikov, Peter Moulton Progress in ultrafast Cr:ZnSe Lasers Evgueni Slobodtchikov, Peter Moulton Topics Diode-pumped Cr:ZnSe femtosecond oscillator CPA Cr:ZnSe laser system with 1 GW output This work was supported by SBIR Phase

More information

3D light microscopy techniques

3D light microscopy techniques 3D light microscopy techniques The image of a point is a 3D feature In-focus image Out-of-focus image The image of a point is not a point Point Spread Function (PSF) 1D imaging 1 1 2! NA = 0.5! NA 2D imaging

More information

Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy

Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy Qiyuan Song (M2) and Aoi Nakamura (B4) Abstracts: We theoretically and experimentally

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Optically reconfigurable metasurfaces and photonic devices based on phase change materials S1: Schematic diagram of the experimental setup. A Ti-Sapphire femtosecond laser (Coherent Chameleon Vision S)

More information

Single-photon excitation of morphology dependent resonance

Single-photon excitation of morphology dependent resonance Single-photon excitation of morphology dependent resonance 3.1 Introduction The examination of morphology dependent resonance (MDR) has been of considerable importance to many fields in optical science.

More information

Maria Smedh, Centre for Cellular Imaging. Maria Smedh, Centre for Cellular Imaging

Maria Smedh, Centre for Cellular Imaging. Maria Smedh, Centre for Cellular Imaging Nonlinear microscopy I: Two-photon fluorescence microscopy Multiphoton Microscopy What is multiphoton imaging? Applications Different imaging modes Advantages/disadvantages Scattering of light in thick

More information

Multiphoton Microscopy

Multiphoton Microscopy Multiphoton Microscopy A. Neumann, Y. Kuznetsova Introduction Multi-Photon Fluorescence Microscopy is a relatively novel imaging technique in cell biology. It relies on the quasi-simultaneous absorption

More information

Confocal Microscopy and Related Techniques

Confocal Microscopy and Related Techniques Confocal Microscopy and Related Techniques Chau-Hwang Lee Associate Research Fellow Research Center for Applied Sciences, Academia Sinica 128 Sec. 2, Academia Rd., Nankang, Taipei 11529, Taiwan E-mail:

More information

Laser tests of Wide Band Gap power devices. Using Two photon absorption process

Laser tests of Wide Band Gap power devices. Using Two photon absorption process Laser tests of Wide Band Gap power devices Using Two photon absorption process Frederic Darracq Associate professor IMS, CNRS UMR5218, Université Bordeaux, 33405 Talence, France 1 Outline Two-Photon absorption

More information

Fabrication of microstructures on photosensitive glass using a femtosecond laser process and chemical etching

Fabrication of microstructures on photosensitive glass using a femtosecond laser process and chemical etching Fabrication of microstructures on photosensitive glass using a femtosecond laser process and chemical etching C. W. Cheng* 1, J. S. Chen* 2, P. X. Lee* 2 and C. W. Chien* 1 *1 ITRI South, Industrial Technology

More information

LMT F14. Cut in Three Dimensions. The Rowiak Laser Microtome: 3-D Cutting and Imaging

LMT F14. Cut in Three Dimensions. The Rowiak Laser Microtome: 3-D Cutting and Imaging LMT F14 Cut in Three Dimensions The Rowiak Laser Microtome: 3-D Cutting and Imaging The Next Generation of Microtomes LMT F14 - Non-contact laser microtomy The Rowiak laser microtome LMT F14 is a multi-purpose

More information

Nanoscale Systems for Opto-Electronics

Nanoscale Systems for Opto-Electronics Nanoscale Systems for Opto-Electronics 675 PL intensity [arb. units] 700 Wavelength [nm] 650 625 600 5µm 1.80 1.85 1.90 1.95 Energy [ev] 2.00 2.05 1 Nanoscale Systems for Opto-Electronics Lecture 5 Interaction

More information

Ultrashort Pulse Laser Processing of Transparent Materials

Ultrashort Pulse Laser Processing of Transparent Materials Ultrashort Pulse Laser Processing of Transparent Materials Fumiyo YOSHINO, Haibin ZHANG and Alan ARAI IMRA America, Inc., Applications Research Laboratory 48834 Kato Road, Suite 106A, Fremont, CA 94538

More information

Supplementary Information for. Surface Waves. Angelo Angelini, Elsie Barakat, Peter Munzert, Luca Boarino, Natascia De Leo,

Supplementary Information for. Surface Waves. Angelo Angelini, Elsie Barakat, Peter Munzert, Luca Boarino, Natascia De Leo, Supplementary Information for Focusing and Extraction of Light mediated by Bloch Surface Waves Angelo Angelini, Elsie Barakat, Peter Munzert, Luca Boarino, Natascia De Leo, Emanuele Enrico, Fabrizio Giorgis,

More information

Theoretical Approach. Why do we need ultra short technology?? INTRODUCTION:

Theoretical Approach. Why do we need ultra short technology?? INTRODUCTION: Theoretical Approach Why do we need ultra short technology?? INTRODUCTION: Generating ultrashort laser pulses that last a few femtoseconds is a highly active area of research that is finding applications

More information

3D light microscopy techniques

3D light microscopy techniques 3D light microscopy techniques The image of a point is a 3D feature In-focus image Out-of-focus image The image of a point is not a point Point Spread Function (PSF) 1D imaging 2D imaging 3D imaging Resolution

More information

Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture

Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture Nicholas Murphy-DuBay, Liang Wang, Edward C. Kinzel, Sreemanth M. V. Uppuluri, and X. Xu * School of Mechanical

More information

Fast Raman Spectral Imaging Using Chirped Femtosecond Lasers

Fast Raman Spectral Imaging Using Chirped Femtosecond Lasers Fast Raman Spectral Imaging Using Chirped Femtosecond Lasers Dan Fu 1, Gary Holtom 1, Christian Freudiger 1, Xu Zhang 2, Xiaoliang Sunney Xie 1 1. Department of Chemistry and Chemical Biology, Harvard

More information

Fastest high definition Raman imaging. Fastest Laser Raman Microscope RAMAN

Fastest high definition Raman imaging. Fastest Laser Raman Microscope RAMAN Fastest high definition Raman imaging Fastest Laser Raman Microscope RAMAN - 11 www.nanophoton.jp Observation A New Generation in Raman Observation RAMAN-11 developed by Nanophoton was newly created by

More information

Development of a High-speed Super-resolution Confocal Scanner

Development of a High-speed Super-resolution Confocal Scanner Development of a High-speed Super-resolution Confocal Scanner Takuya Azuma *1 Takayuki Kei *1 Super-resolution microscopy techniques that overcome the spatial resolution limit of conventional light microscopy

More information

REU Student: Si (Athena) Pan Connecticut College Mentor: Dimitre Ouzounov Graduate Student Mentor: Heng Li Summer 2008

REU Student: Si (Athena) Pan Connecticut College Mentor: Dimitre Ouzounov Graduate Student Mentor: Heng Li Summer 2008 REU Student: Si (Athena) Pan Connecticut College Mentor: Dimitre Ouzounov Graduate Student Mentor: Heng Li Summer 008 Ultrashort pulses, its measurement and motivation of my project Two-photon absorption

More information

Continuum White Light Generation. WhiteLase: High Power Ultrabroadband

Continuum White Light Generation. WhiteLase: High Power Ultrabroadband Continuum White Light Generation WhiteLase: High Power Ultrabroadband Light Sources Technology Ultrafast Pulses + Fiber Laser + Non-linear PCF = Spectral broadening from 400nm to 2500nm Ultrafast Fiber

More information

Prospects and applications of an ultrafast nanometric electron source

Prospects and applications of an ultrafast nanometric electron source Prospects and applications of an ultrafast nanometric electron source Peter Hommelhoff Catherine Kealhofer Mark Kasevich Physics and Applied Physics, Stanford University 1. Ultrashort pulse lasers Femtosecond

More information

VELA PHOTOINJECTOR LASER. E.W. Snedden, Lasers and Diagnostics Group

VELA PHOTOINJECTOR LASER. E.W. Snedden, Lasers and Diagnostics Group VELA PHOTOINJECTOR LASER E.W. Snedden, Lasers and Diagnostics Group Contents Introduction PI laser step-by-step: Ti:Sapphire oscillator Regenerative amplifier Single-pass amplifier Frequency mixing Emphasis

More information

Direct observation of beamed Raman scattering

Direct observation of beamed Raman scattering Supporting Information Direct observation of beamed Raman scattering Wenqi Zhu, Dongxing Wang, and Kenneth B. Crozier* School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts

More information

k λ NA Resolution of optical systems depends on the wavelength visible light λ = 500 nm Extreme ultra-violet and soft x-ray light λ = 1-50 nm

k λ NA Resolution of optical systems depends on the wavelength visible light λ = 500 nm Extreme ultra-violet and soft x-ray light λ = 1-50 nm Resolution of optical systems depends on the wavelength visible light λ = 500 nm Spatial Resolution = k λ NA EUV and SXR microscopy can potentially resolve full-field images with 10-100x smaller features

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements Homework #3 is due today No class Monday, Feb 26 Pre-record

More information

Recent Progress on the 10PW laser Project at SIOM

Recent Progress on the 10PW laser Project at SIOM Recent Progress on the 10PW laser Project at SIOM Ruxin Li, Yuxin Leng, Xiaoyan Liang, and Zhizhan Xu State Key Laboratory of High Field Laser Physics Shanghai Institute of Optics and Fine Mechanics (SIOM),

More information

Faraday Rotators and Isolators

Faraday Rotators and Isolators Faraday Rotators and I. Introduction The negative effects of optical feedback on laser oscillators and laser diodes have long been known. Problems include frequency instability, relaxation oscillations,

More information

Fabrication of Photorefractive Grating With 800 nm Femtosecond Lasers in Fe: LiNbO 3 and Rh:BaTiO 3 Crystals

Fabrication of Photorefractive Grating With 800 nm Femtosecond Lasers in Fe: LiNbO 3 and Rh:BaTiO 3 Crystals Fabrication of Photorefractive Grating With 8 nm Femtosecond Lasers in Fe: LiNbO 3 and Rh:BaTiO 3 Crystals Md. Masudul Kabir (D3) Abstract Refractive index gratings have been successfully formed in Fe:LiNbO

More information

J-KAREN-P Session 1, 10:00 10:

J-KAREN-P Session 1, 10:00 10: J-KAREN-P 2018 Session 1, 10:00 10:25 2018 5 8 Outline Introduction Capabilities of J-KAREN-P facility Optical architecture Status and implementation of J-KAREN-P facility Amplification performance Recompression

More information

X-CAN. A coherent amplification network of femtosecond fiber amplifiers

X-CAN. A coherent amplification network of femtosecond fiber amplifiers X-CAN A coherent amplification network of femtosecond fiber amplifiers Jean-Christophe Chanteloup, Louis Daniault LULI, Ecole Polytechnique, CNRS, CEA, UPMC, Route de Saclay, 91128, Palaiseau, France Gérard

More information

Phase-sensitive high-speed THz imaging

Phase-sensitive high-speed THz imaging Phase-sensitive high-speed THz imaging Toshiaki Hattori, Keisuke Ohta, Rakchanok Rungsawang and Keiji Tukamoto Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573

More information

Resolution. Diffraction from apertures limits resolution. Rayleigh criterion θ Rayleigh = 1.22 λ/d 1 peak at 2 nd minimum. θ f D

Resolution. Diffraction from apertures limits resolution. Rayleigh criterion θ Rayleigh = 1.22 λ/d 1 peak at 2 nd minimum. θ f D Microscopy Outline 1. Resolution and Simple Optical Microscope 2. Contrast enhancement: Dark field, Fluorescence (Chelsea & Peter), Phase Contrast, DIC 3. Newer Methods: Scanning Tunneling microscopy (STM),

More information

The Realization of Ultra-Short Laser Sources. with Very High Intensity

The Realization of Ultra-Short Laser Sources. with Very High Intensity Adv. Studies Theor. Phys., Vol. 3, 2009, no. 10, 359-367 The Realization of Ultra-Short Laser Sources with Very High Intensity Arqile Done University of Gjirokastra, Department of Mathematics Computer

More information

Superimposed surface-relief diffraction grating holographic lenses on azo-polymer films

Superimposed surface-relief diffraction grating holographic lenses on azo-polymer films Superimposed surface-relief diffraction grating holographic lenses on azo-polymer films Ribal Georges Sabat * Department of Physics, Royal Military College of Canada, PO Box 17000 STN Forces, Kingston,

More information

Supplementary Information. Stochastic Optical Reconstruction Microscopy Imaging of Microtubule Arrays in Intact Arabidopsis thaliana Seedling Roots

Supplementary Information. Stochastic Optical Reconstruction Microscopy Imaging of Microtubule Arrays in Intact Arabidopsis thaliana Seedling Roots Supplementary Information Stochastic Optical Reconstruction Microscopy Imaging of Microtubule Arrays in Intact Arabidopsis thaliana Seedling Roots Bin Dong 1,, Xiaochen Yang 2,, Shaobin Zhu 1, Diane C.

More information

plasmonic nanoblock pair

plasmonic nanoblock pair Nanostructured potential of optical trapping using a plasmonic nanoblock pair Yoshito Tanaka, Shogo Kaneda and Keiji Sasaki* Research Institute for Electronic Science, Hokkaido University, Sapporo 1-2,

More information

Confocal Imaging Through Scattering Media with a Volume Holographic Filter

Confocal Imaging Through Scattering Media with a Volume Holographic Filter Confocal Imaging Through Scattering Media with a Volume Holographic Filter Michal Balberg +, George Barbastathis*, Sergio Fantini % and David J. Brady University of Illinois at Urbana-Champaign, Urbana,

More information

Administrative details:

Administrative details: Administrative details: Anything from your side? www.photonics.ethz.ch 1 What are we actually doing here? Optical imaging: Focusing by a lens Angular spectrum Paraxial approximation Gaussian beams Method

More information

Precision-tracking of individual particles By Fluorescence Photo activation Localization Microscopy(FPALM) Presented by Aung K.

Precision-tracking of individual particles By Fluorescence Photo activation Localization Microscopy(FPALM) Presented by Aung K. Precision-tracking of individual particles By Fluorescence Photo activation Localization Microscopy(FPALM) Presented by Aung K. Soe This FPALM research was done by Assistant Professor Sam Hess, physics

More information

Components of confocal and two-photon microscopes

Components of confocal and two-photon microscopes Components of confocal and two-photon microscopes Internal training 07/04/2016 A. GRICHINE Platform Optical microscopy Cell imaging, IAB, ISdV Plan Confocal laser scanning microscope o o o Principle Main

More information

Available online at Physics Procedia 12 (2011) LiM 2011

Available online at   Physics Procedia 12 (2011) LiM 2011 Available online at www.sciencedirect.com Physics Procedia 12 (2011) 82 88 LiM 2011 Fabrication of Scaffolds and Micro-Lenses Array in a Negative Photopolymer SZ2080 by Multi-Photon Polymerization and

More information

CHAPTER 7. Waveguide writing in optimal conditions. 7.1 Introduction

CHAPTER 7. Waveguide writing in optimal conditions. 7.1 Introduction CHAPTER 7 7.1 Introduction In this chapter, we want to emphasize the technological interest of controlled laser-processing in dielectric materials. Since the first report of femtosecond laser induced refractive

More information

Index. BaF 2 crystal 41 biochemical sensor 7, 316, ,

Index. BaF 2 crystal 41 biochemical sensor 7, 316, , Index acousto-optic effect 243 44 air bandedge 35, 266 air gap 188, 197, 224, 240 41 air holes 16 17, 52 53, 55, 64, 189, 192, 216 18, 241 43, 245, 266 68, 270 72, 298 99, 333 34, 336 37, 341 42 air pores

More information

Fast Laser Raman Microscope RAMAN

Fast Laser Raman Microscope RAMAN Fast Laser Raman Microscope RAMAN - 11 www.nanophoton.jp Fast Raman Imaging A New Generation of Raman Microscope RAMAN-11 developed by Nanophoton was created by combining confocal laser microscope technology

More information

G. Norris* & G. McConnell

G. Norris* & G. McConnell Relaxed damage threshold intensity conditions and nonlinear increase in the conversion efficiency of an optical parametric oscillator using a bi-directional pump geometry G. Norris* & G. McConnell Centre

More information

NIH Public Access Author Manuscript Opt Lett. Author manuscript; available in PMC 2010 August 9.

NIH Public Access Author Manuscript Opt Lett. Author manuscript; available in PMC 2010 August 9. NIH Public Access Author Manuscript Published in final edited form as: Opt Lett. 2010 January 1; 35(1): 67 69. Autoconfocal transmission microscopy based on two-photon induced photocurrent of Si photodiodes

More information

HEO 1080P APPLICATION NOTE

HEO 1080P APPLICATION NOTE HEO 8P APPLICATION NOTE HDTV Phase Panel Developer Kit For FS-Laser Applications,8,6,4,2 759.95 nm 77.9 nm 78.2 nm 789.88 nm 799.98 nm 8.6 nm 82.2 nm 83.7 nm 84.2 nm 3 6 9 2 5 8 2 24 HOLOEYE Photonics

More information

Lasers à fibres ns et ps de forte puissance. Francois SALIN EOLITE systems

Lasers à fibres ns et ps de forte puissance. Francois SALIN EOLITE systems Lasers à fibres ns et ps de forte puissance Francois SALIN EOLITE systems Solid-State Laser Concepts rod temperature [K] 347 -- 352 342 -- 347 337 -- 342 333 -- 337 328 -- 333 324 -- 328 319 -- 324 315

More information

Aberrations and adaptive optics for biomedical microscopes

Aberrations and adaptive optics for biomedical microscopes Aberrations and adaptive optics for biomedical microscopes Martin Booth Department of Engineering Science And Centre for Neural Circuits and Behaviour University of Oxford Outline Rays, wave fronts and

More information

X-ray generation by femtosecond laser pulses and its application to soft X-ray imaging microscope

X-ray generation by femtosecond laser pulses and its application to soft X-ray imaging microscope X-ray generation by femtosecond laser pulses and its application to soft X-ray imaging microscope Kenichi Ikeda 1, Hideyuki Kotaki 1 ' 2 and Kazuhisa Nakajima 1 ' 2 ' 3 1 Graduate University for Advanced

More information

Self-organizing laser diode cavities with photorefractive nonlinear crystals

Self-organizing laser diode cavities with photorefractive nonlinear crystals Institut d'optique http://www.iota.u-psud.fr/~roosen/ Self-organizing laser diode cavities with photorefractive nonlinear crystals Nicolas Dubreuil, Gilles Pauliat, Gérald Roosen Nicolas Huot, Laurent

More information

TRAINING MANUAL. Multiphoton Microscopy LSM 510 META-NLO

TRAINING MANUAL. Multiphoton Microscopy LSM 510 META-NLO TRAINING MANUAL Multiphoton Microscopy LSM 510 META-NLO September 2010 Multiphoton Microscopy Training Manual Multiphoton microscopy is only available on the LSM 510 META-NLO system. This system is equipped

More information

picoemerald Tunable Two-Color ps Light Source Microscopy & Spectroscopy CARS SRS

picoemerald Tunable Two-Color ps Light Source Microscopy & Spectroscopy CARS SRS picoemerald Tunable Two-Color ps Light Source Microscopy & Spectroscopy CARS SRS 1 picoemerald Two Colors in One Box Microscopy and Spectroscopy with a Tunable Two-Color Source CARS and SRS microscopy

More information

Femtosecond Pulsed Laser Direct Writing System for Photomask Fabrication

Femtosecond Pulsed Laser Direct Writing System for Photomask Fabrication Femtosecond Pulsed Laser Direct Writing System for Photomask Fabrication B.K.A.Ngoi, K.Venkatakrishnan, P.Stanley and L.E.N.Lim Abstract-Photomasks are the backbone of microfabrication industries. Currently

More information

Research Article Evaluation Study of an Electro-optics Q-switched in End Pumped Nd: YAG Laser System

Research Article Evaluation Study of an Electro-optics Q-switched in End Pumped Nd: YAG Laser System Research Journal of Applied Sciences, Engineering and Technology 10(11): 1287-1292, 2015 DOI: 10.19026/rjaset.10.1824 ISSN: 2040-7459; e-issn: 2040-7467 2015 Maxwell Scientific Publication Corp. Submitted:

More information

Supporting Information 1. Experimental

Supporting Information 1. Experimental Supporting Information 1. Experimental The position markers were fabricated by electron-beam lithography. To improve the nanoparticle distribution when depositing aqueous Ag nanoparticles onto the window,

More information

PHY 431 Homework Set #5 Due Nov. 20 at the start of class

PHY 431 Homework Set #5 Due Nov. 20 at the start of class PHY 431 Homework Set #5 Due Nov. 0 at the start of class 1) Newton s rings (10%) The radius of curvature of the convex surface of a plano-convex lens is 30 cm. The lens is placed with its convex side down

More information

Akinori Mitani and Geoff Weiner BGGN 266 Spring 2013 Non-linear optics final report. Introduction and Background

Akinori Mitani and Geoff Weiner BGGN 266 Spring 2013 Non-linear optics final report. Introduction and Background Akinori Mitani and Geoff Weiner BGGN 266 Spring 2013 Non-linear optics final report Introduction and Background Two-photon microscopy is a type of fluorescence microscopy using two-photon excitation. It

More information

Electrically switchable liquid crystal Fresnel lens using UV-modified alignment film

Electrically switchable liquid crystal Fresnel lens using UV-modified alignment film Electrically switchable liquid crystal Fresnel lens using UV-modified alignment film Shie-Chang Jeng, 1 Shug-June Hwang, 2,* Jing-Shyang Horng, 2 and Kuo-Ren Lin 2 1 Institute of Imaging and Biomedical

More information

Femtosecond Laser Direct Writing of Optical Waveguides in Silicone Film

Femtosecond Laser Direct Writing of Optical Waveguides in Silicone Film Femtosecond Laser Direct Writing of Optical Waveguides in Silicone Film Susumu NAKAMURA Department of Electrical and Electronic Systems Engineering Nagaoka College of Technology, 888 Nishikatakai, Nagaoka,

More information

Waveguiding in PMMA photonic crystals

Waveguiding in PMMA photonic crystals ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY Volume 12, Number 3, 2009, 308 316 Waveguiding in PMMA photonic crystals Daniela DRAGOMAN 1, Adrian DINESCU 2, Raluca MÜLLER2, Cristian KUSKO 2, Alex.

More information

Shaping light in microscopy:

Shaping light in microscopy: Shaping light in microscopy: Adaptive optical methods and nonconventional beam shapes for enhanced imaging Martí Duocastella planet detector detector sample sample Aberrated wavefront Beamsplitter Adaptive

More information

Supporting Information

Supporting Information Supporting Information Free-Standing Photonic Crystal Films with Gradient Structural Colors Haibo Ding, Cihui Liu, Baofen Ye, Fanfan Fu, Huan Wang, Yuanjin Zhao*, Zhongze Gu* State Key Laboratory of Bioelectronics,

More information

Laser Induced Damage Threshold of Optical Coatings

Laser Induced Damage Threshold of Optical Coatings White Paper Laser Induced Damage Threshold of Optical Coatings An IDEX Optics & Photonics White Paper Ronian Siew, PhD Craig Hanson Turan Erdogan, PhD INTRODUCTION Optical components are used in many applications

More information

The Hong Kong University of Science and Technology Final Year Project presentation 2007

The Hong Kong University of Science and Technology Final Year Project presentation 2007 The Hong Kong University of Science and Technology Final Year Project presentation 2007 Project supervisor: Dr. Andrew Poon Department of Electronic and Computer Engineering Wong Ka Ki Chris, ee_wkkaf,

More information

Heisenberg) relation applied to space and transverse wavevector

Heisenberg) relation applied to space and transverse wavevector 2. Optical Microscopy 2.1 Principles A microscope is in principle nothing else than a simple lens system for magnifying small objects. The first lens, called the objective, has a short focal length (a

More information

Polarizer-free liquid crystal display with double microlens array layers and polarizationcontrolling

Polarizer-free liquid crystal display with double microlens array layers and polarizationcontrolling Polarizer-free liquid crystal display with double microlens array layers and polarizationcontrolling liquid crystal layer You-Jin Lee, 1,3 Chang-Jae Yu, 1,2,3 and Jae-Hoon Kim 1,2,* 1 Department of Electronic

More information

High-Power Femtosecond Lasers

High-Power Femtosecond Lasers High-Power Femtosecond Lasers PHAROS is a single-unit integrated femtosecond laser system combining millijoule pulse energies and high average power. PHAROS features a mechanical and optical design optimized

More information

AIR-COUPLED PHOTOCONDUCTIVE ANTENNAS

AIR-COUPLED PHOTOCONDUCTIVE ANTENNAS AIR-COUPLED PHOTOCONDUCTIVE ANTENNAS Report: Air-Coupled Photoconductive Antennas In this paper, we present air-coupled terahertz photoconductive antenna (THz-PCAs) transmitters and receivers made on high-resistive

More information

Fiber Lasers for EUV Lithography

Fiber Lasers for EUV Lithography Fiber Lasers for EUV Lithography A. Galvanauskas, Kai Chung Hou*, Cheng Zhu CUOS, EECS Department, University of Michigan P. Amaya Arbor Photonics, Inc. * Currently with Cymer, Inc 2009 International Workshop

More information

End Capped High Power Assemblies

End Capped High Power Assemblies Fiberguide s end capped fiber optic assemblies allow the user to achieve higher coupled power into a fiber core by reducing the power density at the air/ silica interface, commonly the point of laser damage.

More information

Facile and flexible fabrication of gapless microlens arrays using a femtosecond laser microfabrication and replication process

Facile and flexible fabrication of gapless microlens arrays using a femtosecond laser microfabrication and replication process Facile and flexible fabrication of gapless microlens arrays using a femtosecond laser microfabrication and replication process Hewei Liu a, Feng Chen* a, Qing Yang b, Yang Hu a, Chao Shan a, Shengguan

More information

Vertical External Cavity Surface Emitting Laser

Vertical External Cavity Surface Emitting Laser Chapter 4 Optical-pumped Vertical External Cavity Surface Emitting Laser The booming laser techniques named VECSEL combine the flexibility of semiconductor band structure and advantages of solid-state

More information

Overview of Commercially Available Femtosecond Lasers in Refractive Surgery

Overview of Commercially Available Femtosecond Lasers in Refractive Surgery Holger Lubatschowski Overview of Commercially Available Femtosecond Lasers in Refractive Surgery The author receives research funds from Ziemer Ophthalmic Systems Group Commercially Available Femtosecond

More information

Imaging Retreat - UMASS Customized real-time confocal and 2-photon imaging

Imaging Retreat - UMASS Customized real-time confocal and 2-photon imaging Imaging Retreat - UMASS 2012 Customized real-time confocal and 2-photon imaging Mike Sanderson Department of Microbiology and Physiological Systems University of Massachusetts Medical School Thanks for

More information

Romania and High Power Lasers Towards Extreme Light Infrastructure in Romania

Romania and High Power Lasers Towards Extreme Light Infrastructure in Romania Romania and High Power Lasers Towards Extreme Light Infrastructure in Romania Razvan Dabu, Daniel Ursescu INFLPR, Magurele, Romania Contents GiWALAS laser facility TEWALAS laser facility CETAL project

More information

Polissage et texturation de surface par fusion laser

Polissage et texturation de surface par fusion laser Polissage et texturation de surface par fusion laser Christophe ARNAUD, Anthony ALMIRALL, Charly LOUMENA et Rainer KLING C. Arnaud et al., Journal of Laser Applications, Vol. 29, 022501 (2017) Poste laser

More information

dnx/dt = -9.3x10-6 / C dny/dt = -13.6x10-6 / C dnz/dt = ( λ)x10-6 / C

dnx/dt = -9.3x10-6 / C dny/dt = -13.6x10-6 / C dnz/dt = ( λ)x10-6 / C Lithium Triborate Crystal LBO Lithium triborate (LiB3O5 or LBO) is an excellent nonlinear optical crystal for many applications. It is grown by an improved flux method. AOTK s LBO is Featured by High damage

More information

Lecture 23 MNS 102: Techniques for Materials and Nano Sciences

Lecture 23 MNS 102: Techniques for Materials and Nano Sciences Lecture 23 MNS 102: Techniques for Materials and Nano Sciences Reference: #1 C. R. Brundle, C. A. Evans, S. Wilson, "Encyclopedia of Materials Characterization", Butterworth-Heinemann, Toronto (1992),

More information

Radial Polarization Converter With LC Driver USER MANUAL

Radial Polarization Converter With LC Driver USER MANUAL ARCoptix Radial Polarization Converter With LC Driver USER MANUAL Arcoptix S.A Ch. Trois-portes 18 2000 Neuchâtel Switzerland Mail: info@arcoptix.com Tel: ++41 32 731 04 66 Principle of the radial polarization

More information

101 W of average green beam from diode-side-pumped Nd:YAG/LBO-based system in a relay imaged cavity

101 W of average green beam from diode-side-pumped Nd:YAG/LBO-based system in a relay imaged cavity PRAMANA c Indian Academy of Sciences Vol. 75, No. 5 journal of November 2010 physics pp. 935 940 101 W of average green beam from diode-side-pumped Nd:YAG/LBO-based system in a relay imaged cavity S K

More information

Integrated disruptive components for 2µm fibre Lasers ISLA. 2 µm Sub-Picosecond Fiber Lasers

Integrated disruptive components for 2µm fibre Lasers ISLA. 2 µm Sub-Picosecond Fiber Lasers Integrated disruptive components for 2µm fibre Lasers ISLA 2 µm Sub-Picosecond Fiber Lasers Advantages: 2 - microns wavelength offers eye-safety potentially higher pulse energy and average power in single

More information

Experimental Investigation and Optimization for the Effective Parameters in the Laser Direct Structuring Process

Experimental Investigation and Optimization for the Effective Parameters in the Laser Direct Structuring Process Experimental Investigation and Optimization for the Effective Parameters in the Laser Direct Structuring Process Bassim Bachy a,1 and Jörg Franke 2 1,2 Institute for Factory Automation and Production Systems,

More information

880 Quantum Electronics Optional Lab Construct A Pulsed Dye Laser

880 Quantum Electronics Optional Lab Construct A Pulsed Dye Laser 880 Quantum Electronics Optional Lab Construct A Pulsed Dye Laser The goal of this lab is to give you experience aligning a laser and getting it to lase more-or-less from scratch. There is no write-up

More information

SINPHOS SINGLE PHOTON SPECTROMETER FOR BIOMEDICAL APPLICATION

SINPHOS SINGLE PHOTON SPECTROMETER FOR BIOMEDICAL APPLICATION -LNS SINPHOS SINGLE PHOTON SPECTROMETER FOR BIOMEDICAL APPLICATION Salvatore Tudisco 9th Topical Seminar on Innovative Particle and Radiation Detectors 23-26 May 2004 Siena, Italy Delayed Luminescence

More information

Optical behavior. Reading assignment. Topic 10

Optical behavior. Reading assignment. Topic 10 Reading assignment Optical behavior Topic 10 Askeland and Phule, The Science and Engineering of Materials, 4 th Ed.,Ch. 0. Shackelford, Materials Science for Engineers, 6 th Ed., Ch. 16. Chung, Composite

More information

Bioimaging of cells and tissues using accelerator-based sources

Bioimaging of cells and tissues using accelerator-based sources Analytical and Bioanalytical Chemistry Electronic Supplementary Material Bioimaging of cells and tissues using accelerator-based sources Cyril Petibois, Mariangela Cestelli Guidi Main features of Free

More information

Invitation for a walk through microscopy. Sebastian Schuchmann Jörg Rösner

Invitation for a walk through microscopy. Sebastian Schuchmann Jörg Rösner Invitation for a walk through microscopy Sebastian Schuchmann Jörg Rösner joerg.roesner@charite.de Techniques in microscopy Conventional (light) microscopy bright & dark field, phase & interference contrast

More information

Bio 407. Applied microscopy. Introduction into light microscopy. José María Mateos. Center for Microscopy and Image Analysis

Bio 407. Applied microscopy. Introduction into light microscopy. José María Mateos. Center for Microscopy and Image Analysis Center for Microscopy and Image Analysis Bio 407 Applied Introduction into light José María Mateos Fundamentals of light Compound microscope Microscope composed of an objective and an additional lens (eyepiece,

More information

Femtosecond fiber laser direct writing of optical waveguide in glasses

Femtosecond fiber laser direct writing of optical waveguide in glasses Femtosecond fiber laser direct writing of optical waveguide in glasses Huan Huang*, Lih-Mei Yang and Jian Liu PolarOnyx, Inc., 2526 Qume Drive, Suite 17 & 18, San Jose, CA, 95131, USA. ABSTRACT There is

More information

Single frequency MOPA system with near diffraction limited beam

Single frequency MOPA system with near diffraction limited beam Single frequency MOPA system with near diffraction limited beam quality D. Chuchumishev, A. Gaydardzhiev, A. Trifonov, I. Buchvarov Abstract Near diffraction limited pulses of a single-frequency and passively

More information

Micro- and Nano-Technology... for Optics

Micro- and Nano-Technology... for Optics Micro- and Nano-Technology...... for Optics 3.2 Lithography U.D. Zeitner Fraunhofer Institut für Angewandte Optik und Feinmechanik Jena Printing on Stones Map of Munich Stone Print Contact Printing light

More information

Examination, TEN1, in courses SK2500/SK2501, Physics of Biomedical Microscopy,

Examination, TEN1, in courses SK2500/SK2501, Physics of Biomedical Microscopy, KTH Applied Physics Examination, TEN1, in courses SK2500/SK2501, Physics of Biomedical Microscopy, 2009-06-05, 8-13, FB51 Allowed aids: Compendium Imaging Physics (handed out) Compendium Light Microscopy

More information

Beams and Scanning Probe Microscopy

Beams and Scanning Probe Microscopy IFN-CNR, Sezione di Trento Istituto Trentino di Cultura of Trento Department of Physics University of Trento Towards the joint use of X-ray Beams and Scanning Probe Microscopy Silvia Larcheri SILS 2005

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/4/2/e1700324/dc1 Supplementary Materials for Photocarrier generation from interlayer charge-transfer transitions in WS2-graphene heterostructures Long Yuan, Ting-Fung

More information

A CW seeded femtosecond optical parametric amplifier

A CW seeded femtosecond optical parametric amplifier Science in China Ser. G Physics, Mechanics & Astronomy 2004 Vol.47 No.6 767 772 767 A CW seeded femtosecond optical parametric amplifier ZHU Heyuan, XU Guang, WANG Tao, QIAN Liejia & FAN Dianyuan State

More information