EE 280 Introduction to Digital Logic Design

Size: px
Start display at page:

Download "EE 280 Introduction to Digital Logic Design"

Transcription

1 EE 280 Introduction to Digital Logic Design Lecture 1. Introduction EE280 Lecture Instructors: EE 280 Introduction to Digital Logic Design Dr. Lukasz Kurgan (section A1) office: ECERF 6 th floor, W6-013, lkurgan@ece.ualberta.ca Dr. Nelson Durdle, P.Eng. (section A2) office: ECERF 2 nd floor, W2-035, durdle@ece.ualberta.ca Dr. Witold Pedrycz, P.Eng. (section A3) office: ECERF 2 nd floor, W2-032, pedrycz@ee.ualberta.ca Text (Recommended/Not Required): C.H. Roth, Jr., Fundamentals of Logic Design, 5 th edition, Brooks/Cole publishers, 2004, ISBN Syllabus and Course Notes are available via class web site You should register ASAP using your student ID number Code of student behavior EE280 Lecture

2 EE 280 Introduction to Digital Logic Design Course is comprised of Over 30 lectures 5 Labs (0 to 4) 10 Assignments Mid-term exam(s) 1 midterm: Oct 20, Monday, during lecture time (sections A1, A2) Final exam Distribution of Marks 2 midterms: TBA (section A3) Assignments 10% Labs 15% Mid-term exam 25% (10% + 15% for section A3) Final exam 50% EE280 Lecture Lecture notes EE 280 Introduction to Digital Logic Design Will be available on the class web site ahead of time; for your convenience you should print and use them to make notes Will contain all covered slides, but some information may be missing; the missing information will be shown in yellow on the slides shown in class The first class is complete, but all subsequent classes will have some information to be filled in the class. Important notes No late assignments will be accepted (deadline is Monday by 3pm) Stay with the section you are registered for. You must submit your assignments and write exams in this section. Also, all problems, questions and additional advise should be addressed to the instructor responsible for your section. Labs have different instructors than lectures, and thus with respect to the labs you should seek advise from the lab instructors. EE280 Lecture

3 Text Chapters and Relevant Topics Chapter 1: Number Representation, Codes, and Code Conversion Number Systems, Codes and Code Conversion Chapters 2&3: Boolean Algebra and Logic Gates Boolean Algebra, Logic Gates, Negative/Positive Logic Chapters 4&5: Representation and Implementation of Logic Functions Minterms/Maxterms, Logic (Karnaugh) Maps, Timing Diagrams Chapters 7&9: Combinational Logic Design Multilevel nets, MUX/DEMUX, ROM, Programmable Logic Devices Chapters 11&12: Sequential Circuit Components Latches and Flip-Flops, Registers Chapters 13&14&15: Synchronous Sequential Machines State Tables, Mealy/Moore Machines, State Equivalence EE280 Lecture Digital vs. Analog In DIGITAL electronics, current & voltage can assume only discrete values (usually two). e.g. V ON ON or OFF t OFF +5 or 0 Volts +12 or 0 Volts -12 or +12 Volts In ANALOG systems, current & voltage levels are continuous & may assume any value. e.g. V +12 Real World -12 EE280 Lecture t 3

4 Where EE280 Fits In Spectrum of Digital Hardware Components Subsystems Big Systems Materials Devices Logic Combinational Sequential Computers Parallel Gates Blocks Machines Micros Computers resistivity wires AND random logic latches architecture networks mobility resistors OR AND-OR flip-flops parallelism shared impurities capacitors NOT NOR-NOR registers microcode memory dielectric diode NAND PLAs RAMs instruction topology constant transistors XOR ROMs counters set EE240/250 Circuits EE340/350 Analog Electronics EE572 Physical Electronics EQUIV EE280 This Course EE480 sequence detectors Continuation of 280 EE380 Microprocessors CMPE382 Computer Arch. CMPE490 µp Systems Design EE280 Lecture Design of Digital Networks - Where EE280 Fits In 1. System Design - Dividing overall system into subsystems. e.g.: computer EE380 EE480 CMPE401 CMPE Logic Design - Interconnected basic logic building blocks of subsystems. e.g.: gates, flip flops required for binary ADDER in processor AND Gate Full-adder Circuit OR Gate Outputs Sum of A+B+C (0 or 1) Carry (0 or 1) EE280 Lecture

5 Design of Digital Networks - Where EE280 Fits In 3. Circuit Design - Specify components to make logic building blocks e.g.: Resistors, transistors, capacitors to make one gate in binary ADDER. Analog: EE240, 250, 340, 350, 440, 571 Digital: EE280 (some), 380, 480 Therefore we will not be studying electronics, as such, but how logic gates or switching networks operate, and are interconnected to perform specific digital functions. Assembling black boxes (logic gates) in EE280 (Binary) Logic Gate: An electrical or electronic device with one or more input leads, and one or more output leads, on which the potential, or voltage, with respect to ground, on any lead may take one of only two distinct values. The voltages on the output leads are a (logic) function of the voltages on the input leads. I/P s OUTPUTS O/P s EE280 Lecture Combinational: Two Types of Networks Output values depend only on present input values. Inputs Outputs ( 0 or 1) (0 or 1) Sequential: Output values depends on present and past input values. i.e. A sequence of I/P values must be specified to define the O/P. Inputs Outputs Feedback EE280 Lecture

6 Why Digital?? Why digital? - greater accuracy & reliability - more versatile & cheaper - more comprehensive theory and algorithms - availability of CAD tools - optimized device processes Digital circuits used in: Digital Computers Data Processing Electronic Calculators Instrumentation Control Devices etc. Telephone Networks, Cell Phones, Communication Equipment CD Players, Medical Equipment, Modern TV sets, Modern Radios, etc. EE280 Lecture Analog Systems Advantages most physical phenomena of interest are analog transducers are simple potentially high precision Disadvantages behaviour of analog components is subject to drift distortion, noise, offsets, etc. errors in analog signals accumulate during processing, transmission, and storage only relatively simple signal processing is practical for most applications EE280 Lecture

7 Digital Circuits Advantages the strength of digital signals is easily restored signal accuracy degrades very little during processing, transmission and storage digital components are cheap, reliable and low-power digital signal processing can be highly sophisticated using special-purpose hardware or programmable digital computers Disadvantages signal precision is limited by the number of bits used to encode each sample analog-to-digital converters and digital-to-analog converters are required to interface a digital system with real-world analog signals EE280 Lecture

CS302 - Digital Logic Design Glossary By

CS302 - Digital Logic Design Glossary By CS302 - Digital Logic Design Glossary By ABEL : Advanced Boolean Expression Language; a software compiler language for SPLD programming; a type of hardware description language (HDL) Adder : A digital

More information

ECE 241 Digital Systems. Basic Information

ECE 241 Digital Systems. Basic Information ECE 241 Digital Systems Fall 2013 J. Anderson, P. Chow, K. Truong, B. Wang Basic Information Instructors and Lecture Information Section 1 2 3 4 Instructor Jason Anderson Kevin Truong Paul Chow Belinda

More information

Introduction. BME208 Logic Circuits Yalçın İŞLER

Introduction. BME208 Logic Circuits Yalçın İŞLER Introduction BME208 Logic Circuits Yalçın İŞLER islerya@yahoo.com http://me.islerya.com 1 Lecture Three hours a week (three credits) No other sections, please register this section Tuesday: 09:30 12:15

More information

DAV Institute of Engineering & Technology Department of ECE. Course Outcomes

DAV Institute of Engineering & Technology Department of ECE. Course Outcomes DAV Institute of Engineering & Technology Department of ECE Course Outcomes Upon successful completion of this course, the student will intend to apply the various outcome as:: BTEC-301, Analog Devices

More information

Electrical Engineering 40 Introduction to Microelectronic Circuits

Electrical Engineering 40 Introduction to Microelectronic Circuits Electrical Engineering 40 Introduction to Microelectronic Circuits Instructor: Prof. Andy Neureuther EECS Department University of California, Berkeley Lecture 1, Slide 1 Introduction Instructor: Prof.

More information

1. The decimal number 62 is represented in hexadecimal (base 16) and binary (base 2) respectively as

1. The decimal number 62 is represented in hexadecimal (base 16) and binary (base 2) respectively as BioE 1310 - Review 5 - Digital 1/16/2017 Instructions: On the Answer Sheet, enter your 2-digit ID number (with a leading 0 if needed) in the boxes of the ID section. Fill in the corresponding numbered

More information

DIGITAL ELECTRONICS QUESTION BANK

DIGITAL ELECTRONICS QUESTION BANK DIGITAL ELECTRONICS QUESTION BANK Section A: 1. Which of the following are analog quantities, and which are digital? (a) Number of atoms in a simple of material (b) Altitude of an aircraft (c) Pressure

More information

Unit level 4 Credit value 15. Introduction. Learning Outcomes

Unit level 4 Credit value 15. Introduction. Learning Outcomes Unit 20: Unit code Digital Principles T/615/1494 Unit level 4 Credit value 15 Introduction While the broad field of electronics covers many aspects, it is digital electronics which now has the greatest

More information

IES Digital Mock Test

IES Digital Mock Test . The circuit given below work as IES Digital Mock Test - 4 Logic A B C x y z (a) Binary to Gray code converter (c) Binary to ECESS- converter (b) Gray code to Binary converter (d) ECESS- To Gray code

More information

Electronics for Scientists V and G (Spring 2007)

Electronics for Scientists V and G (Spring 2007) Electronics for Scientists V85-0110 and G85-1500 (Spring 2007) Instructor: Prof. Andrew Kent Laboratory Instructor: N/A Prerequisites: Physics II or permission of the instructor Lecture and laboratory,

More information

EECS 270 Schedule and Syllabus for Fall 2011 Designed by Prof. Pinaki Mazumder

EECS 270 Schedule and Syllabus for Fall 2011 Designed by Prof. Pinaki Mazumder EECS 270 Schedule and Syllabus for Fall 2011 Designed by Prof. Pinaki Mazumder Week Day Date Lec No. Lecture Topic Textbook Sec Course-pack HW (Due Date) Lab (Start Date) 1 W 7-Sep 1 Course Overview, Number

More information

Digital Logic Circuits

Digital Logic Circuits Digital Logic Circuits Let s look at the essential features of digital logic circuits, which are at the heart of digital computers. Learning Objectives Understand the concepts of analog and digital signals

More information

ECE 124 Digital Circuits and Systems Winter 2011 Introduction Calendar Description:

ECE 124 Digital Circuits and Systems Winter 2011 Introduction Calendar Description: ECE 124 Digital Circuits and Systems Winter 2011 Introduction Calendar Description: Number systems. Switching algebra. Hardware description languages. Simplification of Boolean functions. Combinational

More information

DEPARTMENT OF PHYSICS PHYS*2040 W'09. Fundamental Electronics and Sensors. Lecturer: Dr. Ralf Gellert MacN 450 Ext

DEPARTMENT OF PHYSICS PHYS*2040 W'09. Fundamental Electronics and Sensors. Lecturer: Dr. Ralf Gellert MacN 450 Ext DEPARTMENT OF PHYSICS PHYS*2040 W'09 Fundamental Electronics and Sensors Lecturer: Dr. Ralf Gellert MacN 450 Ext. 53992 ralf@physics.uoguelph.ca Lab Instructor: Andrew Tersigni MacN 023 Ext. 58342 andrew@physics.uoguelph.ca

More information

Gates and Circuits 1

Gates and Circuits 1 1 Gates and Circuits Chapter Goals Identify the basic gates and describe the behavior of each Describe how gates are implemented using transistors Combine basic gates into circuits Describe the behavior

More information

DEGREE: BACHELOR IN INDUSTRIAL ELECTRONICS AND AUTOMATION YEAR: 2ND TERM: 2ND

DEGREE: BACHELOR IN INDUSTRIAL ELECTRONICS AND AUTOMATION YEAR: 2ND TERM: 2ND SESSION WEEK COURSE: ELECTRONICS ENGINEERING FUNDAMENTALS DEGREE: BACHELOR IN INDUSTRIAL ELECTRONICS AND AUTOMATION YEAR: 2ND TERM: 2ND The course has 29 sessions distributed during 15 weeks. The duration

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R05310402 Set No. 1 1. (a) What are the parameters that are necessary to define the electrical characteristics of CMOS circuits? Mention the typical values of a CMOS NAND gate. (b) Design a CMOS

More information

Lecture #1. Course Overview

Lecture #1. Course Overview Lecture #1 OUTLINE Course overview Introduction: integrated circuits Analog vs. digital signals Lecture 1, Slide 1 Course Overview EECS 40: One of five EECS core courses (with 20, 61A, 61B, and 61C) introduces

More information

COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design

COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design PH-315 COMINATIONAL and SEUENTIAL LOGIC CIRCUITS Hardware implementation and software design A La Rosa I PURPOSE: To familiarize with combinational and sequential logic circuits Combinational circuits

More information

EECS150 - Digital Design Lecture 28 Course Wrap Up. Recap 1

EECS150 - Digital Design Lecture 28 Course Wrap Up. Recap 1 EECS150 - Digital Design Lecture 28 Course Wrap Up Dec. 5, 2013 Prof. Ronald Fearing Electrical Engineering and Computer Sciences University of California, Berkeley (slides courtesy of Prof. John Wawrzynek)

More information

Chapter 3 Digital Logic Structures

Chapter 3 Digital Logic Structures Chapter 3 Digital Logic Structures Transistor: Building Block of Computers Microprocessors contain millions of transistors Intel Pentium 4 (2): 48 million IBM PowerPC 75FX (22): 38 million IBM/Apple PowerPC

More information

EEE 301 Digital Electronics

EEE 301 Digital Electronics EEE 301 Digital Electronics Lecture 1 Course Contents Introduction to number systems and codes. Analysis and synthesis of digital logic circuits: Basic logic functions, Boolean algebra,combinational logic

More information

ELECTRONICS WITH DISCRETE COMPONENTS

ELECTRONICS WITH DISCRETE COMPONENTS ELECTRONICS WITH DISCRETE COMPONENTS Enrique J. Galvez Department of Physics and Astronomy Colgate University WILEY John Wiley & Sons, Inc. ^ CONTENTS Preface vii 1 The Basics 1 1.1 Foreword: Welcome to

More information

Number of Lessons:155 #14B (P) Electronics Technology with Digital and Microprocessor Laboratory Completion Time: 42 months

Number of Lessons:155 #14B (P) Electronics Technology with Digital and Microprocessor Laboratory Completion Time: 42 months PROGRESS RECORD Study your lessons in the order listed below. Number of Lessons:155 #14B (P) Electronics Technology with Digital and Microprocessor Laboratory Completion Time: 42 months 1 2330A Current

More information

Syllabus: Digital Electronics (DE) (Project Lead The Way)

Syllabus: Digital Electronics (DE) (Project Lead The Way) Course Overview: Digital electronics and micro computers. This is a course in applied logic that encompasses the application of electronic circuits and devices. Computer simulation software is used to

More information

CRN: MET-487 Instrumentation and Automatic Control June 28, 2010 August 5, 2010 Professor Paul Lin

CRN: MET-487 Instrumentation and Automatic Control June 28, 2010 August 5, 2010 Professor Paul Lin CRN: 32030 MET-487 Instrumentation and Automatic Control June 28, 2010 August 5, 2010 Professor Paul Lin Course Description: Class 2, Lab 2, Cr. 3, Junior class standing and 216 Instrumentation for pressure,

More information

In this lecture: Lecture 8: ROM & Programmable Logic Devices

In this lecture: Lecture 8: ROM & Programmable Logic Devices In this lecture: Lecture 8: ROM Programmable Logic Devices Dr Pete Sedcole Department of EE Engineering Imperial College London http://caseeicacuk/~nps/ (Floyd, 3 5, 3) (Tocci 2, 24, 25, 27, 28, 3 34)

More information

CS302 Digital Logic Design Solved Objective Midterm Papers For Preparation of Midterm Exam

CS302 Digital Logic Design Solved Objective Midterm Papers For Preparation of Midterm Exam CS302 Digital Logic Design Solved Objective Midterm Papers For Preparation of Midterm Exam MIDTERM EXAMINATION 2011 (October-November) Q-21 Draw function table of a half adder circuit? (2) Answer: - Page

More information

Introduction (concepts and definitions)

Introduction (concepts and definitions) Objectives: Introduction (digital system design concepts and definitions). Advantages and drawbacks of digital techniques compared with analog. Digital Abstraction. Synchronous and Asynchronous Systems.

More information

Written exam IE1204/5 Digital Design Friday 13/

Written exam IE1204/5 Digital Design Friday 13/ Written exam IE204/5 Digital Design Friday 3/ 207 08.00-2.00 General Information Examiner: Ingo Sander. Teacher: Kista, William Sandqvist tel 08-7904487 Teacher: Valhallavägen, Ahmed Hemani 08-7904469

More information

Combinational Logic Circuits. Combinational Logic

Combinational Logic Circuits. Combinational Logic Combinational Logic Circuits The outputs of Combinational Logic Circuits are only determined by the logical function of their current input state, logic 0 or logic 1, at any given instant in time. The

More information

Asst. Prof. Thavatchai Tayjasanant, PhD. Power System Research Lab 12 th Floor, Building 4 Tel: (02)

Asst. Prof. Thavatchai Tayjasanant, PhD. Power System Research Lab 12 th Floor, Building 4 Tel: (02) 2145230 Aircraft Electricity and Electronics Asst. Prof. Thavatchai Tayjasanant, PhD Email: taytaycu@gmail.com aycu@g a co Power System Research Lab 12 th Floor, Building 4 Tel: (02) 218-6527 1 Chapter

More information

Associate In Applied Science In Electronics Engineering Technology Expiration Date:

Associate In Applied Science In Electronics Engineering Technology Expiration Date: PROGRESS RECORD Study your lessons in the order listed below. Associate In Applied Science In Electronics Engineering Technology Expiration Date: 1 2330A Current and Voltage 2 2330B Controlling Current

More information

Digital Electronics Course Objectives

Digital Electronics Course Objectives Digital Electronics Course Objectives In this course, we learning is reported using Standards Referenced Reporting (SRR). SRR seeks to provide students with grades that are consistent, are accurate, and

More information

Overview ECE 553: TESTING AND TESTABLE DESIGN OF DIGITAL SYSTES. Motivation. Modeling Levels. Hierarchical Model: A Full-Adder 9/6/2002

Overview ECE 553: TESTING AND TESTABLE DESIGN OF DIGITAL SYSTES. Motivation. Modeling Levels. Hierarchical Model: A Full-Adder 9/6/2002 Overview ECE 3: TESTING AND TESTABLE DESIGN OF DIGITAL SYSTES Logic and Fault Modeling Motivation Logic Modeling Model types Models at different levels of abstractions Models and definitions Fault Modeling

More information

Chapter 1: Digital logic

Chapter 1: Digital logic Chapter 1: Digital logic I. Overview In PHYS 252, you learned the essentials of circuit analysis, including the concepts of impedance, amplification, feedback and frequency analysis. Most of the circuits

More information

Logic Design I (17.341) Fall Lecture Outline

Logic Design I (17.341) Fall Lecture Outline Logic Design I (17.341) Fall 2011 Lecture Outline Class # 07 October 31, 2011 / November 07, 2011 Dohn Bowden 1 Today s Lecture Administrative Main Logic Topic Homework 2 Course Admin 3 Administrative

More information

EE 230. Electronic Circuits and Systems. Randy Geiger 2133 Coover

EE 230. Electronic Circuits and Systems. Randy Geiger 2133 Coover EE 230 Electronic Circuits and Systems Randy Geiger 2133 Coover rlgeiger@iastate.edu 294-7745 Course Description Linear Systems Frequency domain characterization of electronic circuits and systems transfer

More information

Welcome to 6.S084! Computation Structures (special)

Welcome to 6.S084! Computation Structures (special) Welcome to 6.S084! Computation Structures (special) Spring 2018 6.S084 Course Staff Instructors Arvind arvind@csail.mit.edu Daniel Sanchez sanchez@csail.mit.edu Teaching Assistants Silvina Hanono Wachman

More information

Objective Questions. (a) Light (b) Temperature (c) Sound (d) all of these

Objective Questions. (a) Light (b) Temperature (c) Sound (d) all of these Objective Questions Module 1: Introduction 1. Which of the following is an analog quantity? (a) Light (b) Temperature (c) Sound (d) all of these 2. Which of the following is a digital quantity? (a) Electrical

More information

Course Overview. Course Overview

Course Overview. Course Overview Course Overview Where does this course fit into the Electrical Engineering curriculum? Page 5 Course Overview Where does this course fit into the Computer Engineering curriculum? Page 6 3 Course Content

More information

ELECTRONICS ADVANCED SUPPLEMENTARY LEVEL

ELECTRONICS ADVANCED SUPPLEMENTARY LEVEL ELECTRONICS ADVANCED SUPPLEMENTARY LEVEL AIMS The general aims of the subject are : 1. to foster an interest in and an enjoyment of electronics as a practical and intellectual discipline; 2. to develop

More information

Preface... iii. Chapter 1: Diodes and Circuits... 1

Preface... iii. Chapter 1: Diodes and Circuits... 1 Table of Contents Preface... iii Chapter 1: Diodes and Circuits... 1 1.1 Introduction... 1 1.2 Structure of an Atom... 2 1.3 Classification of Solid Materials on the Basis of Conductivity... 2 1.4 Atomic

More information

Number system: the system used to count discrete units is called number. Decimal system: the number system that contains 10 distinguished

Number system: the system used to count discrete units is called number. Decimal system: the number system that contains 10 distinguished Number system: the system used to count discrete units is called number system Decimal system: the number system that contains 10 distinguished symbols that is 0-9 or digits is called decimal system. As

More information

Introduction to Digital Logic Missouri S&T University CPE 2210 Exam 1 Logistics

Introduction to Digital Logic Missouri S&T University CPE 2210 Exam 1 Logistics Introduction to Digital Logic Missouri S&T University CPE 2210 Exam 1 Logistics Egemen K. Çetinkaya Egemen K. Çetinkaya Department of Electrical & Computer Engineering Missouri University of Science and

More information

DIGITAL DESIGN WITH SM CHARTS

DIGITAL DESIGN WITH SM CHARTS DIGITAL DESIGN WITH SM CHARTS By: Dr K S Gurumurthy, UVCE, Bangalore e-notes for the lectures VTU EDUSAT Programme Dr. K S Gurumurthy, UVCE, Blore Page 1 19/04/2005 DIGITAL DESIGN WITH SM CHARTS The utility

More information

ET475 Electronic Circuit Design I [Onsite]

ET475 Electronic Circuit Design I [Onsite] ET475 Electronic Circuit Design I [Onsite] Course Description: This course covers the analysis and design of electronic circuits, and includes a laboratory that utilizes computer-aided software tools for

More information

Lecture 1. Tinoosh Mohsenin

Lecture 1. Tinoosh Mohsenin Lecture 1 Tinoosh Mohsenin Today Administrative items Syllabus and course overview Digital systems and optimization overview 2 Course Communication Email Urgent announcements Web page http://www.csee.umbc.edu/~tinoosh/cmpe650/

More information

R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad. ELECTRONIC PRINCIPLES AND APPLICATIONS

R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad. ELECTRONIC PRINCIPLES AND APPLICATIONS R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad. DEPARTMENT OF PHYSICS QUESTION BANK FOR SEMESTER V PHYSICS PAPER VI (A) ELECTRONIC PRINCIPLES AND APPLICATIONS UNIT I: SEMICONDUCTOR DEVICES

More information

Lecture 02: Digital Logic Review

Lecture 02: Digital Logic Review CENG 3420 Lecture 02: Digital Logic Review Bei Yu byu@cse.cuhk.edu.hk CENG3420 L02 Digital Logic. 1 Spring 2017 Review: Major Components of a Computer CENG3420 L02 Digital Logic. 2 Spring 2017 Review:

More information

S-[F] NPW-02 June All Syllabus B.Sc. [Electronics] Ist Year Semester-I & II.doc - 1 -

S-[F] NPW-02 June All Syllabus B.Sc. [Electronics] Ist Year Semester-I & II.doc - 1 - - 1 - - 2 - - 3 - DR. BABASAHEB AMBEDKAR MARATHWADA UNIVERSITY, AURANGABAD SYLLABUS of B.Sc. FIRST & SECOND SEMESTER [ELECTRONICS (OPTIONAL)] {Effective from June- 2013 onwards} - 4 - B.Sc. Electronics

More information

DIGITAL LOGIC DESIGN (ELE 241)

DIGITAL LOGIC DESIGN (ELE 241) DIGITAL LOGIC DESIGN (ELE 241) Lecture # 01 & 02 Ali Mustafa Instructor Introduction Ali Mustafa BSC Computer Engineering (Comsats Pakistan) MS Mobile Communication (University of Bradford England) Worked

More information

Chapter # 1: Introduction

Chapter # 1: Introduction Chapter # : Randy H. Katz University of California, erkeley May 993 ฉ R.H. Katz Transparency No. - The Elements of Modern Design Representations, Circuit Technologies, Rapid Prototyping ehaviors locks

More information

6.111 Lecture # 19. Controlling Position. Some General Features of Servos: Servomechanisms are of this form:

6.111 Lecture # 19. Controlling Position. Some General Features of Servos: Servomechanisms are of this form: 6.111 Lecture # 19 Controlling Position Servomechanisms are of this form: Some General Features of Servos: They are feedback circuits Natural frequencies are 'zeros' of 1+G(s)H(s) System is unstable if

More information

Gates and and Circuits

Gates and and Circuits Chapter 4 Gates and Circuits Chapter Goals Identify the basic gates and describe the behavior of each Describe how gates are implemented using transistors Combine basic gates into circuits Describe the

More information

Fan in: The number of inputs of a logic gate can handle.

Fan in: The number of inputs of a logic gate can handle. Subject Code: 17333 Model Answer Page 1/ 29 Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model

More information

Department of Electronics and Communication Engineering

Department of Electronics and Communication Engineering Department of Electronics and Communication Engineering Sub Code/Name: BEC3L2- DIGITAL ELECTRONICS LAB Name Reg No Branch Year & Semester : : : : LIST OF EXPERIMENTS Sl No Experiments Page No Study of

More information

The book has excellent descrip/ons of this topic. Please read the book before watching this lecture. The reading assignment is on the website.

The book has excellent descrip/ons of this topic. Please read the book before watching this lecture. The reading assignment is on the website. 5//22 Digital Logic Design Introduc/on to Computer Architecture David Black- Schaffer Contents 2 Combina3onal logic Gates Logic Truth tables Truth tables Gates (Karnaugh maps) Common components: Mul/plexors,

More information

R09. 1.a) State and explain Kirchoff s laws. b) In the circuit given below Figure 1 find the current through 5 Ω resistor. [7+8] FIRSTRANKER.

R09. 1.a) State and explain Kirchoff s laws. b) In the circuit given below Figure 1 find the current through 5 Ω resistor. [7+8] FIRSTRANKER. SET - 1 1.a) State and explain Kirchoff s laws. b) In the circuit given below find the current through 5 Ω resistor. [7+8] 2.a) Find the impedance between terminals A and B in the following circuit ().

More information

Digital Electronics. A. I can list five basic safety rules for electronics. B. I can properly display large and small numbers in proper notation,

Digital Electronics. A. I can list five basic safety rules for electronics. B. I can properly display large and small numbers in proper notation, St. Michael Albertville High School Teacher: Scott Danielson September 2016 Content Skills Learning Targets Standards Assessment Resources & Technology CEQ: WHAT MAKES DIGITAL ELECTRONICS SO IMPORTANT

More information

INTRODUCTION TO DIGITAL CONCEPT

INTRODUCTION TO DIGITAL CONCEPT COURSE / CODE DIGITAL SYSTEM FUNDAMENTALS (ECE 421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE 422) INTRODUCTION TO DIGITAL CONCEPT Digital and Analog Quantities Digital relates to data in the form of digits,

More information

UC Berkeley CS61C : Machine Structures

UC Berkeley CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c UC Berkeley CS61C : Machine Structures Lecture 22 Representations of Combinatorial Logic Circuits Lecturer SOE Dan Garcia www.cs.berkeley.edu/~ddgarcia 100 MPG Car contest!

More information

Digital Integrated CircuitDesign

Digital Integrated CircuitDesign Digital Integrated CircuitDesign Lecture 13 Building Blocks (Multipliers) Register Adder Shift Register Adib Abrishamifar EE Department IUST Acknowledgement This lecture note has been summarized and categorized

More information

Adder Comparator 7 segment display Decoder for 7 segment display D flip flop Analysis of sequential circuits. Sequence detector

Adder Comparator 7 segment display Decoder for 7 segment display D flip flop Analysis of sequential circuits. Sequence detector Lecture 3 Adder Comparator 7 segment display Decoder for 7 segment display D flip flop Analysis of sequential circuits Counter Sequence detector TNGE11 Digitalteknik, Lecture 3 1 Adder TNGE11 Digitalteknik,

More information

1.) If a 3 input NOR gate has eight input possibilities, how many of those possibilities result in a HIGH output? (a.) 1 (b.) 2 (c.) 3 (d.) 7 (e.

1.) If a 3 input NOR gate has eight input possibilities, how many of those possibilities result in a HIGH output? (a.) 1 (b.) 2 (c.) 3 (d.) 7 (e. Name: Multiple Choice 1.) If a 3 input NOR gate has eight input possibilities, how many of those possibilities result in a HIGH output? (a.) 1 (b.) 2 (c.) 3 (d.) 7 (e.) 8 2.) The output of an OR gate with

More information

Introduction to CMOS VLSI Design (E158) Lecture 5: Logic

Introduction to CMOS VLSI Design (E158) Lecture 5: Logic Harris Introduction to CMOS VLSI Design (E158) Lecture 5: Logic David Harris Harvey Mudd College David_Harris@hmc.edu Based on EE271 developed by Mark Horowitz, Stanford University MAH E158 Lecture 5 1

More information

Dr. Nicola Nicolici COE/EE2DI4 Midterm Test #1 Oct 18, 2006

Dr. Nicola Nicolici COE/EE2DI4 Midterm Test #1 Oct 18, 2006 COE/EE2DI4 Midterm Test #1 Fall 2006 Page 1 Dr. Nicola Nicolici COE/EE2DI4 Midterm Test #1 Oct 18, 2006 Instructions: This examination paper includes 10 pages and 20 multiple-choice questions starting

More information

Winter 14 EXAMINATION Subject Code: Model Answer P a g e 1/28

Winter 14 EXAMINATION Subject Code: Model Answer P a g e 1/28 Subject Code: 17333 Model Answer P a g e 1/28 Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model

More information

CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING UNIVERSITY OF WISCONSIN MADISON

CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING UNIVERSITY OF WISCONSIN MADISON CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING UNIVERSITY OF WISCONSIN MADISON Instructor: Andy Phelps TAs: Newsha Ardalani, Peter Ohmann, and Jai Menon Midterm Examination 2 In Class (50 minutes) Wednesday,

More information

UVic Department of Electrical and Computer Engineering

UVic Department of Electrical and Computer Engineering UVic Department of Electrical and Computer Engineering COURSE OUTLINE ELEC 365 Applied Electronics and Electrical Machines Fall 2013 Instructor: Office Hours: Dr. S. Nandi Days: Same as tutorial time in

More information

Lab 2 Revisited Exercise

Lab 2 Revisited Exercise Lab 2 Revisited Exercise +15V 100k 1K 2N2222 Wire up led display Note the ground leads LED orientation 6.091 IAP 2008 Lecture 3 1 Comparator, Oscillator +5 +15 1k 2 V- 7 6 Vin 3 V+ 4 V o Notice that power

More information

Digital Electronic Concepts

Digital Electronic Concepts Western Technical College 10662137 Digital Electronic Concepts Course Outcome Summary Course Information Description Career Cluster Instructional Level Total Credits 4.00 Total Hours 108.00 This course

More information

SRV ENGINEERING COLLEGE SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE SEMBODAI

SRV ENGINEERING COLLEGE SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE SEMBODAI SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE SEMBODAI 6489 (Approved By AICTE,Newdelhi Affiliated To ANNA UNIVERSITY::Chennai) CS 62 DIGITAL ELECTRONICS LAB (REGULATION-23) LAB MANUAL DEPARTMENT OF

More information

EE19D Digital Electronics. Lecture 1: General Introduction

EE19D Digital Electronics. Lecture 1: General Introduction EE19D Digital Electronics Lecture 1: General Introduction 1 What are we going to discuss? Some Definitions Digital and Analog Quantities Binary Digits, Logic Levels and Digital Waveforms Introduction to

More information

hij Teacher Resource Bank GCE Electronics Exemplar Examination Questions ELEC2 Further Electronics

hij Teacher Resource Bank GCE Electronics Exemplar Examination Questions ELEC2 Further Electronics hij Teacher Resource Bank GCE Electronics Exemplar Examination Questions ELEC2 Further Electronics The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England

More information

EE251: Tuesday October 10

EE251: Tuesday October 10 EE251: Tuesday October 10 Analog to Digital Conversion Text Chapter 20 through section 20.2 TM4C Data Sheet Chapter 13 Lab #5 Writeup Lab Practical #1 this week Homework #4 is due on Thursday at 4:30 p.m.

More information

WINTER 14 EXAMINATION

WINTER 14 EXAMINATION Subject Code:173 WINTER 14 EXAMINATION Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The

More information

*************************************************************************

************************************************************************* for EE 151 Circuits I, EE 153 Circuits II, EE 121 Introduction to Electronic Devices, and CpE 111 Introduction to Computer Engineering. Missouri University of Science and Technology Introduction The required

More information

University of Technology

University of Technology University of Technology Lecturer: Dr. Sinan Majid Course Title: microprocessors 4 th year Lecture 7 & 8 NAND and XOR Implementations Combinational Design Procedure NAND-NAND & NOR-NOR Networks DeMorgan

More information

COMPUTER ORGANIZATION & ARCHITECTURE DIGITAL LOGIC CSCD211- DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF GHANA

COMPUTER ORGANIZATION & ARCHITECTURE DIGITAL LOGIC CSCD211- DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF GHANA COMPUTER ORGANIZATION & ARCHITECTURE DIGITAL LOGIC LOGIC Logic is a branch of math that tries to look at problems in terms of being either true or false. It will use a set of statements to derive new true

More information

UC Berkeley CS61C : Machine Structures

UC Berkeley CS61C : Machine Structures CS61C L22 Representations of Combinatorial Logic Circuits (1) inst.eecs.berkeley.edu/~cs61c UC Berkeley CS61C : Machine Structures Lecture 22 Representations of Combinatorial Logic Circuits 27-3-9 TA David

More information

Computer Architecture and Organization:

Computer Architecture and Organization: Computer Architecture and Organization: L03: Register transfer and System Bus By: A. H. Abdul Hafez Abdul.hafez@hku.edu.tr, ah.abdulhafez@gmail.com 1 CAO, by Dr. A.H. Abdul Hafez, CE Dept. HKU Outlines

More information

Aim. Lecture 1: Overview Digital Concepts. Objectives. 15 Lectures

Aim. Lecture 1: Overview Digital Concepts. Objectives. 15 Lectures Aim Lecture 1: Overview Digital Concepts to give a first course in digital electronics providing you with both the knowledge and skills required to design simple digital circuits and preparing you for

More information

DIGITAL ELECTRONICS. Methods & diagrams : 1 Graph plotting : - Tables & analysis : - Questions & discussion : 6 Performance : 3

DIGITAL ELECTRONICS. Methods & diagrams : 1 Graph plotting : - Tables & analysis : - Questions & discussion : 6 Performance : 3 DIGITAL ELECTRONICS Marking scheme : Methods & diagrams : 1 Graph plotting : - Tables & analysis : - Questions & discussion : 6 Performance : 3 Aim: This experiment will investigate the function of the

More information

Electronics. Digital Electronics

Electronics. Digital Electronics Electronics Digital Electronics Introduction Unlike a linear, or analogue circuit which contains signals that are constantly changing from one value to another, such as amplitude or frequency, digital

More information

EE40 Lecture 35. Prof. Chang-Hasnain. 12/5/07 Reading: Ch 7, Supplementary Reader

EE40 Lecture 35. Prof. Chang-Hasnain. 12/5/07 Reading: Ch 7, Supplementary Reader EE4 Lecture 35 2/5/7 Reading: Ch 7, Supplementary Reader EE4 all 26 Slide Week 5 OUTLINE Need for Input Controlled Pull-Up CMOS Inverter nalysis CMOS Voltage Transfer Characteristic Combinatorial logic

More information

QUIZ. What do these bits represent?

QUIZ. What do these bits represent? QUIZ What do these bits represent? 1001 0110 1 QUIZ What do these bits represent? Unsigned integer: 1101 1110 Signed integer (2 s complement): Fraction: IBM 437 character: Latin-1 character: Huffman-compressed

More information

Logic diagram: a graphical representation of a circuit

Logic diagram: a graphical representation of a circuit LOGIC AND GATES Introduction to Logic (1) Logic diagram: a graphical representation of a circuit Each type of gate is represented by a specific graphical symbol Truth table: defines the function of a gate

More information

FPGA Based System Design

FPGA Based System Design FPGA Based System Design Reference Wayne Wolf, FPGA-Based System Design Pearson Education, 2004 Why VLSI? Integration improves the design: higher speed; lower power; physically smaller. Integration reduces

More information

LOGIC DIAGRAM: HALF ADDER TRUTH TABLE: A B CARRY SUM. 2012/ODD/III/ECE/DE/LM Page No. 1

LOGIC DIAGRAM: HALF ADDER TRUTH TABLE: A B CARRY SUM. 2012/ODD/III/ECE/DE/LM Page No. 1 LOGIC DIAGRAM: HALF ADDER TRUTH TABLE: A B CARRY SUM K-Map for SUM: K-Map for CARRY: SUM = A B + AB CARRY = AB 22/ODD/III/ECE/DE/LM Page No. EXPT NO: DATE : DESIGN OF ADDER AND SUBTRACTOR AIM: To design

More information

Reading: Schwarz and Oldham (light on non-ideal) and comparator viewgraphs. Lecture 14: October 17, 2001

Reading: Schwarz and Oldham (light on non-ideal) and comparator viewgraphs. Lecture 14: October 17, 2001 Lecture 4: October 7, 00 Op-Amp Circuits and Comprators A)Cascade Op-Amps B)Integration/Differentiation Op-Amps C)I vs. V of Op-Amps Source Limits D)Comparator Circuits E)D to A Converters Reading: The

More information

Name: Class: Date: 1. As more electronic systems have been designed using digital technology, devices have become smaller and less powerful.

Name: Class: Date: 1. As more electronic systems have been designed using digital technology, devices have become smaller and less powerful. Name: Class: Date: DE Midterm Review 2 True/False Indicate whether the statement is true or false. 1. As more electronic systems have been designed using digital technology, devices have become smaller

More information

B.C.A 2017 DIGITAL ELECTRONICS BCA104T MODULE SPECIFICATION SHEET. Course Outline

B.C.A 2017 DIGITAL ELECTRONICS BCA104T MODULE SPECIFICATION SHEET. Course Outline Course Outline B.C.A 2017 DIGITAL ELECTRONICS BCA104T MODULE SPECIFICATION SHEET The purpose of the course is to teach principles of digital electronics. This course covers varieties of topics including

More information

0 0 Q Q Q Q

0 0 Q Q Q Q Question 1) Flip Flops and Counters (15 points) a) Fill in the truth table for a JK flip flop. Use Q or Q to denote the previous value of Q and Q. (6 pts) J K CLK Q Q Q Q 1 1 1 1 1 1 Q Q b) In Figure 1a

More information

Data Converters. Dr.Trushit Upadhyaya EC Department, CSPIT, CHARUSAT

Data Converters. Dr.Trushit Upadhyaya EC Department, CSPIT, CHARUSAT Data Converters Dr.Trushit Upadhyaya EC Department, CSPIT, CHARUSAT Purpose To convert digital values to analog voltages V OUT Digital Value Reference Voltage Digital Value DAC Analog Voltage Analog Quantity:

More information

Binary Addition. Boolean Algebra & Logic Gates. Recap from Monday. CSC 103 September 12, Binary numbers ( 1.1.1) How Computers Work

Binary Addition. Boolean Algebra & Logic Gates. Recap from Monday. CSC 103 September 12, Binary numbers ( 1.1.1) How Computers Work Binary Addition How Computers Work High level conceptual questions Boolean Algebra & Logic Gates CSC 103 September 12, 2007 What Are Computers? What do computers do? How do they do it? How do they affect

More information

Physical electronics, various electronics devices, ICs form the core of Electronics and Telecommunication branch. This part includes

Physical electronics, various electronics devices, ICs form the core of Electronics and Telecommunication branch. This part includes Paper-1 Syllabus for Electronics & Telecommunication Engineering: This part is for both objective and conventional type papers: 1) Materials and Components Materials and Components are the vertebral column

More information

EECS150 - Digital Design Lecture 2 - CMOS

EECS150 - Digital Design Lecture 2 - CMOS EECS150 - Digital Design Lecture 2 - CMOS August 29, 2002 John Wawrzynek Fall 2002 EECS150 - Lec02-CMOS Page 1 Outline Overview of Physical Implementations CMOS devices Announcements/Break CMOS transistor

More information

LIST OF EXPERIMENTS. KCTCET/ /Odd/3rd/ETE/CSE/LM

LIST OF EXPERIMENTS. KCTCET/ /Odd/3rd/ETE/CSE/LM LIST OF EXPERIMENTS. Study of logic gates. 2. Design and implementation of adders and subtractors using logic gates. 3. Design and implementation of code converters using logic gates. 4. Design and implementation

More information

Digital Applications (CETT 1415) Credit: 4 semester credit hours (3 hours lecture, 4 hours lab) Prerequisite: CETT 1403 & CETT 1405

Digital Applications (CETT 1415) Credit: 4 semester credit hours (3 hours lecture, 4 hours lab) Prerequisite: CETT 1403 & CETT 1405 Digital Applications (CETT 1415) Credit: 4 semester credit hours (3 hours lecture, 4 hours lab) Prerequisite: CETT 1403 & CETT 1405 Course Description This course covers digital techniques and numbering

More information