Chapter 1 Power Electronic Devices

Size: px
Start display at page:

Download "Chapter 1 Power Electronic Devices"

Transcription

1 Chapter 1 Power Electronic Devices Outline 1.1 An introductory overview of power electronic devices 1.2 Uncontrolled device power diode 1.3 Half- controlled device thyristor 1.4 Typical fully- controlled devices 1.5 Other new power electronic devices

2 1.1 An introductory overview of power electronic devices 1) The concept and features Power electronic devices: are the electronic devices that can be directly used in the power processing circuits to convert or control electric power. Vacuum devices: Mercury arc In broad sense Power electronic devices rectifier thyratron, etc.. seldom in use today Semiconductor devices: major power electronic devices Very often: Power electronic devices= Power semiconductor devices Major material used in power semiconductor devices Silicon

3 Features of power electronic devices a) The electric power that power electronic device deals with is usually much larger than that the information electronic device does. b) Usually working in switching states to reduce power losses On-state Voltage across the device is 0 p=vi=0 V=0 Off-state Current through the device is 0 p=vi=0 i=0 c)need to be controlled by information electronic circuits. d)very often, drive circuits are necessary to interface between information circuits and power circuits. e)dissipated power loss usually larger than information electronic devices special packaging and heat sink are necessary.

4 2) Configuration of systems using power electronic devices Power electronic system: Control circuit (in a broad sense) Electric isolation: optical, magnetic Control circuit detection circuit drive circuit Power circuit (power stage, main circuit) Protection circuit is also very often used in power electronic system especially for the expensive power semiconductors.

5 Terminals of a power electronic device A power electronic device usually has a third terminal control terminal to control the states of the device C A power electronic device must have at least two terminals to allow power circuit current flow through. G Drive Circuit E Control signal from drive circuit must be connected between the control terminal and a fixed power circuit terminal (therefore called common terminal

6 Major topics for each device Appearance, structure, and symbol Physics of operation Specification Special issues Devices of the same family Passive components in power electronic circuit Transformer, inductor, capacitor and resistor: these are passive components in a power electron ic circuit since they can not be controlled by control signal and their characteristics are usually constant and linear. The requirements for these passive components by power electronic circuits could be very different from those by ordinary circuits.

7 1.2 Uncontrolled device Power diode Appearance

8 PN junction Direction of inner electric field p region Space charge Region (depletion region, potential barrier region) n region

9 PN junction with voltage applied in the forward direction V + - p n W WO

10 PN junction with voltage applied in the reverse direction Effective direction of electronic field p V n WO W

11 Construction of a practical power diode Anode + V n + epi P Na =10 cm 14 Nd =10 cm -3 10μm Breakdown Voltage dependent - - n substrate 19-3 Nd =10 cm 250μm Cathode

12 Features different from low-power (information electronic) diodes Larger size Vertically oriented structure n drift region (p-i-n diode) Conductivity modulation Junction capacitor The positive and negative charge in the depletion region is variable with the changing of external voltage. variable with the changing of external voltage. Junction capacitor C Junction capacitor CJ. Junction capacitor influences the switching characteristics of power diode. Junction capacitor CJ Potential barrier capacitor CB Diffusion capacitor CD

13 Static characteristics of power diode I IF O UTO UF U Turn-off transient Turn- on transient u I F d i F i i F d t U FP U F t d t rr t f t F t 0 t 1 t 2 d i R d t I R U R U R t 2V 0 u F t fr t

14 Examples of commercial power diodes part number Rated max voltage Rated vag current VF(typical) tr(max) Fast recovery rectifiers 1N3913 SD453N25S20PC 400V 2500V 30A 400A 1.1V 2.2V 400ns 20μs Ultra-fast recovery rectifiers MUR V 8A 0.975V 35ns MUR V 15A 1.2V 6ns RHRU V 100A 2.6V 60ns Schottky rectifiers MBR6030L 30V 60A 0.48V 444CNQ045 30CPQ150 45V 150V 440A 30A 0.69V 1.19V

15 1.3 Half- controlled device Thyristor Another name: SCR silicon controlled rectifier Thyristor Opened the power electronics era 1956, invention, Bell Laboratories 1957, development of the 1st product, GE 1958, 1st commercialized product, GE Thyristor replaced vacuum devices in almost every power processing area. Still in use in high power situation. Thyristor till has the highest power-handling capability.

16 Appearance and symbol of thyristor

17 Structure and equivalent circuit of thyristor Structure A Equivalent circuit A I A PNP P 1 V 1 I c2 G N 1 P 2 N 1 P 2 G I G I c1 NPN V 2 N 2 I K K a) b) K

18 Physics of thyristor operation A Equivalent circuit: A pnp transistor and an npn G I A V 1 I G PNP I c1 I c2 R transistor interconnected together Positive feedback Trigger S E G NPN V 2 I K E A Can not be turned off by control signal K Half-controllable

19 Quantitative description of thyristor operation I c1=α 1 IA + I CBO1 (1-1) I c2= α 2 IK + I CBO2 (1-2) IK=IA+IG (1-3) IA=Ic1+Ic2 (1-4) α2 I G + I CBO1 + I CBO2 I A = ( 1-5 ) 1 ( α + 1 α 2 ) When IG =0, α1+α2 is small. When IG >0, α1 +α2 will approach 1, IA will be very large.

20 Other methods to trigger thyristor on High voltage across anode and cathode avalanche breakdown High rising rate of anode voltagte du/dt too high High junction temperature Light activation Static characteristics of thyristor Blocking when reverse biased, no matter if there is gate current applied. Conducting only when forward biased and there is triggering current applied to the gate. Once triggered on, will be latched on conducting even when the gate current is no longer applied.

21 Switching characteristics of thyristor i A 100% 90% 10% u AK 0 t d t r t I RM O t t rr U RRM t gr

22 1.4 Typical fully- controlled devices Features IC fabrication technology, fully- controllable, high frequency Applications Begin to be used in large amount in 1980s GTR is obsolete and GTO is also seldom used today. IGBT and power MOSFET are the two major power semiconductor devices nowadays.

23 1.4.1 Gate- turn- off thyristor GTO Major difference from conventional thyristor: The gate and cathode structures are highly interdigitated, with various types of geometric forms being used to layout the gates and cathodes.

24 Physics of GTO operation The basic operation of GTO is the same as that of the conventional thyristor. The principal differences lie in the modifications in the structure to achieve gate turnoff capability. Large α2 α1+α2 is just a little larger than the critical value 1. Short distance from gate to cathode makes it possible to drive current out of gate. G I A A PNP V 1 I G I c1 NPN S E G I c2 V 2 I K K R E A

25 1.4.2 Giant Transistor GTR GTR is actually the bipolar junction transistor that can handle high voltage and large current. So GTR is also called power BJT, or just BJT.

26 Structures of GTR different from its information-processing counterpart

27 Static characteristics of GTR I c Saturation region Amplifying (active) region i b3 i b2 O i b1 cut-off region i b1 < i b2 < i b3 U ce

28 Second breakdown of GTR Hard Quasi-saturation saturation 1 - i R c d Second breakdown IB5 >IB4. etc. IB5 IB4 IB3 Active region Primary breakdown IB2 IB1 IB<0 O IB=0 BVSUS IB=0 BVCEO BVCBO U CE

29 1.4.3 Power metal- oxide- semiconductor field effect transistor Power MOSFET A classification Field Effect Transistor (FET) Metal- onside-semiconductor FET (MOSFET) Power MOSFET n channel p channel Junction FET (JFET) Static induction transistor (SIT) Basic structure Symbol D D G G S N channel S P channel

30 Physics of MOSFET operation (Off- state) p-n- junction is reverse-biased off-state voltage appears across n- region

31 Physics of MOSFET operation (On-state) p-n- junction is slightly reverse biased positive gate voltage induces conducting channel drain current flows through n- region an conducting channel on resistance = total resistances of n- region,conducting channel,source and drain contacts, etc.

32 Static characteristics of power id [UGS-VGS(th)=UDS] Ohmic VGS5 Active VGS4 VGS5> VGS4 etc. VGS3 VGS2 Cut off O VGS1 VGS< VGS(th) BVDSS UDS

33 Switching characteristics of power MOSFET + U E u p R L O t i D u GS u GSP R s u p R G u GS R F i D u T O i D O t d (on) t r t d (off) t f t t Turn- on transient Turn- off transient Turn- on delay time td(on) Turn- off delay time td(off) Rise time tr Falling time tf

34 Examples of commercial power MOSFET part number Rated max voltage Rated vag current Ron Qg(typical) IRFZ48 IRF510 IRF540 APT105M25BN IRF740 MTM15N40E APT5025BN APT1001RBNR 60V 100V 100V 100V 400V 400V 500V 1000V 50A 5.6A 28A 75A 10A 15A 23A 11A 0.018Ω 0.54Ω 0.077Ω 0.025Ω 0.55Ω 0.3Ω 0.25Ω 1.0Ω 110nC 8.3 nc 72 nc 171 nc 63 nc 110 nc 83nC 150 nc

35 1.4.4 Insulated- gate bipolar transistor IGBT Combination of MOSFET and GTR GTR: low conduction losses (especially at larger blocking volta ges), longer switching times, current- driven IGBT MOSFET : faster switching speed, easy to drive (voltage- driven), larger conduction losses (especially for higher blocking voltages)

36 Features On- state losses are much smaller than those of a power MOSFET, and are comparable with those of a GTR Easy to drive similar to power MOSFET Faster than GTR, but slower than power MOSFET Structure and operation principle of IGBT Also multiple cell structure Basic structure similar to power MOSFET, except extra p region On- state: minority carriers are injected into drift region, leading to conductivity modulation compared with power MOSFET: slower switching times, lower on- resistance, useful at higher voltages (up to 1700V) Emitter Gate E G N + N P + N + N P + J 3 J 2 N - N + J 1 C P + Collector Drift region Buffer layer Injecting layer

37 Equivalent circuit and circuit symbol of IGBT C G I D R N - + I D R on - V J Drift region resistance I C G C E E

38 Switching characteristics of IGBT UGE 90%UGEM UGEM 10%UGEM 0 IC 90%ICM t d(on) t r ICM t d(off) t f t 10%ICM 0 t on UCE UCEM t fi1 t fi2 t off current tail t t fv1 t fv2 0 UCE(on) t

39 Examples of commercial IGBT part number Rated max voltage Rated avg current V F (typical tf(typical) Single-chip devices HGTG32N60E2 600V HGTG30N120D2 1200V multiple-chip power modules_ CM400HA-12E 600V CM300HA-24E 1200V 32A 30A 400A 300A 2.4V 3.2V 0.62μs 0.58μs 2.7V 0.3μs 2.7V 0.3μs

40 1.5 Other new power electronic devices Static induction transistor SIT Static induction thyristor SITH MOS controlled thyristor MCT Integrated gate- commutated thyristor IGCT Power integrated circuit and power module 1) Static induction transistor SIT Another name: power junction field effect transistor power JFET Features Major- carrier device Fast switching, comparable to power MOSFET Higher power- handling capability than power MOSFET Higher conduction losses than power MOSFET Normally- on device, not convenient (could be made normally- off, but with even higher on-state losses)

41 2) Static induction thyristor SITH other names Field controlled thyristor FCT Field controlled diode Features Minority- carrier device, a JFET structure with an additional injecting layer Power- handling capability similar to GTO Faster switching speeds than GTO Normally- on device, not convenient (could be made normally- off, but with even higher on- state losses)

42 3) MOS controlled thyristor MCT Essentially a GTO with integrated MOS- driven gates controlling both turn- on and turn- off that potentially will significantly simply the design of circuits using GTO. The difficulty is how to design a MCT that can be turned on and turned off equally well. Once believed as the most promising device, but still not commercialized in a large scale. The future remains uncertain. 4) Integrated gate- commutated thyristor IGCT The newest member of the power semiconductor family, introduced in 1997 by ABB Actually the close integration of GTO and the gate drive circuit with multiple MOSFETs in parallel providing the gate currents Short name: GCT Conduction drop, gate driver loss, and switching speed are superior to GTO Competing with IGBT and other new devices to replace GTO

43 Review of device classifications power electronic devices power electronic devices Current- driven (current- controlled) devices: thyristor, GTO, GTR Voltage- driven (voltage- controlled) devices (Field- controlled devices):power MOSFET,IGBT, SIT, SITH, MCT, IGCT Pulse- triggered devices: thyristor, GTO Level- sensitive (Level- triggered) devices: GTR, power MOSFET, IGBT, SIT, SITH,MCT, IGCT Uni- polar devices (Majority carrier devices): SBD, power MOSFET, SIT power electronic devices Bipolar devices (Minority carrier devices): ordinary power diode, thyristor,, GTO, GTR, IGCT, IGBT, SITH, MCT Composite devices: IGBT, SITH, MCT

EEL 5245 POWER ELECTRONICS I Lecture #4: Chapter 2 Switching Concepts and Semiconductor Overview

EEL 5245 POWER ELECTRONICS I Lecture #4: Chapter 2 Switching Concepts and Semiconductor Overview EEL 5245 POWER ELECTRONICS I Lecture #4: Chapter 2 Switching Concepts and Semiconductor Overview Objectives of Lecture Switch realizations Objective is to focus on terminal characteristics Blocking capability

More information

Power Semiconductor Devices

Power Semiconductor Devices TRADEMARK OF INNOVATION Power Semiconductor Devices Introduction This technical article is dedicated to the review of the following power electronics devices which act as solid-state switches in the circuits.

More information

(anode) (also: I D, I F, I T )

(anode) (also: I D, I F, I T ) (anode) V R - V A or V D or VF or V T IA (also: I D, I F, I T ) control terminals (e.g. gate for thyrisr; basis for BJT) - (IR =-I A ) (cathode) I A I F conducting range A p n K (a) V A (V F ) - A anode

More information

Power Electronics Power semiconductor devices. Dr. Firas Obeidat

Power Electronics Power semiconductor devices. Dr. Firas Obeidat Power Electronics Power semiconductor devices Dr. Firas Obeidat 1 Table of contents 1 Introduction 2 Classifications of Power Switches 3 Power Diodes 4 Thyristors (SCRs) 5 The Triac 6 The Gate Turn-Off

More information

Analog and Telecommunication Electronics

Analog and Telecommunication Electronics Politecnico di Torino - ICT School Analog and Telecommunication Electronics F2 Active power devices»mos»bjt» IGBT, TRIAC» Safe Operating Area» Thermal analysis 30/05/2012-1 ATLCE - F2-2011 DDC Lesson F2:

More information

Lecture Notes. Emerging Devices. William P. Robbins Professor, Dept. of Electrical and Computer Engineering University of Minnesota.

Lecture Notes. Emerging Devices. William P. Robbins Professor, Dept. of Electrical and Computer Engineering University of Minnesota. Lecture Notes Emerging Devices William P. Robbins Professor, Dept. of Electrical and Computer Engineering University of Minnesota Outline Power JFET Devices Field-Controlled Thyristor MOS-Controlled Thyristor

More information

Solid State Devices- Part- II. Module- IV

Solid State Devices- Part- II. Module- IV Solid State Devices- Part- II Module- IV MOS Capacitor Two terminal MOS device MOS = Metal- Oxide- Semiconductor MOS capacitor - the heart of the MOSFET The MOS capacitor is used to induce charge at the

More information

Today s subject MOSFET and IGBT

Today s subject MOSFET and IGBT Today s subject MOSFET and IGBT 2018-05-22 MOSFET metal oxide semiconductor field effect transistor Drain Gate n-channel Source p-channel The MOSFET - Source Gate G D n + p p n + S body body n - drift

More information

Power Electronics. P. T. Krein

Power Electronics. P. T. Krein Power Electronics Day 10 Power Semiconductor Devices P. T. Krein Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign 2011 Philip T. Krein. All rights reserved.

More information

2 Marks - Question Bank. Unit 1- INTRODUCTION

2 Marks - Question Bank. Unit 1- INTRODUCTION Two marks 1. What is power electronics? EE6503 POWER ELECTRONICS 2 Marks - Question Bank Unit 1- INTRODUCTION Power electronics is a subject that concerns the applications electronics principles into situations

More information

Switching and Semiconductor Switches

Switching and Semiconductor Switches 1 Switching and Semiconductor Switches 1.1 POWER FLOW CONTROL BY SWITCHES The flow of electrical energy between a fixed voltage supply and a load is often controlled by interposing a controller, as shown

More information

DOWNLOAD PDF POWER ELECTRONICS DEVICES DRIVERS AND APPLICATIONS

DOWNLOAD PDF POWER ELECTRONICS DEVICES DRIVERS AND APPLICATIONS Chapter 1 : Power Electronics Devices, Drivers, Applications, and Passive theinnatdunvilla.com - Google D Download Power Electronics: Devices, Drivers and Applications By B.W. Williams - Provides a wide

More information

Lecture 2 - Overview of power switching devices. The Power Switch: what is a good power switch?

Lecture 2 - Overview of power switching devices. The Power Switch: what is a good power switch? Lecture 2 - Overview of power switching devices The Power Switch: what is a good power switch? A K G Attributes of a good power switch are: 1. No power loss when ON 2. No power loss when OFF 3. No power

More information

UNIT I POWER SEMI-CONDUCTOR DEVICES

UNIT I POWER SEMI-CONDUCTOR DEVICES UNIT I POWER SEMI-CONDUCTOR DEVICES SUBJECT CODE SUBJECT NAME STAFF NAME : EE6503 : Power Electronics : Ms.M.Uma Maheswari 1 SEMICONDUCTOR DEVICES POWER DIODE POWER TRANSISTORS POWER BJT POWER MOSFET IGBT

More information

CHAPTER I INTRODUCTION

CHAPTER I INTRODUCTION CHAPTER I INTRODUCTION High performance semiconductor devices with better voltage and current handling capability are required in different fields like power electronics, computer and automation. Since

More information

Power semiconductors. José M. Cámara V 1.0

Power semiconductors. José M. Cámara V 1.0 Power semiconductors José M. Cámara V 1.0 Introduction Here we are going to study semiconductor devices used in power electronics. They work under medium and high currents and voltages. Some of them only

More information

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY)

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY) SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY) QUESTION BANK I YEAR B.Tech (II Semester) ELECTRONIC DEVICES (COMMON FOR EC102, EE104, IC108, BM106) UNIT-I PART-A 1. What are intrinsic and

More information

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) 4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) The Metal Oxide Semitonductor Field Effect Transistor (MOSFET) has two modes of operation, the depletion mode, and the enhancement mode.

More information

Fundamentals of Power Semiconductor Devices

Fundamentals of Power Semiconductor Devices В. Jayant Baliga Fundamentals of Power Semiconductor Devices 4y Spri ringer Contents Preface vii Chapter 1 Introduction 1 1.1 Ideal and Typical Power Switching Waveforms 3 1.2 Ideal and Typical Power Device

More information

Questions on JFET: 1) Which of the following component is a unipolar device?

Questions on JFET: 1) Which of the following component is a unipolar device? Questions on JFET: 1) Which of the following component is a unipolar device? a) BJT b) FET c) DJT d) EFT 2) Current Conduction in FET takes place due e) Majority charge carriers only f) Minority charge

More information

THE METAL-SEMICONDUCTOR CONTACT

THE METAL-SEMICONDUCTOR CONTACT THE METAL-SEMICONDUCTOR CONTACT PROBLEM 1 To calculate the theoretical barrier height, built-in potential barrier, and maximum electric field in a metal-semiconductor diode for zero applied bias. Consider

More information

Lecture Note on Switches Marc T. Thompson, 2003 Revised Use with gratefulness for ECE 3503 B term 2018 WPI Tan Zhang

Lecture Note on Switches Marc T. Thompson, 2003 Revised Use with gratefulness for ECE 3503 B term 2018 WPI Tan Zhang Lecture Note on Switches Marc T. Thompson, 2003 Revised 2007 Use with gratefulness for ECE 3503 B term 2018 WPI Tan Zhang Lecture note on switches_tan_thompsonpage 1 of 21 1. DEVICES OVERVIEW... 4 1.1.

More information

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING COURSE: POWER ELECTRONICS BRANCH: EEE CLASS: VI Sem. YEAR: 2014-15 By Harikesh Rawat INDEX S. NO. CONTENT PAGE NO. 1 UNIT I: POWER SEMICONDUCTOR 3-32

More information

Introduction to Power Electronics BACKGROUND

Introduction to Power Electronics BACKGROUND Department of Electrical Drives and Power Electronics Introduction to Power Electronics BACKGROUND Valery Vodovozov and Zoja Raud Tallinn 2010 Contents Preface... 3 Historical background... 4 Power electronic

More information

EE 5611 Introduction to Microelectronic Technologies Fall Thursday, September 04, 2014 Lecture 02

EE 5611 Introduction to Microelectronic Technologies Fall Thursday, September 04, 2014 Lecture 02 EE 5611 Introduction to Microelectronic Technologies Fall 2014 Thursday, September 04, 2014 Lecture 02 1 Lecture Outline Review on semiconductor materials Review on microelectronic devices Example of microelectronic

More information

EE 330 Lecture 27. Bipolar Processes. Special Bipolar Processes. Comparison of MOS and Bipolar Proces JFET. Thyristors SCR TRIAC

EE 330 Lecture 27. Bipolar Processes. Special Bipolar Processes. Comparison of MOS and Bipolar Proces JFET. Thyristors SCR TRIAC EE 330 Lecture 27 Bipolar Processes Comparison of MOS and Bipolar Proces JFET Special Bipolar Processes Thyristors SCR TRIAC Review from a Previous Lecture B C E E C vertical npn B A-A Section B C E C

More information

TRANSISTOR TRANSISTOR

TRANSISTOR TRANSISTOR It is made up of semiconductor material such as Si and Ge. Usually, it comprises of three terminals namely, base, emitter and collector for providing connection to the external circuit. Today, some transistors

More information

COLLECTOR DRAIN BASE GATE EMITTER. Applying a voltage to the Gate connection allows current to flow between the Drain and Source connections.

COLLECTOR DRAIN BASE GATE EMITTER. Applying a voltage to the Gate connection allows current to flow between the Drain and Source connections. MOSFETS Although the base current in a transistor is usually small (< 0.1 ma), some input devices (e.g. a crystal microphone) may be limited in their output. In order to overcome this, a Field Effect Transistor

More information

Objective Type Questions 1. Why pure semiconductors are insulators at 0 o K? 2. What is effect of temperature on barrier voltage? 3.

Objective Type Questions 1. Why pure semiconductors are insulators at 0 o K? 2. What is effect of temperature on barrier voltage? 3. Objective Type Questions 1. Why pure semiconductors are insulators at 0 o K? 2. What is effect of temperature on barrier voltage? 3. What is difference between electron and hole? 4. Why electrons have

More information

UNIT I POWER SEMICONDUCTOR DEVICES. Ref signal Control Digital Power Load Circuit Circuit Electronic circuit. Feedback Signal

UNIT I POWER SEMICONDUCTOR DEVICES. Ref signal Control Digital Power Load Circuit Circuit Electronic circuit. Feedback Signal UNIT I POWER SEMICONDUCTOR DEICES The control of electric motor drives requires control of electric power. Power electronics have eased the concept of power control. Power electronics signifies the word

More information

I E I C since I B is very small

I E I C since I B is very small Figure 2: Symbols and nomenclature of a (a) npn and (b) pnp transistor. The BJT consists of three regions, emitter, base, and collector. The emitter and collector are usually of one type of doping, while

More information

Lecture 3: Transistors

Lecture 3: Transistors Lecture 3: Transistors Now that we know about diodes, let s put two of them together, as follows: collector base emitter n p n moderately doped lightly doped, and very thin heavily doped At first glance,

More information

3. Draw the two transistor model of a SCR and mention its applications. (MAY 2016)

3. Draw the two transistor model of a SCR and mention its applications. (MAY 2016) DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE6503 POWER ELECTRONICS UNIT I- POWER SEMI-CONDUCTOR DEVICES PART - A 1. What is a SCR? A silicon-controlled rectifier

More information

Unit III FET and its Applications. 2 Marks Questions and Answers

Unit III FET and its Applications. 2 Marks Questions and Answers Unit III FET and its Applications 2 Marks Questions and Answers 1. Why do you call FET as field effect transistor? The name field effect is derived from the fact that the current is controlled by an electric

More information

QUESTION BANK EC6201 ELECTRONIC DEVICES UNIT I SEMICONDUCTOR DIODE PART A. It has two types. 1. Intrinsic semiconductor 2. Extrinsic semiconductor.

QUESTION BANK EC6201 ELECTRONIC DEVICES UNIT I SEMICONDUCTOR DIODE PART A. It has two types. 1. Intrinsic semiconductor 2. Extrinsic semiconductor. FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Senkottai Village, Madurai Sivagangai Main Road, Madurai - 625 020. [An ISO 9001:2008 Certified Institution] QUESTION BANK EC6201 ELECTRONIC DEVICES SEMESTER:

More information

EC 307 Power Electronics & Instrumentation

EC 307 Power Electronics & Instrumentation EC 307 Power Electronics & Instrumentation MODULE I Difference Between Linear Electronics and Power Electronics Electronics has now become the core component in the development of the technology. The fast

More information

Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester

Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester WK 5 Reg. No. : Question Paper Code : 27184 B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015. Time : Three hours Second Semester Electronics and Communication Engineering EC 6201 ELECTRONIC DEVICES

More information

Analog Electronics. Electronic Devices, 9th edition Thomas L. Floyd Pearson Education. Upper Saddle River, NJ, All rights reserved.

Analog Electronics. Electronic Devices, 9th edition Thomas L. Floyd Pearson Education. Upper Saddle River, NJ, All rights reserved. Analog Electronics BJT Structure The BJT has three regions called the emitter, base, and collector. Between the regions are junctions as indicated. The base is a thin lightly doped region compared to the

More information

Student Lecture by: Giangiacomo Groppi Joel Cassell Pierre Berthelot September 28 th 2004

Student Lecture by: Giangiacomo Groppi Joel Cassell Pierre Berthelot September 28 th 2004 Student Lecture by: Giangiacomo Groppi Joel Cassell Pierre Berthelot September 28 th 2004 Lecture outline Historical introduction Semiconductor devices overview Bipolar Junction Transistor (BJT) Field

More information

Bridge Course On POWER ELECTRONICS

Bridge Course On POWER ELECTRONICS G. PULLAIAH COLLEGE OF ENGINEERING AND TECHNOLOGY Accredited by NAAC with A Grade of UGC, Approved by AICTE, New Delhi Permanently Affiliated to JNTUA, Ananthapuramu (Recognized by UGC under 2(f) and 12(B)

More information

Other Electronic Devices

Other Electronic Devices Other Electronic Devices 1 Contents Field-Effect Transistors(FETs) - JFETs - MOSFETs Insulate Gate Bipolar Transistors(IGBTs) H-bridge driver and PWM Silicon-Controlled Rectifiers(SCRs) TRIACs Device Selection

More information

Prof. Steven S. Saliterman Introductory Medical Device Prototyping

Prof. Steven S. Saliterman Introductory Medical Device Prototyping Introductory Medical Device Prototyping Department of Biomedical Engineering, University of Minnesota http://saliterman.umn.edu/ Solid state power switching: Silicon controlled rectifiers (SCR or Thyristor).

More information

Lecture 23 Review of Emerging and Traditional Solid State Switches

Lecture 23 Review of Emerging and Traditional Solid State Switches Lecture 23 Review of Emerging and Traditional Solid State Switches 1 A. Solid State Switches 1. Circuit conditions and circuit controlled switches A. Silicon Diode B. Silicon Carbide Diodes 2. Control

More information

POWER ELECTRONICS POWER ELECTRONICS INTRODUCTION TO. Dr. Adel Gastli. CONTENTS

POWER ELECTRONICS POWER ELECTRONICS INTRODUCTION TO. Dr. Adel Gastli.    CONTENTS POWER ELECTRONICS INTRODUCTION TO POWER ELECTRONICS Dr. Adel Gastli Email: adel@gastli.net http://adel.gastli.net CONTENTS 1. Definitions and History 2. Applications of Power Electronics 3. Power Semiconductor

More information

UNIT-VI FIELD EFFECT TRANSISTOR. 1. Explain about the Field Effect Transistor and also mention types of FET s.

UNIT-VI FIELD EFFECT TRANSISTOR. 1. Explain about the Field Effect Transistor and also mention types of FET s. UNIT-I FIELD EFFECT TRANSISTOR 1. Explain about the Field Effect Transistor and also mention types of FET s. The Field Effect Transistor, or simply FET however, uses the voltage that is applied to their

More information

Bipolar Junction Transistor (BJT) Basics- GATE Problems

Bipolar Junction Transistor (BJT) Basics- GATE Problems Bipolar Junction Transistor (BJT) Basics- GATE Problems One Mark Questions 1. The break down voltage of a transistor with its base open is BV CEO and that with emitter open is BV CBO, then (a) BV CEO =

More information

Electrical Engineering EE / EEE. Postal Correspondence Course. Power Electronics. GATE, IES & PSUs

Electrical Engineering EE / EEE. Postal Correspondence Course. Power Electronics. GATE, IES & PSUs Power Electronics-EE GATE, IES, PSU 1 SAMPLE STUDY MATERIAL Electrical Engineering EE / EEE Postal Correspondence Course Power Electronics GATE, IES & PSUs Power Electronics-EE GATE, IES, PSU 2 C O N T

More information

UNIT 3 Transistors JFET

UNIT 3 Transistors JFET UNIT 3 Transistors JFET Mosfet Definition of BJT A bipolar junction transistor is a three terminal semiconductor device consisting of two p-n junctions which is able to amplify or magnify a signal. It

More information

Chapter 1 INTRODUCTION TO POWER ELECTRONICS SYSTEMS

Chapter 1 INTRODUCTION TO POWER ELECTRONICS SYSTEMS Chapter 1 INTRODUCTION TO POWER ELECTRONICS SYSTEMS Definition and concepts Application Power semiconductor switches Gate/base drivers Losses Snubbers 1 Definition of Power Electronics DEFINITION: To convert,

More information

Experiment (1) Principles of Switching

Experiment (1) Principles of Switching Experiment (1) Principles of Switching Introduction When you use microcontrollers, sometimes you need to control devices that requires more electrical current than a microcontroller can supply; for this,

More information

UNIT I PN JUNCTION DEVICES

UNIT I PN JUNCTION DEVICES UNIT I PN JUNCTION DEVICES 1. Define Semiconductor. 2. Classify Semiconductors. 3. Define Hole Current. 4. Define Knee voltage of a Diode. 5. What is Peak Inverse Voltage? 6. Define Depletion Region in

More information

R a) Draw and explain VI characteristics of Si & Ge diode. (8M) b) Explain the operation of SCR & its characteristics (8M)

R a) Draw and explain VI characteristics of Si & Ge diode. (8M) b) Explain the operation of SCR & its characteristics (8M) SET - 1 1. a) Define i) transient capacitance ii) Diffusion capacitance (4M) b) Explain Fermi level in intrinsic and extrinsic semiconductor (4M) c) Derive the expression for ripple factor of Half wave

More information

UNIT II JFET, MOSFET, SCR & UJT

UNIT II JFET, MOSFET, SCR & UJT UNIT II JFET, MOSFET, SCR & UJT JFET JFET as an Amplifier and its Output Characteristics JFET Applications MOSFET Working Principles, SCR Equivalent Circuit and V-I Characteristics. SCR as a Half wave

More information

BJT Amplifier. Superposition principle (linear amplifier)

BJT Amplifier. Superposition principle (linear amplifier) BJT Amplifier Two types analysis DC analysis Applied DC voltage source AC analysis Time varying signal source Superposition principle (linear amplifier) The response of a linear amplifier circuit excited

More information

Paper-1 (Circuit Analysis) UNIT-I

Paper-1 (Circuit Analysis) UNIT-I Paper-1 (Circuit Analysis) UNIT-I AC Fundamentals & Kirchhoff s Current and Voltage Laws 1. Explain how a sinusoidal signal can be generated and give the significance of each term in the equation? 2. Define

More information

ELECTRONIC DEVICES AND CIRCUITS

ELECTRONIC DEVICES AND CIRCUITS ELECTRONIC DEVICES AND CIRCUITS 1. At room temperature the current in an intrinsic semiconductor is due to A. holes B. electrons C. ions D. holes and electrons 2. Work function is the maximum energy required

More information

EE 330 Lecture 21. Bipolar Process Flow

EE 330 Lecture 21. Bipolar Process Flow EE 330 Lecture 21 Bipolar Process Flow Exam 2 Friday March 9 Exam 3 Friday April 13 Review from Last Lecture Simplified Multi-Region Model I C βi B JSA IB β V 1 V E e V CE BE V t AF V BE >0.4V V BC

More information

Lesson Plan. Week Theory Practical Lecture Day. Topic (including assignment / test) Day. Thevenin s theorem, Norton s theorem

Lesson Plan. Week Theory Practical Lecture Day. Topic (including assignment / test) Day. Thevenin s theorem, Norton s theorem Name of the faculty: GYANENDRA KUMAR YADAV Discipline: APPLIED SCIENCE(C.S.E,E.E.ECE) Year : 1st Subject: FEEE Lesson Plan Lesson Plan Duration: 31 weeks (from July, 2018 to April, 2019) Week Theory Practical

More information

Lesson Plan. Electronics 1-Total 51 Hours

Lesson Plan. Electronics 1-Total 51 Hours Lesson Plan. Electronics 1-Total 5s Unit I: Electrical Engineering materials:(10) Crystal structure & defects; Ceramic materials-structures, composites, processing and uses; Insulating laminates for electronics,

More information

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism;

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism; Chapter 3 Field-Effect Transistors (FETs) 3.1 Introduction Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism; The concept has been known

More information

The Common Source JFET Amplifier

The Common Source JFET Amplifier The Common Source JFET Amplifier Small signal amplifiers can also be made using Field Effect Transistors or FET's for short. These devices have the advantage over bipolar transistors of having an extremely

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) WINTER 16 EXAMINATION Model Answer Subject Code: 17213 Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2)

More information

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT QUESTION BANK : EC6201 ELECTRONIC DEVICES SEM / YEAR: II / I year B.E.ECE

More information

ELEC-E8421 Components of Power Electronics

ELEC-E8421 Components of Power Electronics ELEC-E8421 Components of Power Electronics MOSFET 2015-10-04 Metal-Oxide-Semiconductor Field-Effect-Transistor (MOSFET) Vertical structure makes paralleling of many small MOSFETs on the chip easy. Very

More information

THE JFET. Script. Discuss the JFET and how it differs from the BJT. Describe the basic structure of n-channel and p -channel JFETs

THE JFET. Script. Discuss the JFET and how it differs from the BJT. Describe the basic structure of n-channel and p -channel JFETs Course: B.Sc. Applied Physical Science (Computer Science) Year & Sem.: Ist Year, Sem - IInd Subject: Electronics Paper No.: V Paper Title: Analog Circuits Lecture No.: 12 Lecture Title: Analog Circuits

More information

UNIT 3: FIELD EFFECT TRANSISTORS

UNIT 3: FIELD EFFECT TRANSISTORS FIELD EFFECT TRANSISTOR: UNIT 3: FIELD EFFECT TRANSISTORS The field effect transistor is a semiconductor device, which depends for its operation on the control of current by an electric field. There are

More information

MTLE-6120: Advanced Electronic Properties of Materials. Semiconductor transistors for logic and memory. Reading: Kasap

MTLE-6120: Advanced Electronic Properties of Materials. Semiconductor transistors for logic and memory. Reading: Kasap MTLE-6120: Advanced Electronic Properties of Materials 1 Semiconductor transistors for logic and memory Reading: Kasap 6.6-6.8 Vacuum tube diodes 2 Thermionic emission from cathode Electrons collected

More information

Code No: Y0221/R07 Set No. 1 I B.Tech Supplementary Examinations, Apr/May 2013 BASIC ELECTRONIC DEVICES AND CIRCUITS (Electrical & Electronics Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE Questions

More information

Basic Electronics: Diodes and Transistors. October 14, 2005 ME 435

Basic Electronics: Diodes and Transistors. October 14, 2005 ME 435 Basic Electronics: Diodes and Transistors Eşref Eşkinat E October 14, 2005 ME 435 Electric lectricity ity to Electronic lectronics Electric circuits are connections of conductive wires and other devices

More information

6. Explain control characteristics of GTO, MCT, SITH with the help of waveforms and circuit diagrams.

6. Explain control characteristics of GTO, MCT, SITH with the help of waveforms and circuit diagrams. POWER ELECTRONICS QUESTION BANK Unit 1: Introduction 1. Explain the control characteristics of SCR and GTO with circuit diagrams, and waveforms of control signal and output voltage. 2. Explain the different

More information

SGP100N09T. Symbol Parameter SGP100N09T Unit. 70* -Continuous (TA = 100 )

SGP100N09T. Symbol Parameter SGP100N09T Unit. 70* -Continuous (TA = 100 ) SUPER-SEMI SUPER-MOSFET Super Gate Metal Oxide Semiconductor Field Effect Transistor 100V Super Gate Power Transistor SG*100N09T Rev. 1.01 Jun. 2016 SGP100N09T 100V N-Channel MOSFET Description The SG-MOSFET

More information

Pre-certification Electronics Questions. Answer the following with the MOST CORRECT answer.

Pre-certification Electronics Questions. Answer the following with the MOST CORRECT answer. Electronics Questions Answer the following with the MOST CORRECT answer. 1. The cathode end terminal of a semiconductor diode can be identified by: a. the negative sign marked on the case b. a circular

More information

UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF TECHNOLOGY UNIVERSITY OF TECHNOLOGY Third Year DEPARTMENT OF ELECTRICAL ENGINEERING Electronics Engineering Section AC Machine and Power Electronics 2016-2017 Module-II: Power Electronics: Power electronics devices

More information

AN1491 APPLICATION NOTE

AN1491 APPLICATION NOTE AN1491 APPLICATION NOTE IGBT BASICS M. Aleo (mario.aleo@st.com) 1. INTRODUCTION. IGBTs (Insulated Gate Bipolar Transistors) combine the simplicity of drive and the excellent fast switching capability of

More information

IGBTs (Insulated Gate Bipolar Transistor)

IGBTs (Insulated Gate Bipolar Transistor) IGBTs (Insulated Gate Bipolar Transistor) Description This document describes the basic structures, ratings, and electrical characteristics of IGBTs. It also provides usage considerations for IGBTs. 1

More information

Department of Electrical Engineering IIT Madras

Department of Electrical Engineering IIT Madras Department of Electrical Engineering IIT Madras Sample Questions on Semiconductor Devices EE3 applicants who are interested to pursue their research in microelectronics devices area (fabrication and/or

More information

Learning Material Ver 1.1

Learning Material Ver 1.1 Insulated Gate Bipolar Transistor (IGBT) ST2701 Learning Material Ver 1.1 An ISO 9001:2008 company Scientech Technologies Pvt. Ltd. 94, Electronic Complex, Pardesipura, Indore - 452 010 India, + 91-731

More information

EDC UNIT IV- Transistor and FET Characteristics EDC Lesson 9- ", Raj Kamal, 1

EDC UNIT IV- Transistor and FET Characteristics EDC Lesson 9- , Raj Kamal, 1 EDC UNIT IV- Transistor and FET Characteristics Lesson-9: JFET and Construction of JFET 2008 EDC Lesson 9- ", Raj Kamal, 1 1. Transistor 2008 EDC Lesson 9- ", Raj Kamal, 2 Transistor Definition The transferred-resistance

More information

Integrated diodes. The forward voltage drop only slightly depends on the forward current. ELEKTRONIKOS ĮTAISAI

Integrated diodes. The forward voltage drop only slightly depends on the forward current. ELEKTRONIKOS ĮTAISAI 1 Integrated diodes pn junctions of transistor structures can be used as integrated diodes. The choice of the junction is limited by the considerations of switching speed and breakdown voltage. The forward

More information

1. Introduction Device structure and operation Structure Operation...

1. Introduction Device structure and operation Structure Operation... Application Note 96 February, 2 IGBT Basics by K.S. Oh CONTENTS. Introduction... 2. Device structure and operation... 2-. Structure... 2-2. Operation... 3. Basic Characteristics... 3-. Advantages, Disadvantages

More information

Power Electronics. Contents

Power Electronics. Contents Power Electronics Overview Contents Electronic Devices Power, Electric, Magnetic circuits Rectifiers (1-ph, 3-ph) Converters, controlled rectifiers Inverters (1-ph, 3-ph) Power system harmonics Choppers

More information

POWER ELECTRONICS. Converters, Applications, and Design. NED MOHAN Department of Electrical Engineering University of Minnesota Minneapolis, Minnesota

POWER ELECTRONICS. Converters, Applications, and Design. NED MOHAN Department of Electrical Engineering University of Minnesota Minneapolis, Minnesota POWER ELECTRONICS Converters, Applications, and Design THIRD EDITION NED MOHAN Department of Electrical Engineering University of Minnesota Minneapolis, Minnesota TORE M. UNDELAND Department of Electrical

More information

1 Basics V GG. V GS(th) V GE(th) , i C. i D I L. v DS. , v CE V DD V CC. V DS(on) VCE(sat) (IGBT) I t MOSFET MOSFET.

1 Basics V GG. V GS(th) V GE(th) , i C. i D I L. v DS. , v CE V DD V CC. V DS(on) VCE(sat) (IGBT) I t MOSFET MOSFET. Reverse operation During reverse operation (Figure 1.10, III rd quadrant) the IGBT collector pn-junction is poled in reverse direction and there is no inverse conductivity, other than with MOSFETs. Although,

More information

1200 V SiC Super Junction Transistors operating at 250 C with extremely low energy losses for power conversion applications

1200 V SiC Super Junction Transistors operating at 250 C with extremely low energy losses for power conversion applications 1200 V SiC Super Junction Transistors operating at 250 C with extremely low energy losses for power conversion applications Ranbir Singh, Siddarth Sundaresan, Eric Lieser and Michael Digangi GeneSiC Semiconductor,

More information

VALLIAMMAI ENGINEERING COLLEGE SRM NAGAR, KATTANKULATHUR- 603 203 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC6202- ELECTRONIC DEVICES AND CIRCUITS UNIT I PN JUNCTION DEVICES 1. Define Semiconductor.

More information

EIE209 Basic Electronics. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: T ransistor devices

EIE209 Basic Electronics. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: T ransistor devices EIE209 Basic Electronics Transistor Devices Contents BJT and FET Characteristics Operations 1 What is a transistor? Three-terminal device whose voltage-current relationship is controlled by a third voltage

More information

Basic Fabrication Steps

Basic Fabrication Steps Basic Fabrication Steps and Layout Somayyeh Koohi Department of Computer Engineering Adapted with modifications from lecture notes prepared by author Outline Fabrication steps Transistor structures Transistor

More information

ELG4139: Power Electronics Systems Objective To Realize and Design Various Power Supplies and Motor Drives!

ELG4139: Power Electronics Systems Objective To Realize and Design Various Power Supplies and Motor Drives! ELG4139: Power Electronics Systems Objective To Realize and Design Various Power Supplies and Motor Drives! Power electronics refers to control and conversion of electrical power by power semiconductor

More information

Q1. Explain the construction and principle of operation of N-Channel and P-Channel Junction Field Effect Transistor (JFET).

Q1. Explain the construction and principle of operation of N-Channel and P-Channel Junction Field Effect Transistor (JFET). Q. Explain the construction and principle of operation of N-Channel and P-Channel Junction Field Effect Transistor (JFET). Answer: N-Channel Junction Field Effect Transistor (JFET) Construction: Drain(D)

More information

Field - Effect Transistor

Field - Effect Transistor Page 1 of 6 Field - Effect Transistor Aim :- To draw and study the out put and transfer characteristics of the given FET and to determine its parameters. Apparatus :- FET, two variable power supplies,

More information

Power Devices and ICs Chapter 15

Power Devices and ICs Chapter 15 Power Devices and ICs Chapter 15 Syed Asad Alam DA, ISY 4/28/2015 1 Overview 4/28/2015 2 Overview Types of Power Devices PNPN Thyristor TRIAC (Triode Alternating Current) GTO (Gate Turn-Off Thyristor)

More information

Device Technologies. Yau - 1

Device Technologies. Yau - 1 Device Technologies Yau - 1 Objectives After studying the material in this chapter, you will be able to: 1. Identify differences between analog and digital devices and passive and active components. Explain

More information

Chapter 3 Bipolar Junction Transistors (BJT)

Chapter 3 Bipolar Junction Transistors (BJT) Chapter 3 Bipolar Junction Transistors (BJT) Transistors In analog circuits, transistors are used in amplifiers and linear regulated power supplies. In digital circuits they function as electrical switches,

More information

Chapter 3 Power Electronics 6/13/2009. Electronic Circuit II Chap 3 Power Electronics Silicon Controlled Rectifier

Chapter 3 Power Electronics 6/13/2009. Electronic Circuit II Chap 3 Power Electronics Silicon Controlled Rectifier Electronic Circuit Chap 3 ower Electronics nstructor: jay umar adel athmandu Engineering College Course Homepage www.courses.esmartdesign.com Electronic Circuit 1 ntroduction Thyristor Family SCR Triac

More information

SYLLABUS OSMANIA UNIVERSITY (HYDERABAD)

SYLLABUS OSMANIA UNIVERSITY (HYDERABAD) UNIT - 1 i SYLLABUS OSMANIA UNIVERSITY (HYDERABAD) JUNCTION DIODE Different Types of PN Junction Formation Techniques, PN Junction Characteristics, Biasing, Band Diagrams and Current Flow, Diode Current

More information

AE53/AC53/AT53/AE103 ELECT. DEVICES & CIRCUITS DEC 2015

AE53/AC53/AT53/AE103 ELECT. DEVICES & CIRCUITS DEC 2015 Q.2 a. By using Norton s theorem, find the current in the load resistor R L for the circuit shown in Fig.1. (8) Fig.1 IETE 1 b. Explain Z parameters and also draw an equivalent circuit of the Z parameter

More information

Chapter 5: Field Effect Transistors

Chapter 5: Field Effect Transistors Chapter 5: Field Effect Transistors Slide 1 FET FET s (Field Effect Transistors) are much like BJT s (Bipolar Junction Transistors). Similarities: Amplifiers Switching devices Impedance matching circuits

More information

7 Driving Transistors and Thyristors

7 Driving Transistors and Thyristors 7 Driving Transistors and Thyristors The thyristor, being a multiple bipolar junction device, is essentially a currentcontrolled device. As illustrated in figure 7.la, a current must be supplied between

More information

T-series and U-series IGBT Modules (600 V)

T-series and U-series IGBT Modules (600 V) T-series and U-series IGBT Modules (6 V) Seiji Momota Syuuji Miyashita Hiroki Wakimoto 1. Introduction The IGBT (insulated gate bipolar transistor) module is the most popular power device in power electronics

More information

The shape of the waveform will be the same, but its level is shifted either upward or downward. The values of the resistor R and capacitor C affect

The shape of the waveform will be the same, but its level is shifted either upward or downward. The values of the resistor R and capacitor C affect Diode as Clamper A clamping circuit is used to place either the positive or negative peak of a signal at a desired level. The dc component is simply added or subtracted to/from the input signal. The clamper

More information