Using Voltage Dividers to Design a Photo-Sensitive LED Circuit. ( Doug Oliver & Jackie Kane. May be reproduced for non-profit classroom use.

Size: px
Start display at page:

Download "Using Voltage Dividers to Design a Photo-Sensitive LED Circuit. ( Doug Oliver & Jackie Kane. May be reproduced for non-profit classroom use."

Transcription

1 Using Voltage Dividers to Design a Photo-Sensitive LED Circuit ( Doug Oliver & Jackie Kane. May be reproduced for non-profit classroom use.) Purpose: After completing the module students will: 1. Understand the linear nature of carbon resistors and the non-linear nature of LED s, 2. Be able to calculate and graph an I/V plot for the performance of an LED, 3. Understand that a mathematical model of a system is not a precise representation. 4. Understand that an LED may be modeled as on when V LED = V f, and off when V LED < V f,. 5. Be able to read and use log-log graphs, 6. Plot the resistance for a photoresistor as a function of the light intensity, and 7. Design, construct, and troubleshoot a light-switched LED circuit. Some lights are part of a circuit that is activated by a change in the ambient light intensity. For example, many night-lights switch on when they are not exposed to enough ambient light. What follows is an open-ended design exercise with a goal of designing and constructing a circuit where a light is switched on when a sensor is in an area with too little ambient light. Two new components are introduced in the following sections: the light-emitting diode (LED) and the photoresistor. 1. LED s Light-Emitting Diodes (LED s) have been used extensively recently. The object of this design problem is to build on your knowledge of voltage dividers to design a photosensitive circuit that will activate an LED in low-light conditions. Figure 1: Schematic and Illustration of an LED. 1

2 The Current/Voltage Relation for an LED An LED behaves quite differently than a resistor. The resistance value for most resistors is nearly independent of the current passing through them. Hence, a plot of the current, I, as a function of the voltage across the resistor, V, is a line passing through the origin. This is not the case for an LED. Figure 2: Current vs. Voltage for a resistor and an LED Notice that the slope of the curve for the current in a resistor is straight. That is a resistor is a linear device where the current is proportional to the voltage. This proportionality is illustrated by Ohm s law: V I = R The current across an LED is not linear. Rather, an LED has very little current flow until the voltage across the LED approaches a maximum value call the forward voltage or V f. The value for V f depends on the type of LED. Typical values for V f are in the range of 1.6 V to 5 V: 1.6V V f 5V In addition, an LED has a maximum current, I max. Currents above I max may cause the LED to fail. Hence, care should be taken not to exceed I max. Typical values for I max are in range of 20 to 40 ma. However, some LED s have maximum currents outside of this range. 2

3 Experimentally Obtaining an Estimate for V f for an LED. One means for estimating V f is to create an I/V plot similar to the right side of Fig. 2. Below is a schematic that may be used for this test. Items Needed: Figure 3: Schematic for Creating and I/V Curve for an LED. 1. Breadboard 2. DC power supply with voltage V s (5V < V s < 20V) 3. A fixed or constant resistor with a resistance value in Ohms of Rc 50Vs. That is, if V s = 10V, then use a constant resistor of about 500Ω, (50 x 10).. 4. Resistors with values of 0 (a wire), 100, 220, 470, 1,000, 2,000, 4,700, 10,000, 20,000, 50,000 and 100,000 Ω 5. an LED and a 6. multimeter. Procedure: 1) Wear safety goggles while testing LED s. 1 Always connect a resistor with an LED in a circuit. Never test for resistance with a battery or voltage source in the circuit. 2) Determine and record R c based on V s : Ω 3) Construct the circuit illustrated in Fig. 3. However, for the initial configuration, use a wire instead of a resistor for R v. (This is equivalent to R v = 0). 1 Care should be taken to protect your eyes. Some LED s can fly apart if I max is exceeded. 3

4 4) Record the following: a) V sa, (the voltage across the resistor R c ), b) V LED, (the voltage across the LED), c) The light intensity of the LED. (very bright, bright, dim, very dim) Vsa 5) Calculate the current in the circuit using I =. R 6) Repeat Steps 4 and 5, replacing the wire used for R v with the resistors indicated in the table below. 7) Plot the current as a function of V LED on the graph below. c Table 1: Experimenal Values for an LED Circuit x-axis RV (Ω) VSA (V) VLED (V) ,000 4,700 10,000 47, ,000 y-axis LED intensity I color. (A) V = R c sa 4

5 Graph 1: Experimental Values for an LED Circuit 5

6 2. Photoresistors In order to design a circuit that changes with light level, at least one component of that circuit must be a light-sensitive device. One such device is a photoresistor. A photoresistor is a light-sensitive resistor. Below is a plot of a resistance vs. light intensity for a photoresistor. Notice that the scale for the resistance (vertical) and the light intensity (horizontal) is logarithmic. A small change in a logarithmic scale can indicate a large change in the value of the parameter. Figure 4: Resistance vs. Light Intensity for a Photoresistor Unfortunately, due to variations in manufacturing of photoresistor, apparently, identical photoresistors may be different resistance values. Hence, it is useful to experimentally determine the curve by plotting the resistance as a function of the light intensity for the specific photoresistor to be used. Experimental Determination of the Performance of a Photoresistor Equipment Needed: 1. Photoresistor, 2. Multimeter, 3. Access to varying light levels, and 4. Optional: light meter. Procedure: Measure the resistance of the photoresistor, R PR, as a function of the light level. 6

7 Table 2: Experimental Values for Photoresistor Low Light Medium Low Light Medium Light Medium High Light High Light Resistance (Ω) Figure 5: Log-scale graph for Photoresistor Performance 7

8 3. Schematic of a Light-Sensitive LED Circuit The electrical schematic for a light-sensitive LED circuit is illustrated below. When designing a device, it is often useful to develop a conceptual model of the system of components that makeup the device. In the following paragraphs a mathematical model for this circuit. This mathematical model may be used to establish the ranges for appropriate values for the voltage source and the fixed-value resistor. Figure 6: Schematic for an LED that switches on at decreased ambient light levels. Most conceptual models include some approximations to simplify the mathematics associated with the model. One reasonable assumption that can be made for the illustrated circuit is that the LED is either off or on. That is, when the voltage across the LED is less than V f, it is assumed that the current through the LED is zero. Additionally, the voltage across the LED never exceeds V f. Mathematically this may be stated as: V b < V f, Assumptions: If V a < V f then I LED = 0, and the LED is in off mode, If V a = V f then the LED is in on mode. 8

9 Figure 7: Conceptual Circuit Model: off mode and on mode. Discussion Questions: Compare Figures 6 and Why is the LED missing in the off mode model? 2. What are the similarities and the differences between the two modes? 3. Why does no mode in Figure 7 assume that V a > V f? 4. What assumptions are made in the conceptual model? Design Problem: 4. Designing a Circuit Apply what you have learned about voltage dividers, LED s, and photoresistors to design and implement the circuit in Fig. 6. In your circuit, the LED should switch on at a pre-determined level of ambient lighting. Your design variables include: 1. The ambient light level desired 2. The voltage of the DC power source, V s 3. The value of the constant resistor, R c. Design Discussion Questions: 1. Which component of Fig. 6 is affected by the level of light? 9

10 2. What information can be used to determine the value of R PR to use for your design? 3. How can you determine what values of R c to use? 4. How can you determine what voltage to use for the DC power source? 5. Which design factor should be selected first the voltage of the DC power source, or the value of R c? Why? Instructor s Initials Hint: Model the circuit as a voltage divider where V a = V f and R PR is the resistance at the light level at which the LED is to switch at. V f = V s R R PR PR + R Example: Suppose V r = 1.9 V and V s = 9.1 V with R PR = 1,100Ω. The above equation would become: 1.9V 1,100Ω = 9.1V 1,100Ω + The solution to this is R c = 4,168Ω. (As a practical matter, a 3.9kΩ or a 4.7kΩ would be used.) Acknowledgement: This was developed while Douglas Oliver was an AAAS Science & Technology Fellow working at the National Science Foundation. All opinions are those of the authors. Contact: Doug Oliver Associate Professor Mechanical Engineering University of Toledo doliver@eng.utoledo.edu c R c. 10

PHYS 1402 General Physics II Experiment 5: Ohm s Law

PHYS 1402 General Physics II Experiment 5: Ohm s Law PHYS 1402 General Physics II Experiment 5: Ohm s Law Student Name Objective: To investigate the relationship between current and resistance for ordinary conductors known as ohmic conductors. Theory: For

More information

EK 307 Lab: Light-Emitting Diodes. In-lab Assignment (Complete Level 1 and additionally level 2 if you choose to):

EK 307 Lab: Light-Emitting Diodes. In-lab Assignment (Complete Level 1 and additionally level 2 if you choose to): EK 307 Lab: Light-Emitting Diodes Laboratory Goal: To explore the characteristics of the light emitting diode. Learning Objectives: Voltage, Current, Power, and Instrumentation. Suggested Tools: Voltage

More information

II. Experimental Procedure

II. Experimental Procedure Ph 122 July 27, 2006 Ohm's Law http://www.physics.sfsu.edu/~manuals/ph122/ I. Theory In this lab we will make detailed measurements on one resistor to see if it obeys Ohm's law. We will also verify the

More information

General Department PHYSICS LABORATORY APHY 112 EXPERIMENT 2: OHMS LAW. Student s name... Course Semester. Year.Reg.No

General Department PHYSICS LABORATORY APHY 112 EXPERIMENT 2: OHMS LAW. Student s name... Course Semester. Year.Reg.No General Department PHYSICS LABORATORY APHY 112 EXPERIMENT 2: OHMS LAW Student s name... Course Semester. Year.Reg.No FREDERICK UNIVERSITY 1 EXPERIMENT 3 OHMS LAW Equipment needed Equipment needed Circuits

More information

EK 307 Lab: Light-Emitting Diodes

EK 307 Lab: Light-Emitting Diodes EK 307 Lab: Light-Emitting Diodes Laboratory Goal: To explore the characteristics of the light emitting diode. Learning Objectives: Voltage, current, power, and instrumentation. Suggested Tools: Voltage

More information

OHM S LAW. Ohm s Law The relationship between potential difference (V) across a resistor of resistance (R) and the current (I) passing through it is

OHM S LAW. Ohm s Law The relationship between potential difference (V) across a resistor of resistance (R) and the current (I) passing through it is OHM S LAW Objectives: a. To find the unknown resistance of an ohmic resistor b. To investigate the series and parallel combination of resistors c. To investigate the non-ohmic resistors Apparatus Required:

More information

RESISTANCE & OHM S LAW (PART I

RESISTANCE & OHM S LAW (PART I RESISTANCE & OHM S LAW (PART I and II) Objectives: To understand the relationship between potential and current in a resistor and to verify Ohm s Law. To understand the relationship between potential and

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 1 MAXIMUM POWER TRANSFER OBJECTIVES In this experiment the student will investigate the circuit requirements

More information

Ohm's Law and DC Circuits

Ohm's Law and DC Circuits Physics Lab II Ohm s Law Name: Partner: Partner: Partner: Ohm's Law and DC Circuits EQUIPMENT NEEDED: Circuits Experiment Board Two Dcell Batteries Wire leads Multimeter 100, 330, 560, 1k, 10k, 100k, 220k

More information

EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT

EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT 1. OBJECTIVES 1.1 To practice how to test NPN and PNP transistors using multimeter. 1.2 To demonstrate the relationship between collector current

More information

Mechatronics. Analog and Digital Electronics: Studio Exercises 1 & 2

Mechatronics. Analog and Digital Electronics: Studio Exercises 1 & 2 Mechatronics Analog and Digital Electronics: Studio Exercises 1 & 2 There is an electronics revolution taking place in the industrialized world. Electronics pervades all activities. Perhaps the most important

More information

PHYS 3152 Methods of Experimental Physics I E2. Diodes and Transistors 1

PHYS 3152 Methods of Experimental Physics I E2. Diodes and Transistors 1 Part I Diodes Purpose PHYS 3152 Methods of Experimental Physics I E2. In this experiment, you will investigate the current-voltage characteristic of a semiconductor diode and examine the applications of

More information

Rectifying diodes. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Rectifying diodes. Resources and methods for learning about these subjects (list a few here, in preparation for your research): Rectifying diodes This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Rectifying diodes. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Rectifying diodes. Resources and methods for learning about these subjects (list a few here, in preparation for your research): Rectifying diodes This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Experiment 2 Electric Circuit Fundamentals

Experiment 2 Electric Circuit Fundamentals Experiment 2 Electric Circuit Fundamentals Introduction This experiment has two parts. Each part will have to be carried out using the Multisim Electronics Workbench software. The experiment will then

More information

Experiment 1 Basic Resistive Circuit Parameters

Experiment 1 Basic Resistive Circuit Parameters Experiment 1 Basic Resistive Circuit Parameters Report Due In-class on Wed., Mar. 14, 2018 Note: (1) The Prelab section must be completed prior to the lab period. (2) All submitted lab reports should have

More information

Experiment 3. Ohm s Law. Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current.

Experiment 3. Ohm s Law. Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current. Experiment 3 Ohm s Law 3.1 Objectives Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current. Construct a circuit using resistors, wires and a breadboard

More information

Experiment 2. Ohm s Law. Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current.

Experiment 2. Ohm s Law. Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current. Experiment 2 Ohm s Law 2.1 Objectives Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current. Construct a circuit using resistors, wires and a breadboard

More information

Resistance and Ohm s law

Resistance and Ohm s law Resistance and Ohm s law Objectives Characterize materials as conductors or insulators based on their electrical properties. State and apply Ohm s law to calculate current, voltage or resistance in an

More information

Pre-LAB 5 Assignment

Pre-LAB 5 Assignment Name: Lab Partners: Date: Pre-LA 5 Assignment Fundamentals of Circuits III: Voltage & Ohm s Law (Due at the beginning of lab) Directions: Read over the Lab Fundamentals of Circuits III: Voltages :w & Ohm

More information

- Draw diagrams with electric potential on the y-axis in which each step of the diagram corresponds to an element of a circuit.

- Draw diagrams with electric potential on the y-axis in which each step of the diagram corresponds to an element of a circuit. M: Draw Electric Potential Diagrams Level 7 Prerequisites: Solve Combined Circuits in One-Step Points to: Objectives: - Draw diagrams with electric potential on the y-axis in which each step of the diagram

More information

Electric Circuit Experiments

Electric Circuit Experiments Electric Circuit Experiments 1. Using the resistor on the 5-resistor block, vary the potential difference across it in approximately equal increments for eight different values (i.e. use one to eight D-

More information

Chapter 1: DC circuit basics

Chapter 1: DC circuit basics Chapter 1: DC circuit basics Overview Electrical circuit design depends first and foremost on understanding the basic quantities used for describing electricity: voltage, current, and power. In the simplest

More information

Voltage Dividers a learn.sparkfun.com tutorial

Voltage Dividers a learn.sparkfun.com tutorial Voltage Dividers a learn.sparkfun.com tutorial Available online at: http://sfe.io/t44 Contents Introduction Ideal Voltage Divider Applications Extra Credit: Proof Resources and Going Further Introduction

More information

EE 241 Experiment #7: NETWORK THEOREMS, LINEARITY, AND THE RESPONSE OF 1 ST ORDER RC CIRCUITS 1

EE 241 Experiment #7: NETWORK THEOREMS, LINEARITY, AND THE RESPONSE OF 1 ST ORDER RC CIRCUITS 1 EE 241 Experiment #7: NETWORK THEOREMS, LINEARITY, AND THE RESPONSE OF 1 ST ORDER RC CIRCUITS 1 PURPOSE: To verify the validity of Thevenin and maximum power transfer theorems. To demonstrate the linear

More information

Chapter 1: DC circuit basics

Chapter 1: DC circuit basics Chapter 1: DC circuit basics Overview Electrical circuit design depends first and foremost on understanding the basic quantities used for describing electricity: Voltage, current, and power. In the simplest

More information

University of Jordan School of Engineering Electrical Engineering Department. EE 204 Electrical Engineering Lab

University of Jordan School of Engineering Electrical Engineering Department. EE 204 Electrical Engineering Lab University of Jordan School of Engineering Electrical Engineering Department EE 204 Electrical Engineering Lab EXPERIMENT 1 MEASUREMENT DEVICES Prepared by: Prof. Mohammed Hawa EXPERIMENT 1 MEASUREMENT

More information

Resistance and Resistivity

Resistance and Resistivity Resistance and Resistivity Lab Section (circle): Day: Monday Tuesday Time: 8:00 9:30 1:10 2:40 Name: Partners: Pre-Lab You are required to finish this section before coming to the lab it will be checked

More information

Diodes. Sections

Diodes. Sections iodes Sections 3.3.1 3.3.8 1 Modeling iode Characteristics Exponential model nonlinearity makes circuit analysis difficult. Two common approaches are graphical analysis and iterative analysis For simple

More information

Equipment and materials to be checked out from stockroom: ECE 2210 kit, optional, if available. Analog BK precision multimeter or similar.

Equipment and materials to be checked out from stockroom: ECE 2210 kit, optional, if available. Analog BK precision multimeter or similar. p1 ECE 2210 Capacitors Lab University of Utah Electrical & Computer Engineering Department ECE 2210/2200 Lab 5 Capacitors A. Stolp, 10/4/99 rev 9/23/08 Objectives 1.) Observe charging and discharging of

More information

Fig [5]

Fig [5] 1 (a) Fig. 4.1 shows the I-V characteristic of a light-emitting diode (LED). 40 I / 10 3 A 30 20 10 0 1.0 1.5 2.0 V / V Fig. 4.1 (i) In Describe the significant features of the graph in terms of current,

More information

Ohm s Law. 1 Object. 2 Apparatus. 3 Theory. To study resistors, Ohm s law, linear behavior, and non-linear behavior.

Ohm s Law. 1 Object. 2 Apparatus. 3 Theory. To study resistors, Ohm s law, linear behavior, and non-linear behavior. Ohm s Law Object To study resistors, Ohm s law, linear behavior, and non-linear behavior. pparatus esistors, power supply, meters, wires, and alligator clips. Theory resistor is a circuit element which

More information

Ohm s Law and Electrical Circuits

Ohm s Law and Electrical Circuits Ohm s Law and Electrical Circuits INTRODUCTION In this experiment, you will measure the current-voltage characteristics of a resistor and check to see if the resistor satisfies Ohm s law. In the process

More information

Chabot College Physics Lab Ohm s Law & Simple Circuits Scott Hildreth

Chabot College Physics Lab Ohm s Law & Simple Circuits Scott Hildreth Chabot College Physics Lab Ohm s Law & Simple Circuits Scott Hildreth Goals: Learn how to make simple circuits, measuring resistances, currents, and voltages across components. Become more comfortable

More information

Class #16: Experiment Matlab and Data Analysis

Class #16: Experiment Matlab and Data Analysis Class #16: Experiment Matlab and Data Analysis Purpose: The objective of this experiment is to add to our Matlab skill set so that data can be easily plotted and analyzed with simple tools. Background:

More information

Lab 4 OHM S LAW AND KIRCHHOFF S CIRCUIT RULES

Lab 4 OHM S LAW AND KIRCHHOFF S CIRCUIT RULES 57 Name Date Partners Lab 4 OHM S LAW AND KIRCHHOFF S CIRCUIT RULES AMPS - VOLTS OBJECTIVES To learn to apply the concept of potential difference (voltage) to explain the action of a battery in a circuit.

More information

Lab 2.4 Arduinos, Resistors, and Circuits

Lab 2.4 Arduinos, Resistors, and Circuits Lab 2.4 Arduinos, Resistors, and Circuits Objectives: Investigate resistors in series and parallel and Kirchoff s Law through hands-on learning Get experience using an Arduino hat you need: Arduino Kit:

More information

Experiment 1: Circuits Experiment Board

Experiment 1: Circuits Experiment Board 01205892C AC/DC Electronics Laboratory Experiment 1: Circuits Experiment Board EQUIPMENT NEEDED: AC/DC Electronics Lab Board: Wire Leads Dcell Battery Graph Paper Purpose The purpose of this lab is to

More information

EE283 Laboratory Exercise 1-Page 1

EE283 Laboratory Exercise 1-Page 1 EE283 Laboratory Exercise # Basic Circuit Concepts Objectives:. To become familiar with the DC Power Supply unit, analog and digital multi-meters, fixed and variable resistors, and the use of solderless

More information

Lab. 1: Simple Linear Circuit Analysis

Lab. 1: Simple Linear Circuit Analysis Lab. 1: Simple Linear Circuit Analysis Philippe Piot (February 9th, 27) 1. Ohm's Law The circuit shown in Figure 1 was built with resistance R=1 and then 1 kω. For these two values of the resistance, the

More information

V (in volts) = voltage applied to the circuit, I (in amperes) = current flowing in the circuit, R (in ohms) = resistance of the circuit.

V (in volts) = voltage applied to the circuit, I (in amperes) = current flowing in the circuit, R (in ohms) = resistance of the circuit. OHM S LW OBJECTIES: PRT : 1) Become familiar with the use of ammeters and voltmeters to measure DC voltage and current. 2) Learn to use wires and a breadboard to build circuits from a circuit diagram.

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 7 LAMPS OBJECTIVES The purpose of this experiment is to introduce the concept of resistance change

More information

Module 1, Lesson 2 Introduction to electricity. Student. 45 minutes

Module 1, Lesson 2 Introduction to electricity. Student. 45 minutes Module 1, Lesson 2 Introduction to electricity 45 minutes Student Purpose of this lesson Explanations of fundamental quantities of electrical circuits, including voltage, current and resistance. Use a

More information

ANALYSIS OF AN NPN COMMON-EMITTER AMPLIFIER

ANALYSIS OF AN NPN COMMON-EMITTER AMPLIFIER ANALYSIS OF AN NPN COMMON-EMITTER AMPLIFIER Experiment Performed by: Michael Gonzalez Filip Rege Alexis Rodriguez-Carlson Report Written by: Filip Rege Alexis Rodriguez-Carlson November 28, 2007 Objectives:

More information

Ohm's Law and the Measurement of Resistance

Ohm's Law and the Measurement of Resistance Ohm's Law and the Measurement of Resistance I. INTRODUCTION An electric current flows through a conductor when a potential difference is placed across its ends. The potential difference is generally in

More information

LABORATORY 7 v2 BOOST CONVERTER

LABORATORY 7 v2 BOOST CONVERTER University of California Berkeley Department of Electrical Engineering and Computer Sciences EECS 100, Professor Bernhard Boser LABORATORY 7 v2 BOOST CONVERTER In many situations circuits require a different

More information

Experiment 8: Semiconductor Devices

Experiment 8: Semiconductor Devices Name/NetID: Experiment 8: Semiconductor Devices Laboratory Outline In today s experiment you will be learning to use the basic building blocks that drove the ability to miniaturize circuits to the point

More information

PHY203: General Physics III Lab page 1 of 5 PCC-Cascade. Lab: AC Circuits

PHY203: General Physics III Lab page 1 of 5 PCC-Cascade. Lab: AC Circuits PHY203: General Physics III Lab page 1 of 5 Lab: AC Circuits OBJECTIVES: EQUIPMENT: Universal Breadboard (Archer 276-169) 2 Simpson Digital Multimeters (464) Function Generator (Global Specialties 2001)*

More information

Lec (03) Diodes and Applications

Lec (03) Diodes and Applications Lec (03) Diodes and Applications Diode Models 1 Diodes and Applications Diode Operation V-I Characteristics of a Diode Diode Models Half-Wave and Full-Wave Rectifiers Power Supply Filters and Regulators

More information

Circuits: Light-Up Creatures Student Advanced version

Circuits: Light-Up Creatures Student Advanced version Circuits: Light-Up Creatures Student Advanced version In this lab you will explore current, voltage and resistance and their relationships as given by the Ohm s law. You will also explore of how resistance

More information

PHY405F 2009 EXPERIMENT 6 SIMPLE TRANSISTOR CIRCUITS

PHY405F 2009 EXPERIMENT 6 SIMPLE TRANSISTOR CIRCUITS PHY405F 2009 EXPERIMENT 6 SIMPLE TRANSISTOR CIRCUITS Due Date (NOTE CHANGE): Thursday, Nov 12 th @ 5 pm; Late penalty in effect! Most active electronic devices are based on the transistor as the fundamental

More information

Mechatronics. Introduction to Analog and Digital Electronics: Laboratory Exercises 1 & 2

Mechatronics. Introduction to Analog and Digital Electronics: Laboratory Exercises 1 & 2 Mechatronics Introduction to Analog and Digital Electronics: Laboratory Exercises 1 & 2 There is an electronics revolution taking plac thdustrialized world. Electronics pervades all activities. Perhaps

More information

Experiment 2: Transients and Oscillations in RLC Circuits

Experiment 2: Transients and Oscillations in RLC Circuits Experiment 2: Transients and Oscillations in RLC Circuits Will Chemelewski Partner: Brian Enders TA: Nielsen See laboratory book #1 pages 5-7, data taken September 1, 2009 September 7, 2009 Abstract Transient

More information

EXPERIMENT 1 INTRODUCTION TO LABORATORY INSTRUMENTS

EXPERIMENT 1 INTRODUCTION TO LABORATORY INSTRUMENTS EXPERIMENT 1 INTRODUCTION TO LABORATORY INSTRUMENTS 1.1 Objective: In this experiment, multimeters and some circuit components are introduced. You will learn the following things: i. Reading the color

More information

ECE 3155 Experiment I AC Circuits and Bode Plots Rev. lpt jan 2013

ECE 3155 Experiment I AC Circuits and Bode Plots Rev. lpt jan 2013 Signature Name (print, please) Lab section # Lab partner s name (if any) Date(s) lab was performed ECE 3155 Experiment I AC Circuits and Bode Plots Rev. lpt jan 2013 In this lab we will demonstrate basic

More information

Resistance and Ohm s Law R V I. 1 ohm = 1 volt ampere

Resistance and Ohm s Law R V I. 1 ohm = 1 volt ampere Resistance and Ohm s Law If you maintain an electric potential difference, or voltage V, across any conductor, an electric current occurs. In general, the magnitude of the current depends on the potential

More information

3.1 ignored. (a) (b) (c)

3.1 ignored. (a) (b) (c) Problems 57 [2] [3] [4] S. Modeling, Analysis, and Design of Switching Converters, Ph.D. thesis, California Institute of Technology, November 1976. G. WESTER and R. D. MIDDLEBROOK, Low-Frequency Characterization

More information

AC Theory and Electronics

AC Theory and Electronics AC Theory and Electronics An Alternating Current (AC) or Voltage is one whose amplitude is not constant, but varies with time about some mean position (value). Some examples of AC variation are shown below:

More information

Lab 06: Ohm s Law and Servo Motor Control

Lab 06: Ohm s Law and Servo Motor Control CS281: Computer Systems Lab 06: Ohm s Law and Servo Motor Control The main purpose of this lab is to build a servo motor control circuit. As with prior labs, there will be some exploratory sections designed

More information

Physics 1051 Laboratory #4 DC Circuits and Ohm s Law. DC Circuits and Ohm s Law

Physics 1051 Laboratory #4 DC Circuits and Ohm s Law. DC Circuits and Ohm s Law DC Circuits and Ohm s Law Contents Part I: Objective Part II: Introduction Part III: Apparatus and Setup Part IV: Measurements Part V: Analysis Part VI: Summary and Conclusions Part I: Objective In this

More information

Figure 1: Electronics Workbench screen

Figure 1: Electronics Workbench screen PREFACE 3 Figure 1: Electronics Workbench screen When you concentrate on the concepts and avoid applying by rote a memorized set of steps you are studying for mastery. When you understand what is going

More information

E84 Lab 3: Transistor

E84 Lab 3: Transistor E84 Lab 3: Transistor Cherie Ho and Siyi Hu April 18, 2016 Transistor Testing 1. Take screenshots of both the input and output characteristic plots observed on the semiconductor curve tracer with the following

More information

Physics 4C Chabot College Scott Hildreth

Physics 4C Chabot College Scott Hildreth Physics 4C Chabot College Scott Hildreth The Inverse Square Law for Light Intensity vs. Distance Using Microwaves Experiment Goals: Experimentally test the inverse square law for light using Microwaves.

More information

Component modeling. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Component modeling. Resources and methods for learning about these subjects (list a few here, in preparation for your research): Component modeling This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Unit 4: Principles of Electrical and Electronic Engineering. LO1: Understand fundamental electrical principles Maximum power transfer

Unit 4: Principles of Electrical and Electronic Engineering. LO1: Understand fundamental electrical principles Maximum power transfer Unit 4: Principles of Electrical and Electronic Engineering LO1: Understand fundamental electrical principles Maximum power transfer Instructions and answers for teachers These instructions should accompany

More information

Revision: April 18, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: April 18, E Main Suite D Pullman, WA (509) Voice and Fax Lab 1: Resistors and Ohm s Law Revision: April 18, 2010 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview In this lab, we will experimentally explore the characteristics of resistors.

More information

LAB PROJECT 2. Lab Exercise

LAB PROJECT 2. Lab Exercise LAB PROJECT 2 Objective Investigate photoresistors, infrared light emitting diodes (IRLED), phototransistors, and fiber optic cable. Type a semi-formal lab report as described in the lab manual. Use tables

More information

Real Analog Chapter 2: Circuit Reduction. 2 Introduction and Chapter Objectives. After Completing this Chapter, You Should be Able to:

Real Analog Chapter 2: Circuit Reduction. 2 Introduction and Chapter Objectives. After Completing this Chapter, You Should be Able to: 1300 Henley Court Pullman, WA 99163 509.334.6306 www.store. digilent.com 2 Introduction and Chapter Objectives In Chapter 1, we presented Kirchhoff's laws (which govern the interaction between circuit

More information

Lab 11: Circuits. Figure 1: A hydroelectric dam system.

Lab 11: Circuits. Figure 1: A hydroelectric dam system. Description Lab 11: Circuits In this lab, you will study voltage, current, and resistance. You will learn the basics of designing circuits and you will explore how to find the total resistance of a circuit

More information

Lab 3 DC CIRCUITS AND OHM'S LAW

Lab 3 DC CIRCUITS AND OHM'S LAW 43 Name Date Partners Lab 3 DC CIRCUITS AND OHM'S LAW AMPS + - VOLTS OBJECTIVES To learn to apply the concept of potential difference (voltage) to explain the action of a battery in a circuit. To understand

More information

Laboratory Project 1a: Power-Indicator LED's

Laboratory Project 1a: Power-Indicator LED's 2240 Laboratory Project 1a: Power-Indicator LED's Abstract-You will construct and test two LED power-indicator circuits for your breadboard in preparation for building the Electromyogram circuit in Lab

More information

Study of Inductive and Capacitive Reactance and RLC Resonance

Study of Inductive and Capacitive Reactance and RLC Resonance Objective Study of Inductive and Capacitive Reactance and RLC Resonance To understand how the reactance of inductors and capacitors change with frequency, and how the two can cancel each other to leave

More information

Voltage Current and Resistance II

Voltage Current and Resistance II Voltage Current and Resistance II Equipment: Capstone with 850 interface, analog DC voltmeter, analog DC ammeter, voltage sensor, RLC circuit board, 8 male to male banana leads 1 Purpose This is a continuation

More information

Lab 2: Blinkie Lab. Objectives. Materials. Theory

Lab 2: Blinkie Lab. Objectives. Materials. Theory Lab 2: Blinkie Lab Objectives This lab introduces the Arduino Uno as students will need to use the Arduino to control their final robot. Students will build a basic circuit on their prototyping board and

More information

ELEG 205 Analog Circuits Laboratory Manual Fall 2016

ELEG 205 Analog Circuits Laboratory Manual Fall 2016 ELEG 205 Analog Circuits Laboratory Manual Fall 2016 University of Delaware Dr. Mark Mirotznik Kaleb Burd Patrick Nicholson Aric Lu Kaeini Ekong 1 Table of Contents Lab 1: Intro 3 Lab 2: Resistive Circuits

More information

Measuring Voltage, Current & Resistance Building: Resistive Networks, V and I Dividers Design and Build a Resistance Indicator

Measuring Voltage, Current & Resistance Building: Resistive Networks, V and I Dividers Design and Build a Resistance Indicator ECE 3300 Lab 2 ECE 1250 Lab 2 Measuring Voltage, Current & Resistance Building: Resistive Networks, V and I Dividers Design and Build a Resistance Indicator Overview: In Lab 2 you will: Measure voltage

More information

The 34th International Physics Olympiad

The 34th International Physics Olympiad The 34th International Physics Olympiad Taipei, Taiwan Experimental Competition Wednesday, August 6, 2003 Time Available : 5 hours Please Read This First: 1. Use only the pen provided. 2. Use only the

More information

Field - Effect Transistor

Field - Effect Transistor Page 1 of 6 Field - Effect Transistor Aim :- To draw and study the out put and transfer characteristics of the given FET and to determine its parameters. Apparatus :- FET, two variable power supplies,

More information

Part 1: DC Concepts and Measurement

Part 1: DC Concepts and Measurement EE 110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 1 DC Concepts and Measurement: Ohm's Law, Voltage ad Current Introduction to Analog Discovery Scope Last week we introduced

More information

Ohm s Law. 1 Object. 2 Apparatus. 3 Theory. To study resistors, Ohm s law, linear behavior, and non-linear behavior.

Ohm s Law. 1 Object. 2 Apparatus. 3 Theory. To study resistors, Ohm s law, linear behavior, and non-linear behavior. Ohm s Law Object To study resistors, Ohm s law, linear behavior, and non-linear behavior. pparatus esistors, power supply, meters, wires, and alligator clips. Theory resistor is a circuit element which

More information

The preferred Exercise is shown in Exercises 5B or 5C.

The preferred Exercise is shown in Exercises 5B or 5C. ECE 231 Laboratory Exercise 5A The preferred Exercise is shown in Exercises 5B or 5C. Laboratory Group (Names) OBJECTIVES Validate the Schottky diode equation. Calculate the dc and dynamic (ac) resistance

More information

DC CIRCUITS AND OHM'S LAW

DC CIRCUITS AND OHM'S LAW July 15, 2008 DC Circuits and Ohm s Law 1 Name Date Partners DC CIRCUITS AND OHM'S LAW AMPS - VOLTS OBJECTIVES OVERVIEW To learn to apply the concept of potential difference (voltage) to explain the action

More information

2-Terminal Device Characteristics and Diode Characterization

2-Terminal Device Characteristics and Diode Characterization Laboratory-1 2-Terminal Device Characteristics and Diode Characterization Introduction The objectives of this experiment are to learn methods for characterizing 2- terminal devices, such as diodes, observe

More information

Diodes CHAPTER Rectifier Circuits. Introduction. 4.6 Limiting and Clamping Circuits. 4.2 Terminal Characteristics of Junction Diodes 173

Diodes CHAPTER Rectifier Circuits. Introduction. 4.6 Limiting and Clamping Circuits. 4.2 Terminal Characteristics of Junction Diodes 173 CHAPTER 4 Diodes Introduction 4.1 4.5 Rectifier Circuits 165 The Ideal Diode 166 4.2 Terminal Characteristics of Junction Diodes 173 4.3 Modeling the Diode Forward Characteristic 179 4.4 Operation in the

More information

LABORATORY MODULE. Analog Electronics. Semester 2 (2005/2006)

LABORATORY MODULE. Analog Electronics. Semester 2 (2005/2006) LABORATORY MODULE ENT 162 Analog Electronics Semester 2 (2005/2006) EXPERIMENT 1 : Introduction to Diode Name Matric No. : : PUSAT PENGAJIAN KEJURUTERAAN MEKATRONIK KOLEJ UNIVERSITI KEJURUTERAAN UTARA

More information

Millman s theorem. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Millman s theorem. Resources and methods for learning about these subjects (list a few here, in preparation for your research): Millman s theorem This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Millman s theorem. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Millman s theorem. Resources and methods for learning about these subjects (list a few here, in preparation for your research): Millman s theorem This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

VISUAL PHYSICS ONLINE. Experiment PA41A ELECTRIC CIRCUITS

VISUAL PHYSICS ONLINE. Experiment PA41A ELECTRIC CIRCUITS VISUAL PHYSICS ONLINE Experiment PA41A ELECTRIC CIRCUITS Equipment (see Appendices) 12V DC power supply (battery): multimeter (and/or milliammeter and voltmeter); electrical leads; alligator clips; fixed

More information

Bipolar junction transistors in active mode

Bipolar junction transistors in active mode Bipolar junction transistors in active mode This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Chapter 8. Field Effect Transistor

Chapter 8. Field Effect Transistor Chapter 8. Field Effect Transistor Field Effect Transistor: The field effect transistor is a semiconductor device, which depends for its operation on the control of current by an electric field. There

More information

1-1. Kirchoff s Laws A. Construct the circuit shown below. R 1 =1 kω. = 2.7 kω R 3 R 2 5 V

1-1. Kirchoff s Laws A. Construct the circuit shown below. R 1 =1 kω. = 2.7 kω R 3 R 2 5 V Physics 310 Lab 1: DC Circuits Equipment: Digital Multimeter, 5V Supply, Breadboard, two 1 kω, 2.7 kω, 5.1 kω, 10 kω, two, Decade Resistor Box, potentiometer, 10 kω Thermistor, Multimeter Owner s Manual

More information

RC_Circuits RC Circuits Lab Q1 Open the Logger Pro program RC_RL_Circuits via the Logger Launcher icon on your desktop. RC Circuits Lab Part1 Part 1: Measuring Voltage and Current in an RC Circuit 1. 2.

More information

Materials: resistors: (5) 1 kω, (4) 2 kω, 2.2 kω, 3 kω, 3.9 kω digital multimeter (DMM) power supply w/ leads breadboard, jumper wires

Materials: resistors: (5) 1 kω, (4) 2 kω, 2.2 kω, 3 kω, 3.9 kω digital multimeter (DMM) power supply w/ leads breadboard, jumper wires Lab 6: Electrical Engineering Technology References: 1. Resistor (electronic) color code: http://en.wikipedia.org/wiki/electronic_color_code 2. Resistor color code tutorial: http://www.michaels-electronics-lessons.com/resistor-color-code.html

More information

BME/ISE 3511 Laboratory One - Laboratory Equipment for Measurement. Introduction to biomedical electronic laboratory instrumentation and measurements.

BME/ISE 3511 Laboratory One - Laboratory Equipment for Measurement. Introduction to biomedical electronic laboratory instrumentation and measurements. BME/ISE 3511 Laboratory One - Laboratory Equipment for Measurement Learning Objectives: Introduction to biomedical electronic laboratory instrumentation and measurements. Supplies and Components: Breadboard

More information

EXPERIMENT 4: RC, RL and RD CIRCUITs

EXPERIMENT 4: RC, RL and RD CIRCUITs EXPERIMENT 4: RC, RL and RD CIRCUITs Equipment List Resistor, one each of o 330 o 1k o 1.5k o 10k o 100k o 1000k 0.F Ceramic Capacitor 4700H Inductor LED and 1N4004 Diode. Introduction We have studied

More information

PREVIEW COPY. Amplifiers. Table of Contents. Introduction to Amplifiers...3. Single-Stage Amplifiers...19

PREVIEW COPY. Amplifiers. Table of Contents. Introduction to Amplifiers...3. Single-Stage Amplifiers...19 Amplifiers Table of Contents Lesson One Lesson Two Lesson Three Introduction to Amplifiers...3 Single-Stage Amplifiers...19 Amplifier Performance and Multistage Amplifiers...35 Lesson Four Op Amps...51

More information

ECE ECE285. Electric Circuit Analysis I. Spring Nathalia Peixoto. Rev.2.0: Rev Electric Circuits I

ECE ECE285. Electric Circuit Analysis I. Spring Nathalia Peixoto. Rev.2.0: Rev Electric Circuits I ECE285 Electric Circuit Analysis I Spring 2014 Nathalia Peixoto Rev.2.0: 140124. Rev 2.1. 140813 1 Lab reports Background: these 9 experiments are designed as simple building blocks (like Legos) and students

More information

LINEAR EQUATIONS IN TWO VARIABLES

LINEAR EQUATIONS IN TWO VARIABLES LINEAR EQUATIONS IN TWO VARIABLES What You Should Learn Use slope to graph linear equations in two " variables. Find the slope of a line given two points on the line. Write linear equations in two variables.

More information

PH102 Lab: Current and Voltage

PH102 Lab: Current and Voltage At this point you should have read the introduction to the lab, and started the tutorial software. 1. Resistors PH102 Lab: Current and Voltage Experiment I: Sourcing Current a) Connect your resistor to

More information

Oregon State University Lab Session #1 (Week 3)

Oregon State University Lab Session #1 (Week 3) Oregon State University Lab Session #1 (Week 3) ENGR 201 Electrical Fundamentals I Equipment and Resistance Winter 2016 EXPERIMENTAL LAB #1 INTRO TO EQUIPMENT & OHM S LAW This set of laboratory experiments

More information