Communications over Sparse Channels:

Size: px
Start display at page:

Download "Communications over Sparse Channels:"

Transcription

1 Communications over Sparse Channels: Fundamental limits and practical design Phil Schniter (With support from NSF grant CCF , NSF grant CCF , and DARPA/ONR grant N ) Intl. Zürich Seminar on Communications, Feb

2 Sparse Channels: At large communication bandwidths, channel impulse responses are sparse. Below left shows channel taps x = [x 0,...,x L 1 ], where x n = x(nt) for bandwidth T 1 = 256 MHz, x(t) = h(t) p RC (t), and h(t) is generated randomly using a outdoor NLOS specs. 0 IEEE a outdoor NLOS 0.5 Measured underwater channel real part 0 db taps: big channel var: big PDP threshold var: small taps: small imag part lag lag lag 2

3 Simplified Channel Model: First, let s simplify things to talk concretely about sparse channels... Consider a discrete-time channel that is block-fading with block size N, frequency-selective with impulse response length L (where L < N), sparse with S non-zero complex-gaussian taps (where 0 < S L), where both the channel coefficients and support are unknown to the receiver. Important questions: 1. What is the capacity of this channel? 2. How can we build a practical comm system that operates near this capacity? 3

4 Noncoherent Capacity of the Sparse Channel: For the unknown N-block-fading, L-length, S-sparse channel described earlier, we established [1] that 1. In the high-snr regime, the ergodic capacity obeys C sparse (SNR) = N S N log(snr)+o(1). 2. To achieve the prelog factor R sparse = N S N, it suffices to use pilot-aided OFDM (with N subcarriers, of which S are pilots) with joint channel estimation and data decoding. Key points: The effect of unknown channel support manifests only in the O(1) offset. Standard non-sparse-channel methods would use L pilots. Compressed channel sensing would use S polylog N pilots. [1] A. Pachai-Kannu and P. Schniter, On communication over unknown sparse frequency selective block-fading channels, IEEE Trans. Info. Thy., Oct

5 Practical Communication over the unknown Sparse Channel: We now propose a communication scheme that... is practical, with decode complexity O(N log 2 N +N S ) per N-block, delivers outage rates matching the optimal prelog factor R sparse = N S N, significantly outperforms compressed channel sensing (CCS) schemes. Our scheme uses... a conventional transmitter: pilot-aided BICM OFDM, a novel receiver: based on belief propagation with the generalized approximate message passing (GAMP) algorithm [3] used in a turbo configuration [2]. [2] P. Schniter, Turbo reconstruction of structured sparse signals, CISS [3] S. Rangan, Generalized approximate message passing for estimation with random linear mixing, arxiv: ,

6 Factor Graph for pilot-aided BICM-OFDM: uniform prior info bits code & interlv training bits coded bits symbol mapping QAM symbs OFDM obsv channel taps sparse prior c 0,1 M 0 s 0 y 0 b 1 c 0,2 x 1 b 2 c 1,1 c 1,2 M 1 s 1 y 1 x 2 b 3 c 2,1 c 2,2 M 2 s 2 y 2 x 3 c 3,1 M 3 s 3 y 3 SISO (de)coding c 3,2 GAMP = random variable = posterior factor To jointly infer all random variables, we perform loopy-bp via the sum-product algorithm, using AMP approximations in the GAMP sub-graph. 6

7 Numerical Results Perfectly Sparse Channel: Transmitter: LDPC codewords with length bits. 2 M -QAM with 2 M {4,16,64,256} and multi-level Gray mapping. OFDM with N = 1024 subcarriers. P pilot subcarriers and/or T training MSBs. Channel: Length L = 256 = N/4. Sparsity S = 64 = N/16. Reference Schemes: Pilot-aided LASSO (i.e., compressed channel sensing) with oracle tuning. Pilot-aided LMMSE, support-aware MMSE, and info-bit+support-aware MMSE channel estimates were also tested. 7

8 BER & Outage vs SNR (with P=L pilots & T=0 training MSBs): bpcu GAMP BER=0.001 contours (64-QAM) BSG GAMP GAMP BSG GAMP BSGGAMP LASSO SG LASSO LMMSE SNR db SG LASSO LMMSE LASSO LMMSE Key points: GAMP outperforms both LASSO and the support genie (SG). GAMP performs nearly as well as the info-bit+support-aware genie (BSG). With P = L, all approaches yield prelog factor R = N L N the optimal R sparse = N S N = = 3 4, which falls short of

9 BER & Outage vs SNR (with P=0 pilots & T=SM training MSBs): training-to-sparsity ratio: T/(SM) log 10 (BER) (256 QAM, 3.75 bpcu, 20dB SNR) pilot-to-sparsity ratio: P/S bpcu BER=0.01 contours (256-QAM) GAMP GAMP GAMP GAMP SNR db Key points: GAMP favors P=0 pilot subcarriers and T =SM training MSBs. Precisely the necc/suff redundancy of the capacity-maximizing system! GAMP achieves the sparse-channel s capacity-prelog factor, R sparse = N S N. 9

10 In practice, channel taps are not perfectly sparse, nor i.i.d: For example, consider channel taps x = [x 0,...,x L 1 ], where x n = x(nt) for bandwidth T 1 = 256 MHz, x(t) = h(t) p RC (t), and h(t) is generated randomly using a outdoor NLOS specs typical realization histogram at lag 5 histogram at lag db taps: big channel var: big PDP threshold var: small taps: small lag x histogram at lag 128 histogram at lag The tap distribution varies as the lag increases, becoming more heavy-tailed. The big taps are clustered together in lag, as are the small ones. 10

11 Proposed channel model: Saleh-Valenzuela (e.g., a) models are accurate but difficult to exploit in receiver design. We propose a structured-sparse channel model based on a 2-state Gaussian Mixture model with discrete-markov-chain structure on the state: CN(x j ;0,µ 0 j p(x j d j ) = ) if d j=0 small CN(x j ;0,µ 1 j ) if d j=1 big Pr{d j+1 = 1} = p 10 j Pr{d j = 0}+(1 p 01 j )Pr{d j = 1} Our model is parameterized by the lag-dependent quantities: {µ 1 j} : big-state power-delay profile {µ 0 j} : small-state power-delay profile {p 01 j } : big-to-small transition probabilities {p 10 j } : small-to-big transition probabilities Can learn these statistical params from observed realizations via the EM alg. 11

12 Factor graph for pilot-aided BICM-OFDM: uniform prior info bits code & interlv training bits coded bits symbol mapping QAM symbs OFDM obsv channel taps sparse prior tap states cluster prior b 1 b 2 b 3 c 0,1 c 0,2 c 1,1 c 1,2 c 2,1 c 2,2 c 3,1 c 3,2 s 0 y 0 x 1 d 1 s 1 y 1 x 2 d 2 s 2 y 2 x 3 d 3 s 3 y 3 SISO decoding GAMP MC = random variable = posterior factor To jointly infer all random variables, we perform loopy-bp via the sum-product algorithm, using AMP approximations in the GAMP sub-graph. 12

13 Numerical results: Transmitter: OFDM with N = 1024 subcarriers. 16-QAM with multi-level Gray mapping LDPC codewords with length yielding spectral efficiency of 2 bpcu. P pilot subcarriers and T training MSBs. Channel: a outdoor-nlos (not our Gaussian-mixture model!) Length L = 256 = N/4. Reference Channel Estimation / Equalization Schemes: soft-input soft-output (SISO) versions of LMMSE and LASSO. perfect-csi genie. 13

14 BER versus E b /N o for P = 224 pilots and T = 0 training MSBs: BER 10 0 LMMSE 1 LMMSE 2 LMMSE fin LASSO 1 LASSO 2 LASSO fin 10 1 GAMP 1 GAMP 2 GAMP fin GAMP 1 MC 5 GAMP 2 MC 5 GAMP fin MC 5 PCSI E b /N o [db] Note 4dB improvement over (turbo) LASSO. Only 0.5dB from perfect-csi genie! 14

15 BER versus E b /N o for P = 0 pilots and T = 448 training MSBs: BER 10 0 LMMSE 1 LMMSE 2 LMMSE fin LASSO 1 LASSO 2 LASSO fin 10 1 GAMP 1 GAMP 2 GAMP fin GAMP 1 MC 5 GAMP 2 MC 5 GAMP fin MC 5 PCSI E b /N o [db] Use of training MSBs gives 1dB improvement over use of pilot subcarriers! 15

16 Communications over Underwater Channels: SPACE-08 Underwater Experiment F038 C0 S6 Time-varying channel response estimated using WHOI M-sequence: lag absolute magnitude lag db time Hz The channel is nearly over-spread: f d T s L = Can t afford to ignore structure of temporal variations! 400 = 0.8! 16

17 BICM-OFDM Factor Graph with Temporal Channel Structure: uniform prior b 1 b 2 b 3 SISO (de)coding info bits code & interlv pilots & training c 0,1 c 0,2 c 1,1 c 1,2 c 2,1 c 2,2 c 3,1 c 3,2 coded bits symbol mapping q 0 q 1 q 2 q 3 QAM symbs y 0 y 1 y 2 y 3 OFDM obsv GAMP h 1 h 2 h 3 channel taps BG prior a 1 s 1 a 2 s 2 a 3 s 3 amplitude & support time t Channel taps are modeled as independent Bernoulli-Gaussian processes: each tap s amplitude follows a temporal Gauss-Markov chain each tap s on/off state follows a temporal discrete-markov chain [4] P. Schniter and D. Meng, A Message-Passing Receiver for BICM-OFDM over Unknown Time-Varying Sparse Channels, Allerton

18 Performance versus SNR: Settings: experimentally measured underwater channel 16-QAM 1024 total tones 0 pilot tones 256 training MSBs LDPC length 10k LDPC rate 0.5 BER temporal no temporal SNR (db) Exploiting the persistence in channel support and channel amplitudes was critical in this difficult underwater application. 18

19 Communications in Impulsive Noise: In many wireless and power-line communication systems, the (time-domain) noise is not Gaussian but impulsive. The marginal noise statistics are well captured by a 2-state Gaussian mixture (i.e., Middleton class-a) model. Noise burstiness is well captured by a discrete Markov chain on the noise state. 19

20 Factor Graph for pilot-aided BICM-OFDM: [5] M. Nassar, P. Schniter, and B. Evans, A Factor-Graph Approach to Joint OFDM Channel Estimation and Decoding in Impulsive Noise Environments, IEEE Trans. Signal Process.,

21 Numerical Results Uncoded Case: Settings: 5 channel taps GM noise 256 total tones 15 pilot tones 80 null tones 4-QAM Proposed joint channel/impulsive-noise/symbol estimation (JCIS) scheme gives 15 db gain over previous state-of-the-art and performs within 1 db of MFB! 21

22 Numerical Results Coded Case: Settings: 10 channel taps GM noise 1024 total tones 150 pilot tones 0 null tones 16-QAM LDPC Rate 0.5 Length 60k Proposed joint channel/impulsive-noise/symbol/bit estimation (JCISB) scheme gives 15 db gain over traditional DFT-based receiver! 22

23 Conclusions: At wide bandwidths, channel impulse responses are approximately sparse. Sparsity increases the pre-log factor of high-snr noncoherent ergodic capacity. AMP-based joint channel-estimation/decoding delivers outage rates that empirically match the capacity pre-log factor. Channels impulses are in fact structured-sparse, and exploiting this structure leads to additional performance gains. Sparsity can also be exploited in time-varying channels. Impulsive noise is another source of sparsity in communications. AMP-based joint channel-estimation/impulse-estimation/decoding delivers error-rates that approach the matched-filter bound. 23

A Message-Passing Receiver For BICM-OFDM Over Unknown Clustered-Sparse Channels. Phil Schniter T. H. E OHIO STATE UNIVERSITY

A Message-Passing Receiver For BICM-OFDM Over Unknown Clustered-Sparse Channels. Phil Schniter T. H. E OHIO STATE UNIVERSITY A Message-Passing Receiver For BICM-OFDM Over Unknown Clustered-Sparse Channels Phil Schniter T. H. E OHIO STATE UNIVERSITY (With support from NSF grant CCF-118368 and DARPA/ONR grant N661-1-1-49) SPAWC

More information

Approximate Message Passing: Applications to Communications Receivers

Approximate Message Passing: Applications to Communications Receivers Approximate Message Passing: Applications to Communications Receivers Phil Schniter (With support from NSF grant CCF-1018368, NSF grant CCF-1218754, and DARPA/ONR grant N66001-10-1-4090) TrellisWare, Feb.

More information

WHEN designing a digital communications receiver, it. A Message-Passing Receiver for BICM-OFDM Over Unknown Clustered-Sparse Channels Philip Schniter

WHEN designing a digital communications receiver, it. A Message-Passing Receiver for BICM-OFDM Over Unknown Clustered-Sparse Channels Philip Schniter 1462 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 5, NO. 8, DECEMBER 2011 A Message-Passing Receiver for BICM-OFDM Over Unknown Clustered-Sparse Channels Philip Schniter Abstract We propose

More information

Phil Schniter and Jason Parker

Phil Schniter and Jason Parker Parametric Bilinear Generalized Approximate Message Passing Phil Schniter and Jason Parker With support from NSF CCF-28754 and an AFOSR Lab Task (under Dr. Arje Nachman). ITA Feb 6, 25 Approximate Message

More information

IMPULSIVE NOISE MITIGATION IN OFDM SYSTEMS USING SPARSE BAYESIAN LEARNING

IMPULSIVE NOISE MITIGATION IN OFDM SYSTEMS USING SPARSE BAYESIAN LEARNING IMPULSIVE NOISE MITIGATION IN OFDM SYSTEMS USING SPARSE BAYESIAN LEARNING Jing Lin, Marcel Nassar and Brian L. Evans Department of Electrical and Computer Engineering The University of Texas at Austin

More information

Professor Paulraj and Bringing MIMO to Practice

Professor Paulraj and Bringing MIMO to Practice Professor Paulraj and Bringing MIMO to Practice Michael P. Fitz UnWiReD Laboratory-UCLA http://www.unwired.ee.ucla.edu/ April 21, 24 UnWiReD Lab A Little Reminiscence PhD in 1989 First research area after

More information

Frugal Sensing Spectral Analysis from Power Inequalities

Frugal Sensing Spectral Analysis from Power Inequalities Frugal Sensing Spectral Analysis from Power Inequalities Nikos Sidiropoulos Joint work with Omar Mehanna IEEE SPAWC 2013 Plenary, June 17, 2013, Darmstadt, Germany Wideband Spectrum Sensing (for CR/DSM)

More information

Improved concatenated (RS-CC) for OFDM systems

Improved concatenated (RS-CC) for OFDM systems Improved concatenated (RS-CC) for OFDM systems Mustafa Dh. Hassib 1a), JS Mandeep 1b), Mardina Abdullah 1c), Mahamod Ismail 1d), Rosdiadee Nordin 1e), and MT Islam 2f) 1 Department of Electrical, Electronics,

More information

Fundamentals of Digital Communication

Fundamentals of Digital Communication Fundamentals of Digital Communication Network Infrastructures A.A. 2017/18 Digital communication system Analog Digital Input Signal Analog/ Digital Low Pass Filter Sampler Quantizer Source Encoder Channel

More information

Analysis and Improvements of Linear Multi-user user MIMO Precoding Techniques

Analysis and Improvements of Linear Multi-user user MIMO Precoding Techniques 1 Analysis and Improvements of Linear Multi-user user MIMO Precoding Techniques Bin Song and Martin Haardt Outline 2 Multi-user user MIMO System (main topic in phase I and phase II) critical problem Downlink

More information

Differentially Coherent Detection: Lower Complexity, Higher Capacity?

Differentially Coherent Detection: Lower Complexity, Higher Capacity? Differentially Coherent Detection: Lower Complexity, Higher Capacity? Yashar Aval, Sarah Kate Wilson and Milica Stojanovic Northeastern University, Boston, MA, USA Santa Clara University, Santa Clara,

More information

Pilot Aided Channel Estimation for MIMO MC-CDMA

Pilot Aided Channel Estimation for MIMO MC-CDMA Pilot Aided Channel Estimation for MIMO MC-CDMA Stephan Sand (DLR) Fabrice Portier CNRS/IETR NEWCOM Dept. 1, SWP 2, Barcelona, Spain, 3 rd November, 2005 Outline System model Frame structure MIMO Pilot

More information

Receiver Design for Noncoherent Digital Network Coding

Receiver Design for Noncoherent Digital Network Coding Receiver Design for Noncoherent Digital Network Coding Terry Ferrett 1 Matthew Valenti 1 Don Torrieri 2 1 West Virginia University 2 U.S. Army Research Laboratory November 3rd, 2010 1 / 25 Outline 1 Introduction

More information

CHAPTER 3 ADAPTIVE MODULATION TECHNIQUE WITH CFO CORRECTION FOR OFDM SYSTEMS

CHAPTER 3 ADAPTIVE MODULATION TECHNIQUE WITH CFO CORRECTION FOR OFDM SYSTEMS 44 CHAPTER 3 ADAPTIVE MODULATION TECHNIQUE WITH CFO CORRECTION FOR OFDM SYSTEMS 3.1 INTRODUCTION A unique feature of the OFDM communication scheme is that, due to the IFFT at the transmitter and the FFT

More information

Volume 2, Issue 9, September 2014 International Journal of Advance Research in Computer Science and Management Studies

Volume 2, Issue 9, September 2014 International Journal of Advance Research in Computer Science and Management Studies Volume 2, Issue 9, September 2014 International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online at: www.ijarcsms.com

More information

ELEC E7210: Communication Theory. Lecture 11: MIMO Systems and Space-time Communications

ELEC E7210: Communication Theory. Lecture 11: MIMO Systems and Space-time Communications ELEC E7210: Communication Theory Lecture 11: MIMO Systems and Space-time Communications Overview of the last lecture MIMO systems -parallel decomposition; - beamforming; - MIMO channel capacity MIMO Key

More information

Performance Comparison of Channel Estimation Technique using Power Delay Profile for MIMO OFDM

Performance Comparison of Channel Estimation Technique using Power Delay Profile for MIMO OFDM Performance Comparison of Channel Estimation Technique using Power Delay Profile for MIMO OFDM 1 Shamili Ch, 2 Subba Rao.P 1 PG Student, SRKR Engineering College, Bhimavaram, INDIA 2 Professor, SRKR Engineering

More information

Spatial Correlation Effects on Channel Estimation of UCA-MIMO Receivers

Spatial Correlation Effects on Channel Estimation of UCA-MIMO Receivers 11 International Conference on Communication Engineering and Networks IPCSIT vol.19 (11) (11) IACSIT Press, Singapore Spatial Correlation Effects on Channel Estimation of UCA-MIMO Receivers M. A. Mangoud

More information

UWB Small Scale Channel Modeling and System Performance

UWB Small Scale Channel Modeling and System Performance UWB Small Scale Channel Modeling and System Performance David R. McKinstry and R. Michael Buehrer Mobile and Portable Radio Research Group Virginia Tech Blacksburg, VA, USA {dmckinst, buehrer}@vt.edu Abstract

More information

Performance of wireless Communication Systems with imperfect CSI

Performance of wireless Communication Systems with imperfect CSI Pedagogy lecture Performance of wireless Communication Systems with imperfect CSI Yogesh Trivedi Associate Prof. Department of Electronics and Communication Engineering Institute of Technology Nirma University

More information

VOL. 3, NO.11 Nov, 2012 ISSN Journal of Emerging Trends in Computing and Information Sciences CIS Journal. All rights reserved.

VOL. 3, NO.11 Nov, 2012 ISSN Journal of Emerging Trends in Computing and Information Sciences CIS Journal. All rights reserved. Effect of Fading Correlation on the Performance of Spatial Multiplexed MIMO systems with circular antennas M. A. Mangoud Department of Electrical and Electronics Engineering, University of Bahrain P. O.

More information

Performance of Single-tone and Two-tone Frequency-shift Keying for Ultrawideband

Performance of Single-tone and Two-tone Frequency-shift Keying for Ultrawideband erformance of Single-tone and Two-tone Frequency-shift Keying for Ultrawideband Cheng Luo Muriel Médard Electrical Engineering Electrical Engineering and Computer Science, and Computer Science, Massachusetts

More information

SPARSE CHANNEL ESTIMATION BY PILOT ALLOCATION IN MIMO-OFDM SYSTEMS

SPARSE CHANNEL ESTIMATION BY PILOT ALLOCATION IN MIMO-OFDM SYSTEMS SPARSE CHANNEL ESTIMATION BY PILOT ALLOCATION IN MIMO-OFDM SYSTEMS Puneetha R 1, Dr.S.Akhila 2 1 M. Tech in Digital Communication B M S College Of Engineering Karnataka, India 2 Professor Department of

More information

EITN85, FREDRIK TUFVESSON, JOHAN KÅREDAL ELECTRICAL AND INFORMATION TECHNOLOGY. Why do we need UWB channel models?

EITN85, FREDRIK TUFVESSON, JOHAN KÅREDAL ELECTRICAL AND INFORMATION TECHNOLOGY. Why do we need UWB channel models? Wireless Communication Channels Lecture 9:UWB Channel Modeling EITN85, FREDRIK TUFVESSON, JOHAN KÅREDAL ELECTRICAL AND INFORMATION TECHNOLOGY Overview What is Ultra-Wideband (UWB)? Why do we need UWB channel

More information

Cognitive Radio Transmission Based on Chip-level Space Time Block Coded MC-DS-CDMA over Fast-Fading Channel

Cognitive Radio Transmission Based on Chip-level Space Time Block Coded MC-DS-CDMA over Fast-Fading Channel Journal of Scientific & Industrial Research Vol. 73, July 2014, pp. 443-447 Cognitive Radio Transmission Based on Chip-level Space Time Block Coded MC-DS-CDMA over Fast-Fading Channel S. Mohandass * and

More information

Recent Advances in Coherent Communication over the underwater acoustic channel

Recent Advances in Coherent Communication over the underwater acoustic channel Recent Advances in Coherent Communication over the underwater acoustic channel James A. Ritcey Department of Electrical Engineering, Box 352500 University of Washington, Seattle, WA 98195 Tel: (206) 543-4702,

More information

Channel Modeling ETI 085

Channel Modeling ETI 085 Channel Modeling ETI 085 Overview Lecture no: 9 What is Ultra-Wideband (UWB)? Why do we need UWB channel models? UWB Channel Modeling UWB channel modeling Standardized UWB channel models Fredrik Tufvesson

More information

CHAPTER 5 DIVERSITY. Xijun Wang

CHAPTER 5 DIVERSITY. Xijun Wang CHAPTER 5 DIVERSITY Xijun Wang WEEKLY READING 1. Goldsmith, Wireless Communications, Chapters 7 2. Tse, Fundamentals of Wireless Communication, Chapter 3 2 FADING HURTS THE RELIABILITY n The detection

More information

Adaptive communications techniques for the underwater acoustic channel

Adaptive communications techniques for the underwater acoustic channel Adaptive communications techniques for the underwater acoustic channel James A. Ritcey Department of Electrical Engineering, Box 352500 University of Washington, Seattle, WA 98195 Tel: (206) 543-4702,

More information

On Using Channel Prediction in Adaptive Beamforming Systems

On Using Channel Prediction in Adaptive Beamforming Systems On Using Channel rediction in Adaptive Beamforming Systems T. R. Ramya and Srikrishna Bhashyam Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai - 600 036, India. Email:

More information

Chapter 3 Convolutional Codes and Trellis Coded Modulation

Chapter 3 Convolutional Codes and Trellis Coded Modulation Chapter 3 Convolutional Codes and Trellis Coded Modulation 3. Encoder Structure and Trellis Representation 3. Systematic Convolutional Codes 3.3 Viterbi Decoding Algorithm 3.4 BCJR Decoding Algorithm 3.5

More information

Performance Study of MIMO-OFDM System in Rayleigh Fading Channel with QO-STB Coding Technique

Performance Study of MIMO-OFDM System in Rayleigh Fading Channel with QO-STB Coding Technique e-issn 2455 1392 Volume 2 Issue 6, June 2016 pp. 190 197 Scientific Journal Impact Factor : 3.468 http://www.ijcter.com Performance Study of MIMO-OFDM System in Rayleigh Fading Channel with QO-STB Coding

More information

ECE5984 Orthogonal Frequency Division Multiplexing and Related Technologies Fall Mohamed Essam Khedr. Channel Estimation

ECE5984 Orthogonal Frequency Division Multiplexing and Related Technologies Fall Mohamed Essam Khedr. Channel Estimation ECE5984 Orthogonal Frequency Division Multiplexing and Related Technologies Fall 2007 Mohamed Essam Khedr Channel Estimation Matlab Assignment # Thursday 4 October 2007 Develop an OFDM system with the

More information

ASthefield of compressive sensing (CS) [1] [3] matures,

ASthefield of compressive sensing (CS) [1] [3] matures, 340 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL 61, NO 2, JANUARY 15, 2013 Efficient High-Dimensional Inference in the Multiple Measurement Vector Problem Justin Ziniel, Student Member, IEEE, and Philip

More information

CHAPTER 4 LINK ADAPTATION USING NEURAL NETWORK

CHAPTER 4 LINK ADAPTATION USING NEURAL NETWORK CHAPTER 4 LINK ADAPTATION USING NEURAL NETWORK 4.1 INTRODUCTION For accurate system level simulator performance, link level modeling and prediction [103] must be reliable and fast so as to improve the

More information

UWB Channel Modeling

UWB Channel Modeling Channel Modeling ETIN10 Lecture no: 9 UWB Channel Modeling Fredrik Tufvesson & Johan Kåredal, Department of Electrical and Information Technology fredrik.tufvesson@eit.lth.se 2011-02-21 Fredrik Tufvesson

More information

MIMO Systems and Applications

MIMO Systems and Applications MIMO Systems and Applications Mário Marques da Silva marques.silva@ieee.org 1 Outline Introduction System Characterization for MIMO types Space-Time Block Coding (open loop) Selective Transmit Diversity

More information

Improving Channel Estimation in OFDM System Using Time Domain Channel Estimation for Time Correlated Rayleigh Fading Channel Model

Improving Channel Estimation in OFDM System Using Time Domain Channel Estimation for Time Correlated Rayleigh Fading Channel Model International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 2 Issue 8 ǁ August 2013 ǁ PP.45-51 Improving Channel Estimation in OFDM System Using Time

More information

Performance Analysis of n Wireless LAN Physical Layer

Performance Analysis of n Wireless LAN Physical Layer 120 1 Performance Analysis of 802.11n Wireless LAN Physical Layer Amr M. Otefa, Namat M. ElBoghdadly, and Essam A. Sourour Abstract In the last few years, we have seen an explosive growth of wireless LAN

More information

An Iterative Noncoherent Relay Receiver for the Two-way Relay Channel

An Iterative Noncoherent Relay Receiver for the Two-way Relay Channel An Iterative Noncoherent Relay Receiver for the Two-way Relay Channel Terry Ferrett 1 Matthew Valenti 1 Don Torrieri 2 1 West Virginia University 2 U.S. Army Research Laboratory June 12th, 2013 1 / 26

More information

Performance analysis of MISO-OFDM & MIMO-OFDM Systems

Performance analysis of MISO-OFDM & MIMO-OFDM Systems Performance analysis of MISO-OFDM & MIMO-OFDM Systems Kavitha K V N #1, Abhishek Jaiswal *2, Sibaram Khara #3 1-2 School of Electronics Engineering, VIT University Vellore, Tamil Nadu, India 3 Galgotias

More information

M4B-4. Concatenated RS-Convolutional Codes for Ultrawideband Multiband-OFDM. Nyembezi Nyirongo, Wasim Q. Malik, and David. J.

M4B-4. Concatenated RS-Convolutional Codes for Ultrawideband Multiband-OFDM. Nyembezi Nyirongo, Wasim Q. Malik, and David. J. Concatenated RS-Convolutional Codes for Ultrawideband Multiband-OFDM Nyembezi Nyirongo, Wasim Q. Malik, and David. J. Edwards M4B-4 Department of Engineering Science, University of Oxford, Parks Road,

More information

Performance Evaluation of OFDM System with Rayleigh, Rician and AWGN Channels

Performance Evaluation of OFDM System with Rayleigh, Rician and AWGN Channels Performance Evaluation of OFDM System with Rayleigh, Rician and AWGN Channels Abstract A Orthogonal Frequency Division Multiplexing (OFDM) scheme offers high spectral efficiency and better resistance to

More information

Wireless Communications Over Rapidly Time-Varying Channels

Wireless Communications Over Rapidly Time-Varying Channels Wireless Communications Over Rapidly Time-Varying Channels Edited by Franz Hlawatsch Gerald Matz ELSEVIER AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY

More information

About Homework. The rest parts of the course: focus on popular standards like GSM, WCDMA, etc.

About Homework. The rest parts of the course: focus on popular standards like GSM, WCDMA, etc. About Homework The rest parts of the course: focus on popular standards like GSM, WCDMA, etc. Good news: No complicated mathematics and calculations! Concepts: Understanding and remember! Homework: review

More information

Lecture 7/8: UWB Channel. Kommunikations

Lecture 7/8: UWB Channel. Kommunikations Lecture 7/8: UWB Channel Kommunikations Technik UWB Propagation Channel Radio Propagation Channel Model is important for Link level simulation (bit error ratios, block error ratios) Coverage evaluation

More information

Study of Performance Evaluation of Quasi Orthogonal Space Time Block Code MIMO-OFDM System in Rician Channel for Different Modulation Schemes

Study of Performance Evaluation of Quasi Orthogonal Space Time Block Code MIMO-OFDM System in Rician Channel for Different Modulation Schemes Volume 4, Issue 6, June (016) Study of Performance Evaluation of Quasi Orthogonal Space Time Block Code MIMO-OFDM System in Rician Channel for Different Modulation Schemes Pranil S Mengane D. Y. Patil

More information

Wireless Communication: Concepts, Techniques, and Models. Hongwei Zhang

Wireless Communication: Concepts, Techniques, and Models. Hongwei Zhang Wireless Communication: Concepts, Techniques, and Models Hongwei Zhang http://www.cs.wayne.edu/~hzhang Outline Digital communication over radio channels Channel capacity MIMO: diversity and parallel channels

More information

Bit Error Rate Performance Evaluation of Various Modulation Techniques with Forward Error Correction Coding of WiMAX

Bit Error Rate Performance Evaluation of Various Modulation Techniques with Forward Error Correction Coding of WiMAX Bit Error Rate Performance Evaluation of Various Modulation Techniques with Forward Error Correction Coding of WiMAX Amr Shehab Amin 37-20200 Abdelrahman Taha 31-2796 Yahia Mobasher 28-11691 Mohamed Yasser

More information

ELT Receiver Architectures and Signal Processing Fall Mandatory homework exercises

ELT Receiver Architectures and Signal Processing Fall Mandatory homework exercises ELT-44006 Receiver Architectures and Signal Processing Fall 2014 1 Mandatory homework exercises - Individual solutions to be returned to Markku Renfors by email or in paper format. - Solutions are expected

More information

UNEQUAL POWER ALLOCATION FOR JPEG TRANSMISSION OVER MIMO SYSTEMS. Muhammad F. Sabir, Robert W. Heath Jr. and Alan C. Bovik

UNEQUAL POWER ALLOCATION FOR JPEG TRANSMISSION OVER MIMO SYSTEMS. Muhammad F. Sabir, Robert W. Heath Jr. and Alan C. Bovik UNEQUAL POWER ALLOCATION FOR JPEG TRANSMISSION OVER MIMO SYSTEMS Muhammad F. Sabir, Robert W. Heath Jr. and Alan C. Bovik Department of Electrical and Computer Engineering, The University of Texas at Austin,

More information

Lecture 12: Summary Advanced Digital Communications (EQ2410) 1

Lecture 12: Summary Advanced Digital Communications (EQ2410) 1 : Advanced Digital Communications (EQ2410) 1 Monday, Mar. 7, 2016 15:00-17:00, B23 1 Textbook: U. Madhow, Fundamentals of Digital Communications, 2008 1 / 15 Overview 1 2 3 4 2 / 15 Equalization Maximum

More information

Multiple Antennas. Mats Bengtsson, Björn Ottersten. Basic Transmission Schemes 1 September 8, Presentation Outline

Multiple Antennas. Mats Bengtsson, Björn Ottersten. Basic Transmission Schemes 1 September 8, Presentation Outline Multiple Antennas Capacity and Basic Transmission Schemes Mats Bengtsson, Björn Ottersten Basic Transmission Schemes 1 September 8, 2005 Presentation Outline Channel capacity Some fine details and misconceptions

More information

1

1 sebastian.caban@nt.tuwien.ac.at 1 This work has been funded by the Christian Doppler Laboratory for Wireless Technologies for Sustainable Mobility and the Vienna University of Technology. Outline MIMO

More information

Researches in Broadband Single Carrier Multiple Access Techniques

Researches in Broadband Single Carrier Multiple Access Techniques Researches in Broadband Single Carrier Multiple Access Techniques Workshop on Fundamentals of Wireless Signal Processing for Wireless Systems Tohoku University, Sendai, 2016.02.27 Dr. Hyung G. Myung, Qualcomm

More information

Notes 15: Concatenated Codes, Turbo Codes and Iterative Processing

Notes 15: Concatenated Codes, Turbo Codes and Iterative Processing 16.548 Notes 15: Concatenated Codes, Turbo Codes and Iterative Processing Outline! Introduction " Pushing the Bounds on Channel Capacity " Theory of Iterative Decoding " Recursive Convolutional Coding

More information

Lab 3.0. Pulse Shaping and Rayleigh Channel. Faculty of Information Engineering & Technology. The Communications Department

Lab 3.0. Pulse Shaping and Rayleigh Channel. Faculty of Information Engineering & Technology. The Communications Department Faculty of Information Engineering & Technology The Communications Department Course: Advanced Communication Lab [COMM 1005] Lab 3.0 Pulse Shaping and Rayleigh Channel 1 TABLE OF CONTENTS 2 Summary...

More information

Optimal Power Allocation over Fading Channels with Stringent Delay Constraints

Optimal Power Allocation over Fading Channels with Stringent Delay Constraints 1 Optimal Power Allocation over Fading Channels with Stringent Delay Constraints Xiangheng Liu Andrea Goldsmith Dept. of Electrical Engineering, Stanford University Email: liuxh,andrea@wsl.stanford.edu

More information

ENERGY EFFICIENT RELAY SELECTION SCHEMES FOR COOPERATIVE UNIFORMLY DISTRIBUTED WIRELESS SENSOR NETWORKS

ENERGY EFFICIENT RELAY SELECTION SCHEMES FOR COOPERATIVE UNIFORMLY DISTRIBUTED WIRELESS SENSOR NETWORKS ENERGY EFFICIENT RELAY SELECTION SCHEMES FOR COOPERATIVE UNIFORMLY DISTRIBUTED WIRELESS SENSOR NETWORKS WAFIC W. ALAMEDDINE A THESIS IN THE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING PRESENTED IN

More information

Robust Frequency-Hopping System for Channels with Interference and Frequency-Selective Fading

Robust Frequency-Hopping System for Channels with Interference and Frequency-Selective Fading Robust Frequency-Hopping System for Channels with Interference and Frequency-Selective Fading Don Torrieri 1, Shi Cheng 2, and Matthew C. Valenti 2 1 US Army Research Lab 2 Lane Department of Computer

More information

Single Carrier Ofdm Immune to Intercarrier Interference

Single Carrier Ofdm Immune to Intercarrier Interference International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 10, Issue 3 (March 2014), PP.42-47 Single Carrier Ofdm Immune to Intercarrier Interference

More information

Comb type Pilot arrangement based Channel Estimation for Spatial Multiplexing MIMO-OFDM Systems

Comb type Pilot arrangement based Channel Estimation for Spatial Multiplexing MIMO-OFDM Systems Comb type Pilot arrangement based Channel Estimation for Spatial Multiplexing MIMO-OFDM Systems Mr Umesha G B 1, Dr M N Shanmukha Swamy 2 1Research Scholar, Department of ECE, SJCE, Mysore, Karnataka State,

More information

BER PERFORMANCE AND OPTIMUM TRAINING STRATEGY FOR UNCODED SIMO AND ALAMOUTI SPACE-TIME BLOCK CODES WITH MMSE CHANNEL ESTIMATION

BER PERFORMANCE AND OPTIMUM TRAINING STRATEGY FOR UNCODED SIMO AND ALAMOUTI SPACE-TIME BLOCK CODES WITH MMSE CHANNEL ESTIMATION BER PERFORMANCE AND OPTIMUM TRAINING STRATEGY FOR UNCODED SIMO AND ALAMOUTI SPACE-TIME BLOC CODES WITH MMSE CHANNEL ESTIMATION Lennert Jacobs, Frederik Van Cauter, Frederik Simoens and Marc Moeneclaey

More information

Adaptive Modulation, Adaptive Coding, and Power Control for Fixed Cellular Broadband Wireless Systems: Some New Insights 1

Adaptive Modulation, Adaptive Coding, and Power Control for Fixed Cellular Broadband Wireless Systems: Some New Insights 1 Adaptive, Adaptive Coding, and Power Control for Fixed Cellular Broadband Wireless Systems: Some New Insights Ehab Armanious, David D. Falconer, and Halim Yanikomeroglu Broadband Communications and Wireless

More information

BER Performance Analysis and Comparison for Large Scale MIMO Receiver

BER Performance Analysis and Comparison for Large Scale MIMO Receiver Indian Journal of Science and Technology, Vol 8(35), DOI: 10.17485/ijst/2015/v8i35/81073, December 2015 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 BER Performance Analysis and Comparison for Large

More information

EC 551 Telecommunication System Engineering. Mohamed Khedr

EC 551 Telecommunication System Engineering. Mohamed Khedr EC 551 Telecommunication System Engineering Mohamed Khedr http://webmail.aast.edu/~khedr 1 Mohamed Khedr., 2008 Syllabus Tentatively Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week

More information

Low BER performance using Index Modulation in MIMO OFDM

Low BER performance using Index Modulation in MIMO OFDM Low BER performance using Modulation in MIMO OFDM Samuddeta D H 1, V.R.Udupi 2 1MTech Student DCN, KLS Gogte Institute of Technology, Belgaum, India. 2Professor, Dept. of E&CE, KLS Gogte Institute of Technology,

More information

TCM-coded OFDM assisted by ANN in Wireless Channels

TCM-coded OFDM assisted by ANN in Wireless Channels 1 Aradhana Misra & 2 Kandarpa Kumar Sarma Dept. of Electronics and Communication Technology Gauhati University Guwahati-781014. Assam, India Email: aradhana66@yahoo.co.in, kandarpaks@gmail.com Abstract

More information

UNIVERSITY OF MICHIGAN DEPARTMENT OF ELECTRICAL ENGINEERING : SYSTEMS EECS 555 DIGITAL COMMUNICATION THEORY

UNIVERSITY OF MICHIGAN DEPARTMENT OF ELECTRICAL ENGINEERING : SYSTEMS EECS 555 DIGITAL COMMUNICATION THEORY UNIVERSITY OF MICHIGAN DEPARTMENT OF ELECTRICAL ENGINEERING : SYSTEMS EECS 555 DIGITAL COMMUNICATION THEORY Study Of IEEE P802.15.3a physical layer proposals for UWB: DS-UWB proposal and Multiband OFDM

More information

IN AN MIMO communication system, multiple transmission

IN AN MIMO communication system, multiple transmission 3390 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL 55, NO 7, JULY 2007 Precoded FIR and Redundant V-BLAST Systems for Frequency-Selective MIMO Channels Chun-yang Chen, Student Member, IEEE, and P P Vaidyanathan,

More information

BER Performance of CRC Coded LTE System for Various Modulation Schemes and Channel Conditions

BER Performance of CRC Coded LTE System for Various Modulation Schemes and Channel Conditions Scientific Research Journal (SCIRJ), Volume II, Issue V, May 2014 6 BER Performance of CRC Coded LTE System for Various Schemes and Conditions Md. Ashraful Islam ras5615@gmail.com Dipankar Das dipankar_ru@yahoo.com

More information

IMPROVED CHANNEL ESTIMATION FOR OFDM BASED WLAN SYSTEMS. G.V.Rangaraj M.R.Raghavendra K.Giridhar

IMPROVED CHANNEL ESTIMATION FOR OFDM BASED WLAN SYSTEMS. G.V.Rangaraj M.R.Raghavendra K.Giridhar IMPROVED CHANNEL ESTIMATION FOR OFDM BASED WLAN SYSTEMS GVRangaraj MRRaghavendra KGiridhar Telecommunication and Networking TeNeT) Group Department of Electrical Engineering Indian Institute of Technology

More information

Performance Evaluation of a UWB Channel Model with Antipodal, Orthogonal and DPSK Modulation Scheme

Performance Evaluation of a UWB Channel Model with Antipodal, Orthogonal and DPSK Modulation Scheme International Journal of Wired and Wireless Communications Vol 4, Issue April 016 Performance Evaluation of 80.15.3a UWB Channel Model with Antipodal, Orthogonal and DPSK Modulation Scheme Sachin Taran

More information

The Acoustic Channel and Delay: A Tale of Capacity and Loss

The Acoustic Channel and Delay: A Tale of Capacity and Loss The Acoustic Channel and Delay: A Tale of Capacity and Loss Yashar Aval, Sarah Kate Wilson and Milica Stojanovic Northeastern University, Boston, MA, USA Santa Clara University, Santa Clara, CA, USA Abstract

More information

On the Achievable Diversity-vs-Multiplexing Tradeoff in Cooperative Channels

On the Achievable Diversity-vs-Multiplexing Tradeoff in Cooperative Channels On the Achievable Diversity-vs-Multiplexing Tradeoff in Cooperative Channels Kambiz Azarian, Hesham El Gamal, and Philip Schniter Dept of Electrical Engineering, The Ohio State University Columbus, OH

More information

A Compressive Sensing Based Iterative Algorithm for Channel and Impulsive Noise Estimation in Underwater Acoustic OFDM Systems

A Compressive Sensing Based Iterative Algorithm for Channel and Impulsive Noise Estimation in Underwater Acoustic OFDM Systems A Compressive Sensing Based Iterative Algorithm for Channel and Impulsive Noise Estimation in Underwater Acoustic OFDM Systems Jinnian Zhang, Zhiqiang He,, Peng Chen, Yue Rong Key Laboratory of Universal

More information

FOR THE PAST few years, there has been a great amount

FOR THE PAST few years, there has been a great amount IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 53, NO. 4, APRIL 2005 549 Transactions Letters On Implementation of Min-Sum Algorithm and Its Modifications for Decoding Low-Density Parity-Check (LDPC) Codes

More information

Performance of Channel Coded Noncoherent Systems: Modulation Choice, Information Rate, and Markov Chain Monte Carlo Detection

Performance of Channel Coded Noncoherent Systems: Modulation Choice, Information Rate, and Markov Chain Monte Carlo Detection Performance of Channel Coded Noncoherent Systems: Modulation Choice, Information Rate, and Markov Chain Monte Carlo Detection Rong-Rong Chen, Member, IEEE, Ronghui Peng, Student Member, IEEE 1 Abstract

More information

Performance Evaluation of STBC-OFDM System for Wireless Communication

Performance Evaluation of STBC-OFDM System for Wireless Communication Performance Evaluation of STBC-OFDM System for Wireless Communication Apeksha Deshmukh, Prof. Dr. M. D. Kokate Department of E&TC, K.K.W.I.E.R. College, Nasik, apeksha19may@gmail.com Abstract In this paper

More information

Digital Television Lecture 5

Digital Television Lecture 5 Digital Television Lecture 5 Forward Error Correction (FEC) Åbo Akademi University Domkyrkotorget 5 Åbo 8.4. Error Correction in Transmissions Need for error correction in transmissions Loss of data during

More information

Robust Synchronization for DVB-S2 and OFDM Systems

Robust Synchronization for DVB-S2 and OFDM Systems Robust Synchronization for DVB-S2 and OFDM Systems PhD Viva Presentation Adegbenga B. Awoseyila Supervisors: Prof. Barry G. Evans Dr. Christos Kasparis Contents Introduction Single Frequency Estimation

More information

Study of Turbo Coded OFDM over Fading Channel

Study of Turbo Coded OFDM over Fading Channel International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 3, Issue 2 (August 2012), PP. 54-58 Study of Turbo Coded OFDM over Fading Channel

More information

Self-interference Handling in OFDM Based Wireless Communication Systems

Self-interference Handling in OFDM Based Wireless Communication Systems Self-interference Handling in OFDM Based Wireless Communication Systems Tevfik Yücek yucek@eng.usf.edu University of South Florida Department of Electrical Engineering Tampa, FL, USA (813) 974 759 Tevfik

More information

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /ICCE.2012.

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /ICCE.2012. Zhu, X., Doufexi, A., & Koçak, T. (2012). A performance enhancement for 60 GHz wireless indoor applications. In ICCE 2012, Las Vegas Institute of Electrical and Electronics Engineers (IEEE). DOI: 10.1109/ICCE.2012.6161865

More information

Selected answers * Problem set 6

Selected answers * Problem set 6 Selected answers * Problem set 6 Wireless Communications, 2nd Ed 243/212 2 (the second one) GSM channel correlation across a burst A time slot in GSM has a length of 15625 bit-times (577 ) Of these, 825

More information

Cooperative Orthogonal Space-Time-Frequency Block Codes over a MIMO-OFDM Frequency Selective Channel

Cooperative Orthogonal Space-Time-Frequency Block Codes over a MIMO-OFDM Frequency Selective Channel Cooperative Orthogonal Space-Time-Frequency Block Codes over a MIMO-OFDM Frequency Selective Channel M. Rezaei* and A. Falahati* (C.A.) Abstract: In this paper, a cooperative algorithm to improve the orthogonal

More information

Error Correcting Codes for Cooperative Broadcasting

Error Correcting Codes for Cooperative Broadcasting San Jose State University SJSU ScholarWorks Faculty Publications Electrical Engineering 11-30-2010 Error Correcting Codes for Cooperative Broadcasting Robert H. Morelos-Zaragoza San Jose State University,

More information

Research Collection. Multi-layer coded direct sequence CDMA. Conference Paper. ETH Library

Research Collection. Multi-layer coded direct sequence CDMA. Conference Paper. ETH Library Research Collection Conference Paper Multi-layer coded direct sequence CDMA Authors: Steiner, Avi; Shamai, Shlomo; Lupu, Valentin; Katz, Uri Publication Date: Permanent Link: https://doi.org/.399/ethz-a-6366

More information

LDPC Coded OFDM with Alamouti/SVD Diversity Technique

LDPC Coded OFDM with Alamouti/SVD Diversity Technique LDPC Coded OFDM with Alamouti/SVD Diversity Technique Jeongseok Ha, Apurva. Mody, Joon Hyun Sung, John R. Barry, Steven W. McLaughlin and Gordon L. Stüber School of Electrical and Computer Engineering

More information

The Optimal Employment of CSI in COFDM-Based Receivers

The Optimal Employment of CSI in COFDM-Based Receivers The Optimal Employment of CSI in COFDM-Based Receivers Akram J. Awad, Timothy O Farrell School of Electronic & Electrical Engineering, University of Leeds, UK eenajma@leeds.ac.uk Abstract: This paper investigates

More information

The Transmission Capacity of Frequency-Hopping Ad Hoc Networks

The Transmission Capacity of Frequency-Hopping Ad Hoc Networks The Transmission Capacity of Frequency-Hopping Ad Hoc Networks Matthew C. Valenti Lane Department of Computer Science and Electrical Engineering West Virginia University June 13, 2011 Matthew C. Valenti

More information

Iterative Joint Source/Channel Decoding for JPEG2000

Iterative Joint Source/Channel Decoding for JPEG2000 Iterative Joint Source/Channel Decoding for JPEG Lingling Pu, Zhenyu Wu, Ali Bilgin, Michael W. Marcellin, and Bane Vasic Dept. of Electrical and Computer Engineering The University of Arizona, Tucson,

More information

MULTIPLE transmit-and-receive antennas can be used

MULTIPLE transmit-and-receive antennas can be used IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 1, NO. 1, JANUARY 2002 67 Simplified Channel Estimation for OFDM Systems With Multiple Transmit Antennas Ye (Geoffrey) Li, Senior Member, IEEE Abstract

More information

MSC. Exploiting Modulation Scheme Diversity in Multicarrier Wireless Networks IEEE SECON Michigan State University

MSC. Exploiting Modulation Scheme Diversity in Multicarrier Wireless Networks IEEE SECON Michigan State University MSC Exploiting Modulation Scheme Diversity in Multicarrier Wireless Networks IEEE SECON 2016 Pei Huang, Jun Huang, Li Xiao Department of Computer Science and Engineering Michigan State University Frequency

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON ELEC6014W1 SEMESTER II EXAMINATIONS 2007/08 RADIO COMMUNICATION NETWORKS AND SYSTEMS Duration: 120 mins Answer THREE questions out of FIVE. University approved calculators may

More information

Noncoherent Digital Network Coding using M-ary CPFSK Modulation

Noncoherent Digital Network Coding using M-ary CPFSK Modulation Noncoherent Digital Network Coding using M-ary CPFSK Modulation Terry Ferrett 1 Matthew Valenti 1 Don Torrieri 2 1 West Virginia University 2 U.S. Army Research Laboratory November 9th, 2011 1 / 31 Outline

More information

Performance and Complexity Comparison of Channel Estimation Algorithms for OFDM System

Performance and Complexity Comparison of Channel Estimation Algorithms for OFDM System Performance and Complexity Comparison of Channel Estimation Algorithms for OFDM System Saqib Saleem 1, Qamar-Ul-Islam 2 Department of Communication System Engineering Institute of Space Technology Islamabad,

More information

MIMO-OFDM in Rayleigh Fading Channel with LDPC

MIMO-OFDM in Rayleigh Fading Channel with LDPC Available online www.ejaet.com European Journal of Advances in Engineering and Technology, 2014, 1(1): 54-60 Research Article MIMO-OFDM in Rayleigh Fading Channel with LDPC Karnveer Singh and Rajneesh

More information

ENGN8637, Semster-1, 2018 Project Description Project 1: Bit Interleaved Modulation

ENGN8637, Semster-1, 2018 Project Description Project 1: Bit Interleaved Modulation ENGN867, Semster-1, 2018 Project Description Project 1: Bit Interleaved Modulation Gerard Borg gerard.borg@anu.edu.au Research School of Engineering, ANU updated on 18/March/2018 1 1 Introduction Bit-interleaved

More information

Degrees of Freedom in Adaptive Modulation: A Unified View

Degrees of Freedom in Adaptive Modulation: A Unified View Degrees of Freedom in Adaptive Modulation: A Unified View Seong Taek Chung and Andrea Goldsmith Stanford University Wireless System Laboratory David Packard Building Stanford, CA, U.S.A. taek,andrea @systems.stanford.edu

More information