CHAPTER 3 TWO DIMENSIONAL ANALYTICAL MODELING FOR THRESHOLD VOLTAGE

Size: px
Start display at page:

Download "CHAPTER 3 TWO DIMENSIONAL ANALYTICAL MODELING FOR THRESHOLD VOLTAGE"

Transcription

1 49 CHAPTER 3 TWO DIMENSIONAL ANALYTICAL MODELING FOR THRESHOLD VOLTAGE 3.1 INTRODUCTION A qualitative notion of threshold voltage V th is the gate-source voltage at which an inversion channel forms, which can then conduct a high drain current. With the continued down-scaling of all geometries to achieve the projected high packing density in submicron MOS devices, threshold voltage reduces with decreasing channel length. One of the key parameters that characterize short channel effects is the degradation of the devices threshold voltage with decreasing channel length. Therefore, the optimization of the threshold voltage is very important for both process and device engineers, and plays a major role for achieving a highly improved CMOS technology performance. Several models for the threshold voltage of short-channel FD SOI MOSFETs have been reported in the literature. Veeraraghavan and Fossum (1988) formulated a charge sharing model predicting threshold voltage dependence. The charge sharing modeling scheme assumes a constant surface potential, regardless of any drain bias, and therefore does not account for the drain bias associated with drain induced barrier lowering (DIBL). Additionally, because of the coupling effect between the front gate and the back gate, the charge sharing model by in (Veeraraghavan and Fossum 1988)

2 50 requires the use of a priori empirical fitting parameters, and therefore is not well suited for circuit analysis or statistical modeling. Woo et al (1990) and Guo and Wu (1993) developed short channel threshold voltage models by solving the two-dimensional (2D) Poisson s equation. However, due to the complexity of the solution and complicated mathematics required, physical insights into the dependence of short channel effects on the device parameters are masked. The dependence is an important factor needed by both process and device engineers to optimize the device short-channel effects. Banna et al (1995) used a quasi 2D approach and reported a threshold voltage model but it requires the use of an empirical fitting parameter which needs additional accurate measurements because small relative errors in measurements could give a large error in the fitting parameter value. Chen et al (2003) developed a compact, physical, short-channel threshold voltage roll-off of DG undoped devices, but that model did not include DIBL effects. Chen et al in (2003) and Suzuki et al (1996) presented models for the DIBL effect, but the devices considered were doped and the effect of the mobile charge density was neglected. It has to be remarked that undoped DG MOSFETs show better performance than doped ones, because of their higher mobility. In undoped devices, the effect of the mobile charge density cannot be neglected in the near-threshold regime. It was shown by Francis et al (1994) that even in doped DG MOSFETs, in order to apply standard methods of threshold voltage extraction, volume inversion should be considered when deriving a suitable expression of the threshold voltage.

3 51 The model by Munteanu et al (2006) addresses the DIBL effect in a DG MOSFET, but requires large iterations to obtain the expression of the electrostatic potential, from which a threshold voltage can be derived; on the other hand, this model is only valid for very thin Si films, since it assumes a longitudinal field which does not change along the depth of the film. Besides, it is also based on using an expression of the quasi- Fermi potential below threshold which was derived only for bulk MOSFETs, but which is adapted to DG SOI MOSETs using fitting parameters, the geometry dependence of them are not clear. Liang and Taur (2004) presented a 2-D analytical solution for short- channel effects in undoped DG MOSFET; the mobile charge was neglected to solve the2-d Poisson s equation. This approximation is valid well below threshold (the regime in which the model of the threshold voltage roll-off, DIBL and sub threshold slope are calculated), but near threshold, the mobile charge has an effect on the electrostatic potential. Most of the existing SG MOSFET models are based on one dimensional (1-D) analysis, and are suitable only for long channel devices (Iniguez et al 2005). Consequently, they cannot produce the roll- off as the channel length is reduced. A two-dimensional analysis is necessary to derive threshold voltage and sub threshold swing models that properly account for the channel dependence. A few 2-D models of the threshold voltage for doped (Kranti 2001) and undoped SG MOSFETs have been developed. However all of them neglect the effect of the mobile charge density, which can be important in the near threshold regime (in particular for undoped devices). Auth and Plummer (1998) proposed a simple model for the threshold voltage of the surrounding gate MOSFETs. Due to their threshold voltage model based on the long-channel device with the simulation-based

4 52 short-channel effects, it is insufficient in offering the physical and analytical model for the small geometry devices. Kranti et al (2001a) proposed a threshold voltage model based on 2-D potential analysis. However, the expression of the threshold voltage is too complicated to be used in the physical device analysis that is essential for the device engineer in designing the SG MOSFETs and is overshadowed by their complicated and implicit formula. Kranti (2001b) et al suggested a two-dimensional analytical model for the thin film fully depleted SG MOSFET. The model only focuses on the potential analysis of the silicon film and took no consideration of the potential of the gate oxide, which helps to precisely analyze the threshold voltage especially for the short and thick MOSFETs. In this Chapter, an analytical expression of threshold voltage is derived for a fully depleted DMSG SOI MOSFET based on the twodimensional surface potential model that was developed and explained in Chapter 2. The mathematical formulation aids in quick visualization of the importance of various device parameters on the performance of a DMSG SOI device and allows for a good grip on the underlying device physics. The efficiency of the DMSG structure in subduing the short-channel effects (SCE) is also studied in relation to various device parameters. 3.2 PROPOSED THRESHOLD MODEL FOR DMSG DEVICES Threshold voltage V th is that value of the gate voltage V GS at which a conducting channel is induced at the surface of SOI MOSFET. In a fully depleted thin-film SOI, it is desirable that the front channel turns on before the back channel. Therefore, the threshold voltage is taken to be that value of

5 53 gate source voltage for which s z 2 F min where F is the difference between the extrinsic Fermi level in the bulk region and the intrinsic Fermi level. In the case of DMSG structure, due to the co-existence of metal gates, M1 and M2, with different work functions, the surface potential minima are solely determined by the metal gate with higher work function. So the threshold voltage is defined as the value of V GS at which the minimum surface potential equals 2. Hence we can determine the value of threshold voltage as the value of V by solving: Q 1 z min 2 AB 2 S (3.1) P Using equation (2.16), and solving for V th L L 2 4KM V th (3.2) 2K where, the constant coefficients are given below K exp( 2PL) 1 (3.3) qn qn a a L 2V V V bi DS FB 2Vbi V 2 2 FB exp F sinh si P si P M Vbi V DS PL 4 PL qn qn qn a a V FB Vbi V 2 2 FB exp F F 2 FB sinh sip sip sip (3.4) a 2 2PL 4 V PL (3.5) The dependence of V th on the length and material workfunction of the two gate metals is a significant result of the above formulation. This feature which is unique to DMSG SOI lends another degree of freedom

6 54 towards controlling and engineering the threshold voltage of ultra small SOI transistor design. The formulation of surface potential, however, assumed the absence of mobile charge carriers in the channel to simplify the subsequent analysis. Therefore, the threshold voltage expression derived is not strictly based on the common notion of V th which indicates a physical background of moderate inversion, i.e., the transition between weak and strong inversion. A more rigorous analysis involves solving the 2-D Poisson s equation taking the mobile carrier density into account (in addition to the depletion charge) but that would lead to a computationally inefficient analytical model requiring the use of fitting parameters. 3.3 RESULTS AND DISCUSSIONS To verify the proposed analytical expression, the calculated values of threshold voltage from the model are compared with those obtained from 2-D MEDICI (1997) simulation Threshold Voltage Dependence on Drain Source Voltage Figure 3.1 shows calculated and simulated values of threshold voltage with channel length for different drain-source voltages of the DMSG structure. It is observed that the threshold voltage along the channel length can be considerably decreased by increasing drain-source voltages. The threshold voltage shows a roll-up with reducing channel lengths. The linear threshold voltage, is based on the maximum transconductance method at V DS = 0.5V. The saturation threshold voltage is based on a modified constantcurrent method at V DS = 1 V where the critical current is defined as the drain

7 55 current when V GS = V th,lin. The step profile ensures that the drain potential is screened and the surface potential minima at the source end remains effectively unchanged which accounts for the reduction in DIBL. The model predictions correlate well with the simulation results proving the accuracy of our proposed analytical model. Figure 3.1 Threshold voltage versus channel length of the DMSG MOSFET for different drain-source voltages Threshold Voltage Dependence on Built in Voltage Figure 3.2 shows that calculated and simulated values of threshold voltage with channel length for different built-in voltages of the DMSG structure. When built in voltage is varied, the threshold voltage increases. As shown in the figure for both oxide thicknesses, V th rolls-up at shorter channel lengths. Thus the DMSG structure lends another degree of flexibility in the

8 56 design of deep submicron SOI transistor design by offering the alternative of gate material engineering to subdue the undesirable SCE. Figure 3.2 Threshold voltage variations with channel length for DMSG MOSFET by varying built-in biases Comparison With DMG Structure Figure 3.3 shows that calculated and simulated values of threshold voltage with for DMSG structure. The calculated threshold voltage model for the DMSG is also included for comparison. This unique feature of the DMSG structure is an added advantage when the device dimensions are continuously shrinking. With decreasing channel lengths, it is very difficult to fabricate precise channel lengths. A threshold voltage variation from device to device is least desirable. The DMSG structure exhibits a threshold voltage that is almost constant with decreasing channel lengths. From the results it is clearly

9 57 seen that the calculated values of the analytical model tracks the simulated values very well. Figure 3.3 Threshold voltage variations as a function of channel length for DMG and DMSG MOSFETs L1/L2 Ratio Dependence Figure 3.4 shows the variation of threshold voltage with workfunction difference at a fixed channel length of L = 0.5 µm for two L 1 /L 2 ratios as predicted by the analytical expression and the 2-D numerical simulations. As shown in the figure, threshold voltage increases with increasing workfunction difference. The dual-material surrounding gate (DMSG) structure offers the benefit of SCE suppression in a SOI device by virtue of gate material engineering, i.e., engineering the length and workfunction of the two gate metals. For a fixed workfunction difference,

10 58 threshold voltage is higher for a higher L 1 /L 2 ratio due to the increased proportion of the channel region controlled by a higher work function gate. Figure 3.4 The dependence of Threshold voltage on channel length for different L 1 / L 2 Combinations Radius Variation Figure 3.5 shows the variation in radius with fixed channel length. The variation of the front-channel minimum potential as a function of channel length (L=L 1 +L 2 ) for fully depleted DMSG SOI with silicon thin-film thickness R = 40 nm and 20 nm is shown. In fully depleted (FD) MOSFET, the minimum channel potential is sensitive to thin-film thickness. But as observed from the figure, the dependence of minimum channel potential on radius R, and consequently threshold voltage, is effectively reduced due to the co-existence of gate materials having a finite work function difference in a

11 59 DMSG SOI MOSFET. The results have been compared with the simulated results obtained from the MEDICI simulation software (1997), and a good agreement is achieved between the two. Figure 3.5 The dependence of Threshold voltage on channel length for different Silicon thicknesses Comparison with Chiang Model Figure 3.6 shows the comparison of proposed model and MEDICI with Chiang model by taking R= 30nm. From the plots, the DMSG MOSFET exhibits a peak electric field away from the drain side which therefore causes a uniform field along the channel and reduces the hot carrier effects (HCEs). The proposed model will give the peak field almost near the drain side and bring about severe HCEs that causes tremendous drain leakage current.

12 60 The result is shown that the proposed model provides an improved performance over the Chiang model (2007). Figure 3.6 Graph for the threshold voltage versus channel length. The calculated threshold voltage model by Chiang (2007) for the DMSG is also included for comparison Scaling Characteristics In Figure 3.7 the calculated values of threshold voltage as a function of channel-length are compared with those obtained from MEDICI simulations. It is seen that the threshold voltage obtained from the analytical model tracks the simulation values very well but with an insignificant negative offset of approximately mv. This less than 10% discrepancy in the results is due to the neglect of the inversion layer charge at threshold at

13 61 the front interface. This is due to the presence of two different gate metals having a finite workfunction difference and carefully chosen gate lengths. Figure 3.7 Threshold voltage variations with channel length compared for DMSG, DMG and SMSG SOI devices Thin-film doping dependence Figure 3.8 shows the threshold voltage variation with decreasing channel length obtained from the value calculated using the analytical expression and MEDICI simulation for two different body doping densities. As shown in the figure, threshold voltage increases with increased body doping and a roll-up in the characteristics is observed at decreasing channel lengths. This can be attributed to the presence of two different gate materials having a finite workfunction difference and properly engineered gate lengths.

14 62 As shown in the figure the results from the analytical model are in close proximity of the simulation results. Figure 3.8 Threshold voltage variation with channel length for different body doping density 3.4 CONCLUSION An analytical expression of threshold voltage for a fully depleted DMSG SOI MOSFET is formulated based on the 2-D physical model of surface potential developed earlier. The effect of various device parameters like gate length scaling, body doping density, the lengths of the gate metals and their work functions, substrate biasing, the thickness of the buried oxide on the threshold voltage are studied. The results predicted by the model are compared with 2-D simulations. The results clearly demonstrate the excellent immunity against SCE offered by the DMSG structure with a V th roll-up with

15 63 decreasing channel lengths visible down to 0.1 µm. Moreover the immunity against SCE is possible by a new way of gate material engineering which lends a tremendous flexibility in deep submicron SOI design. The results provide incentive to further investigate the potential benefits of a DMSG SOI over a conventional SOI MOSFET for its possible integration in the CMOS technology.

M. Jagadesh Kumar and G. Venkateshwar Reddy Department of Electrical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi , India

M. Jagadesh Kumar and G. Venkateshwar Reddy Department of Electrical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi , India M. Jagadesh Kumar and G. V. Reddy, "Diminished Short Channel Effects in Nanoscale Double- Gate Silicon-on-Insulator Metal Oxide Field Effect Transistors due to Induced Back-Gate Step Potential," Japanese

More information

2D Transconductance to Drain Current Ratio Modeling of Dual Material Surrounding Gate Nanoscale SOI MOSFETs

2D Transconductance to Drain Current Ratio Modeling of Dual Material Surrounding Gate Nanoscale SOI MOSFETs 0 N.B.BALAMURUGAN et al : D TRANSCONDUCTANCE TO DRAIN CURRENT RATIO MODELING OF D Transconductance to Drain Current Ratio Modeling of Dual Material Surrounding Gate Nanoscale SOI MOSFETs N.B.Balamurugan,

More information

MOSFET short channel effects

MOSFET short channel effects MOSFET short channel effects overview Five different short channel effects can be distinguished: velocity saturation drain induced barrier lowering (DIBL) impact ionization surface scattering hot electrons

More information

Charge-Based Continuous Equations for the Transconductance and Output Conductance of Graded-Channel SOI MOSFET s

Charge-Based Continuous Equations for the Transconductance and Output Conductance of Graded-Channel SOI MOSFET s Charge-Based Continuous Equations for the Transconductance and Output Conductance of Graded-Channel SOI MOSFET s Michelly de Souza 1 and Marcelo Antonio Pavanello 1,2 1 Laboratório de Sistemas Integráveis,

More information

Design of 45 nm Fully Depleted Double Gate SOI MOSFET

Design of 45 nm Fully Depleted Double Gate SOI MOSFET Design of 45 nm Fully Depleted Double Gate SOI MOSFET 1. Mini Bhartia, 2. Shrutika. Satyanarayana, 3. Arun Kumar Chatterjee 1,2,3. Thapar University, Patiala Abstract Advanced MOSFETS such as Fully Depleted

More information

Modeling & Analysis of Surface Potential and Threshold Voltage for Narrow channel 3D FDSOI MOSFET

Modeling & Analysis of Surface Potential and Threshold Voltage for Narrow channel 3D FDSOI MOSFET Modeling & Analysis of Surface Potential and Threshold Voltage for Narrow channel 3D... 273 IJCTA, 9(22), 2016, pp. 273-278 International Science Press Modeling & Analysis of Surface Potential and Threshold

More information

Analytical Model for Surface Potential and Inversion Charge of Dual Material Double Gate Son MOSFET

Analytical Model for Surface Potential and Inversion Charge of Dual Material Double Gate Son MOSFET International Journal of Engineering and Technical Research (IJETR) Analytical Model for Surface Potential and Inversion Charge of Dual Material Double Gate Son MOSFET Gaurabh Yadav, Mr. Vaibhav Purwar

More information

Drain. Drain. [Intel: bulk-si MOSFETs]

Drain. Drain. [Intel: bulk-si MOSFETs] 1 Introduction For more than 40 years, the evolution and growth of very-large-scale integration (VLSI) silicon-based integrated circuits (ICs) have followed from the continual shrinking, or scaling, of

More information

Drive performance of an asymmetric MOSFET structure: the peak device

Drive performance of an asymmetric MOSFET structure: the peak device MEJ 499 Microelectronics Journal Microelectronics Journal 30 (1999) 229 233 Drive performance of an asymmetric MOSFET structure: the peak device M. Stockinger a, *, A. Wild b, S. Selberherr c a Institute

More information

Lecture-45. MOS Field-Effect-Transistors Threshold voltage

Lecture-45. MOS Field-Effect-Transistors Threshold voltage Lecture-45 MOS Field-Effect-Transistors 7.4. Threshold voltage In this section we summarize the calculation of the threshold voltage and discuss the dependence of the threshold voltage on the bias applied

More information

NAME: Last First Signature

NAME: Last First Signature UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE 130: IC Devices Spring 2003 FINAL EXAMINATION NAME: Last First Signature STUDENT

More information

DURING the past decade, CMOS technology has seen

DURING the past decade, CMOS technology has seen IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 51, NO. 9, SEPTEMBER 2004 1463 Investigation of the Novel Attributes of a Fully Depleted Dual-Material Gate SOI MOSFET Anurag Chaudhry and M. Jagadesh Kumar,

More information

6. LDD Design Tradeoffs on Latch-Up and Degradation in SOI MOSFET

6. LDD Design Tradeoffs on Latch-Up and Degradation in SOI MOSFET 110 6. LDD Design Tradeoffs on Latch-Up and Degradation in SOI MOSFET An experimental study has been conducted on the design of fully depleted accumulation mode SOI (SIMOX) MOSFET with regard to hot carrier

More information

3-D Modelling of the Novel Nanoscale Screen-Grid Field Effect Transistor (SGFET)

3-D Modelling of the Novel Nanoscale Screen-Grid Field Effect Transistor (SGFET) 3-D Modelling of the Novel Nanoscale Screen-Grid Field Effect Transistor (SGFET) Pei W. Ding, Kristel Fobelets Department of Electrical Engineering, Imperial College London, U.K. J. E. Velazquez-Perez

More information

Department of Electrical Engineering IIT Madras

Department of Electrical Engineering IIT Madras Department of Electrical Engineering IIT Madras Sample Questions on Semiconductor Devices EE3 applicants who are interested to pursue their research in microelectronics devices area (fabrication and/or

More information

Why Scaling? CPU speed Chip size R, C CPU can increase speed by reducing occupying area.

Why Scaling? CPU speed Chip size R, C CPU can increase speed by reducing occupying area. Why Scaling? Higher density : Integration of more transistors onto a smaller chip : reducing the occupying area and production cost Higher Performance : Higher current drive : smaller metal to metal capacitance

More information

ECE 340 Lecture 40 : MOSFET I

ECE 340 Lecture 40 : MOSFET I ECE 340 Lecture 40 : MOSFET I Class Outline: MOS Capacitance-Voltage Analysis MOSFET - Output Characteristics MOSFET - Transfer Characteristics Things you should know when you leave Key Questions How do

More information

cost and reliability; power considerations were of secondary importance. In recent years. however, this has begun to change and increasingly power is

cost and reliability; power considerations were of secondary importance. In recent years. however, this has begun to change and increasingly power is CHAPTER-1 INTRODUCTION AND SCOPE OF WORK 1.0 MOTIVATION In the past, the major concern of the VLSI designer was area, performance, cost and reliability; power considerations were of secondary importance.

More information

Reliability of deep submicron MOSFETs

Reliability of deep submicron MOSFETs Invited paper Reliability of deep submicron MOSFETs Francis Balestra Abstract In this work, a review of the reliability of n- and p-channel Si and SOI MOSFETs as a function of gate length and temperature

More information

IMPROVED CURRENT MIRROR OUTPUT PERFORMANCE BY USING GRADED-CHANNEL SOI NMOSFETS

IMPROVED CURRENT MIRROR OUTPUT PERFORMANCE BY USING GRADED-CHANNEL SOI NMOSFETS IMPROVED CURRENT MIRROR OUTPUT PERFORMANCE BY USING GRADED-CHANNEL SOI NMOSFETS Marcelo Antonio Pavanello *, João Antonio Martino and Denis Flandre 1 Laboratório de Sistemas Integráveis Escola Politécnica

More information

Channel Engineering for Submicron N-Channel MOSFET Based on TCAD Simulation

Channel Engineering for Submicron N-Channel MOSFET Based on TCAD Simulation Australian Journal of Basic and Applied Sciences, 2(3): 406-411, 2008 ISSN 1991-8178 Channel Engineering for Submicron N-Channel MOSFET Based on TCAD Simulation 1 2 3 R. Muanghlua, N. Vittayakorn and A.

More information

Sub-Threshold Region Behavior of Long Channel MOSFET

Sub-Threshold Region Behavior of Long Channel MOSFET Sub-threshold Region - So far, we have discussed the MOSFET behavior in linear region and saturation region - Sub-threshold region is refer to region where Vt is less than Vt - Sub-threshold region reflects

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Metal-Semiconductor and Semiconductor Heterojunctions The Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) is one of two major types of transistors. The MOSFET is used in digital circuit, because

More information

Characterization of Variable Gate Oxide Thickness MOSFET with Non-Uniform Oxide Thicknesses for Sub-Threshold Leakage Current Reduction

Characterization of Variable Gate Oxide Thickness MOSFET with Non-Uniform Oxide Thicknesses for Sub-Threshold Leakage Current Reduction 2012 International Conference on Solid-State and Integrated Circuit (ICSIC 2012) IPCSIT vol. 32 (2012) (2012) IACSIT Press, Singapore Characterization of Variable Gate Oxide Thickness MOSFET with Non-Uniform

More information

ANALYTICAL MODELING AND CHARACTERIZATION OF CYLINDRICAL GATE ALL AROUND MOSFET

ANALYTICAL MODELING AND CHARACTERIZATION OF CYLINDRICAL GATE ALL AROUND MOSFET ANALYTICAL MODELING AND CHARACTERIZATION OF CYLINDRICAL GATE ALL AROUND MOSFET Shailly Garg 1, Prashant Mani Yadav 2 1 Student, SRM University 2 Assistant Professor, Department of Electronics and Communication,

More information

Parameter Optimization Of GAA Nano Wire FET Using Taguchi Method

Parameter Optimization Of GAA Nano Wire FET Using Taguchi Method Parameter Optimization Of GAA Nano Wire FET Using Taguchi Method S.P. Venu Madhava Rao E.V.L.N Rangacharyulu K.Lal Kishore Professor, SNIST Professor, PSMCET Registrar, JNTUH Abstract As the process technology

More information

Solid State Device Fundamentals

Solid State Device Fundamentals Solid State Device Fundamentals 4.4. Field Effect Transistor (MOSFET) ENS 463 Lecture Course by Alexander M. Zaitsev alexander.zaitsev@csi.cuny.edu Tel: 718 982 2812 4N101b 1 Field-effect transistor (FET)

More information

Digital Electronics. By: FARHAD FARADJI, Ph.D. Assistant Professor, Electrical and Computer Engineering, K. N. Toosi University of Technology

Digital Electronics. By: FARHAD FARADJI, Ph.D. Assistant Professor, Electrical and Computer Engineering, K. N. Toosi University of Technology K. N. Toosi University of Technology Chapter 7. Field-Effect Transistors By: FARHAD FARADJI, Ph.D. Assistant Professor, Electrical and Computer Engineering, K. N. Toosi University of Technology http://wp.kntu.ac.ir/faradji/digitalelectronics.htm

More information

THE primary motivation for scaling complementary metal

THE primary motivation for scaling complementary metal IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, VOL. 5, NO. 3, SEPTEMBER 2005 509 Shielded Channel Double-Gate MOSFET: A Novel Device for Reliable Nanoscale CMOS Applications AliA.Orouji,Member,

More information

EFFECT OF THRESHOLD VOLTAGE AND CHANNEL LENGTH ON DRAIN CURRENT OF SILICON N-MOSFET

EFFECT OF THRESHOLD VOLTAGE AND CHANNEL LENGTH ON DRAIN CURRENT OF SILICON N-MOSFET EFFECT OF THRESHOLD VOLTAGE AND CHANNEL LENGTH ON DRAIN CURRENT OF SILICON N-MOSFET A.S.M. Bakibillah Nazibur Rahman Dept. of Electrical & Electronic Engineering, American International University Bangladesh

More information

An Analytical model of the Bulk-DTMOS transistor

An Analytical model of the Bulk-DTMOS transistor Journal of Electron Devices, Vol. 8, 2010, pp. 329-338 JED [ISSN: 1682-3427 ] Journal of Electron Devices www.jeldev.org An Analytical model of the Bulk-DTMOS transistor Vandana Niranjan Indira Gandhi

More information

PHYSICS-BASED THRESHOLD VOLTAGE MODELING WITH REVERSE SHORT CHANNEL EFFECT

PHYSICS-BASED THRESHOLD VOLTAGE MODELING WITH REVERSE SHORT CHANNEL EFFECT Journal of Modeling and Simulation of Microsystems, Vol. 2, No. 1, Pages 51-56, 1999. PHYSICS-BASED THRESHOLD VOLTAGE MODELING WITH REVERSE SHORT CHANNEL EFFECT K-Y Lim, X. Zhou, and Y. Wang School of

More information

Session 10: Solid State Physics MOSFET

Session 10: Solid State Physics MOSFET Session 10: Solid State Physics MOSFET 1 Outline A B C D E F G H I J 2 MOSCap MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor: Al (metal) SiO2 (oxide) High k ~0.1 ~5 A SiO2 A n+ n+ p-type Si (bulk)

More information

CHAPTER 2 LITERATURE REVIEW

CHAPTER 2 LITERATURE REVIEW CHAPTER 2 LITERATURE REVIEW 2.1 Introduction of MOSFET The structure of the MOS field-effect transistor (MOSFET) has two regions of doping opposite that of the substrate, one at each edge of the MOS structure

More information

MOSFET & IC Basics - GATE Problems (Part - I)

MOSFET & IC Basics - GATE Problems (Part - I) MOSFET & IC Basics - GATE Problems (Part - I) 1. Channel current is reduced on application of a more positive voltage to the GATE of the depletion mode n channel MOSFET. (True/False) [GATE 1994: 1 Mark]

More information

Fin-Shaped Field Effect Transistor (FinFET) Min Ku Kim 03/07/2018

Fin-Shaped Field Effect Transistor (FinFET) Min Ku Kim 03/07/2018 Fin-Shaped Field Effect Transistor (FinFET) Min Ku Kim 03/07/2018 ECE 658 Sp 2018 Semiconductor Materials and Device Characterizations OUTLINE Background FinFET Future Roadmap Keeping up w/ Moore s Law

More information

INTRODUCTION: Basic operating principle of a MOSFET:

INTRODUCTION: Basic operating principle of a MOSFET: INTRODUCTION: Along with the Junction Field Effect Transistor (JFET), there is another type of Field Effect Transistor available whose Gate input is electrically insulated from the main current carrying

More information

Abhinav Kranti, Rashmi, S Haldar 1 & R S Gupta

Abhinav Kranti, Rashmi, S Haldar 1 & R S Gupta Indian Journal of Pure & Applied Physics Vol. 4, March 004, pp 11-0 Modelling of threshold voltage adjustment in fully depleted double gate (DG) SOI MOSFETs in volume inversion to quantify requirements

More information

Design and Analysis of Double Gate MOSFET Devices using High-k Dielectric

Design and Analysis of Double Gate MOSFET Devices using High-k Dielectric International Journal of Electrical Engineering. ISSN 0974-2158 Volume 7, Number 1 (2014), pp. 53-60 International Research Publication House http://www.irphouse.com Design and Analysis of Double Gate

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 2, February-2015 ISSN

International Journal of Scientific & Engineering Research, Volume 6, Issue 2, February-2015 ISSN Performance Evaluation and Comparison of Ultra-thin Bulk (UTB), Partially Depleted and Fully Depleted SOI MOSFET using Silvaco TCAD Tool Seema Verma1, Pooja Srivastava2, Juhi Dave3, Mukta Jain4, Priya

More information

FUNDAMENTALS OF MODERN VLSI DEVICES

FUNDAMENTALS OF MODERN VLSI DEVICES 19-13- FUNDAMENTALS OF MODERN VLSI DEVICES YUAN TAUR TAK H. MING CAMBRIDGE UNIVERSITY PRESS Physical Constants and Unit Conversions List of Symbols Preface page xi xiii xxi 1 INTRODUCTION I 1.1 Evolution

More information

Lecture 24 - The Si surface and the Metal-Oxide-Semiconductor Structure (cont.) The Long Metal-Oxide-Semiconductor Field-Effect Transistor

Lecture 24 - The Si surface and the Metal-Oxide-Semiconductor Structure (cont.) The Long Metal-Oxide-Semiconductor Field-Effect Transistor 6.720J/3.43J - Integrated Microelectronic Devices - Spring 2007 Lecture 24-1 Lecture 24 - The Si surface and the Metal-Oxide-Semiconductor Structure (cont.) The Long Metal-Oxide-Semiconductor Field-Effect

More information

Session 3: Solid State Devices. Silicon on Insulator

Session 3: Solid State Devices. Silicon on Insulator Session 3: Solid State Devices Silicon on Insulator 1 Outline A B C D E F G H I J 2 Outline Ref: Taurand Ning 3 SOI Technology SOl materials: SIMOX, BESOl, and Smart Cut SIMOX : Synthesis by IMplanted

More information

Future MOSFET Devices using high-k (TiO 2 ) dielectric

Future MOSFET Devices using high-k (TiO 2 ) dielectric Future MOSFET Devices using high-k (TiO 2 ) dielectric Prerna Guru Jambheshwar University, G.J.U.S. & T., Hisar, Haryana, India, prernaa.29@gmail.com Abstract: In this paper, an 80nm NMOS with high-k (TiO

More information

PHYSICS OF SEMICONDUCTOR DEVICES

PHYSICS OF SEMICONDUCTOR DEVICES PHYSICS OF SEMICONDUCTOR DEVICES PHYSICS OF SEMICONDUCTOR DEVICES by J. P. Colinge Department of Electrical and Computer Engineering University of California, Davis C. A. Colinge Department of Electrical

More information

ANALYTICAL SOLUTION OF 3D POISSION EQUATION USING SEPERATION OF VARIABLE METHOD

ANALYTICAL SOLUTION OF 3D POISSION EQUATION USING SEPERATION OF VARIABLE METHOD ANALYTICAL SOLUTION OF 3D POISSION EQUATION USING SEPERATION OF VARIABLE METHOD Prashant Mani 1, ManojKumarPandey 2 1 Research Scholar, 2 Director Department of Electronics and Communication Engineering,

More information

Influence of Fin Shape and Temperature on Conventional and Strained MuGFETs Analog Parameters

Influence of Fin Shape and Temperature on Conventional and Strained MuGFETs Analog Parameters 02 (49)-AF:Modelo-AF 8/20/11 6:25 AM Page 94 Influence of Fin Shape and Temperature on Conventional and Strained MuGFETs Analog Parameters Rudolf Theoderich Bühler 1, Renato Giacomini 1,2 and João Antonio

More information

2014, IJARCSSE All Rights Reserved Page 1352

2014, IJARCSSE All Rights Reserved Page 1352 Volume 4, Issue 3, March 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Double Gate N-MOSFET

More information

Two Dimensional Analytical Threshold Voltages Modeling for Short-Channel MOSFET

Two Dimensional Analytical Threshold Voltages Modeling for Short-Channel MOSFET Two Dimensional Analytical Threshold Voltages Modeling for Short-Channel MOSFET Sanjeev kumar Singh, Vishal Moyal Electronics & Telecommunication, SSTC-SSGI, Bhilai, Chhatisgarh, India Abstract- The aim

More information

Substrate Bias Effects on Drain Induced Barrier Lowering (DIBL) in Short Channel NMOS FETs

Substrate Bias Effects on Drain Induced Barrier Lowering (DIBL) in Short Channel NMOS FETs Australian Journal of Basic and Applied Sciences, 3(3): 1640-1644, 2009 ISSN 1991-8178 Substrate Bias Effects on Drain Induced Barrier Lowering (DIBL) in Short Channel NMOS FETs 1 1 1 1 2 A. Ruangphanit,

More information

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism;

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism; Chapter 3 Field-Effect Transistors (FETs) 3.1 Introduction Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism; The concept has been known

More information

Optimization of Threshold Voltage for 65nm PMOS Transistor using Silvaco TCAD Tools

Optimization of Threshold Voltage for 65nm PMOS Transistor using Silvaco TCAD Tools IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 6, Issue 1 (May. - Jun. 2013), PP 62-67 Optimization of Threshold Voltage for 65nm PMOS Transistor

More information

Supporting Information

Supporting Information Supporting Information Fabrication and Transfer of Flexible Few-Layers MoS 2 Thin Film Transistors to any arbitrary substrate Giovanni A. Salvatore 1, *, Niko Münzenrieder 1, Clément Barraud 2, Luisa Petti

More information

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 1, No 3, 2010

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 1, No 3, 2010 Low Power CMOS Inverter design at different Technologies Vijay Kumar Sharma 1, Surender Soni 2 1 Department of Electronics & Communication, College of Engineering, Teerthanker Mahaveer University, Moradabad

More information

Analog Performance of Scaled Bulk and SOI MOSFETs

Analog Performance of Scaled Bulk and SOI MOSFETs Analog Performance of Scaled and SOI MOSFETs Sushant S. Suryagandh, Mayank Garg, M. Gupta, Jason C.S. Woo Department. of Electrical Engineering University of California, Los Angeles CA 99, USA. woo@icsl.ucla.edu

More information

MEASUREMENT AND INSTRUMENTATION STUDY NOTES UNIT-I

MEASUREMENT AND INSTRUMENTATION STUDY NOTES UNIT-I MEASUREMENT AND INSTRUMENTATION STUDY NOTES The MOSFET The MOSFET Metal Oxide FET UNIT-I As well as the Junction Field Effect Transistor (JFET), there is another type of Field Effect Transistor available

More information

COMON De-Briefing. Prof. Benjamin Iñiguez

COMON De-Briefing. Prof. Benjamin Iñiguez COMON De-Briefing Prof. Benjamin Iñiguez Department of Electronic, Electrical and Automatic Control Engineering, Universitat Rovira i Virgili (URV) Tarragona, Spain benjamin.iniguez@urv.cat MOS-AK, Munich,

More information

A Novel Approach for Velocity Saturation Calculations of 90nm N-channel MOSFET

A Novel Approach for Velocity Saturation Calculations of 90nm N-channel MOSFET A Novel Approach for Velocity Saturation Calculations of 90nm N-channel MOSFET Rino Takahashi 1, a, Hitoshi Aoki 2,b, Nobukazu Tsukiji, Masashi Higashino, Shohei Shibuya, Keita Kurihara, Haruo Kobayashi

More information

1286 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 52, NO. 7, JULY MOSFET Modeling for RF IC Design

1286 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 52, NO. 7, JULY MOSFET Modeling for RF IC Design 1286 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 52, NO. 7, JULY 2005 MOSFET Modeling for RF IC Design Yuhua Cheng, Senior Member, IEEE, M. Jamal Deen, Fellow, IEEE, and Chih-Hung Chen, Member, IEEE Invited

More information

Design & Performance Analysis of DG-MOSFET for Reduction of Short Channel Effect over Bulk MOSFET at 20nm

Design & Performance Analysis of DG-MOSFET for Reduction of Short Channel Effect over Bulk MOSFET at 20nm RESEARCH ARTICLE OPEN ACCESS Design & Performance Analysis of DG- for Reduction of Short Channel Effect over Bulk at 20nm Ankita Wagadre*, Shashank Mane** *(Research scholar, Department of Electronics

More information

ECE 440 Lecture 39 : MOSFET-II

ECE 440 Lecture 39 : MOSFET-II ECE 440 Lecture 39 : MOSFETII Class Outline: MOSFET Qualitative Effective Mobility MOSFET Quantitative Things you should know when you leave Key Questions How does a MOSFET work? Why does the channel mobility

More information

COMPARISON OF THE MOSFET AND THE BJT:

COMPARISON OF THE MOSFET AND THE BJT: COMPARISON OF THE MOSFET AND THE BJT: In this section we present a comparison of the characteristics of the two major electronic devices: the MOSFET and the BJT. To facilitate this comparison, typical

More information

Sub-threshold Leakage Current Reduction Using Variable Gate Oxide Thickness (VGOT) MOSFET

Sub-threshold Leakage Current Reduction Using Variable Gate Oxide Thickness (VGOT) MOSFET Microelectronics and Solid State Electronics 2013, 2(2): 24-28 DOI: 10.5923/j.msse.20130202.02 Sub-threshold Leakage Current Reduction Using Variable Gate Oxide Thickness (VGOT) MOSFET Keerti Kumar. K

More information

DESIGN OF 20 nm FinFET STRUCTURE WITH ROUND FIN CORNERS USING SIDE SURFACE SLOPE VARIATION

DESIGN OF 20 nm FinFET STRUCTURE WITH ROUND FIN CORNERS USING SIDE SURFACE SLOPE VARIATION Journal of Electron Devices, Vol. 18, 2013, pp. 1537-1542 JED [ISSN: 1682-3427 ] DESIGN OF 20 nm FinFET STRUCTURE WITH ROUND FIN CORNERS USING SIDE SURFACE SLOPE VARIATION Suman Lata Tripathi and R. A.

More information

Effect of Channel Doping Concentration on the Impact ionization of n- Channel Fully Depleted SOI MOSFET

Effect of Channel Doping Concentration on the Impact ionization of n- Channel Fully Depleted SOI MOSFET International Journal of Engineering Works Kambohwell Publisher Enterprises Vol. 2, Issue 2, PP. 18-22, Feb. 2015 www.kwpublisher.com Effect of Channel Doping Concentration on the Impact ionization of

More information

Electronic CAD Practical work. Week 1: Introduction to transistor models. curve tracing of NMOS transfer characteristics

Electronic CAD Practical work. Week 1: Introduction to transistor models. curve tracing of NMOS transfer characteristics Electronic CAD Practical work Dr. Martin John Burbidge Lancashire UK Tel: +44 (0)1524 825064 Email: martin@mjb-rfelectronics-synthesis.com Martin Burbidge 2006 Week 1: Introduction to transistor models

More information

value of W max for the device. The at band voltage is -0.9 V. Problem 5: An Al-gate n-channel MOS capacitor has a doping of N a = cm ;3. The oxi

value of W max for the device. The at band voltage is -0.9 V. Problem 5: An Al-gate n-channel MOS capacitor has a doping of N a = cm ;3. The oxi Prof. Jasprit Singh Fall 2001 EECS 320 Homework 10 This homework is due on December 6 Problem 1: An n-type In 0:53 Ga 0:47 As epitaxial layer doped at 10 16 cm ;3 is to be used as a channel in a FET. A

More information

Performance Evaluation of MISISFET- TCAD Simulation

Performance Evaluation of MISISFET- TCAD Simulation Performance Evaluation of MISISFET- TCAD Simulation Tarun Chaudhary Gargi Khanna Rajeevan Chandel ABSTRACT A novel device n-misisfet with a dielectric stack instead of the single insulator of n-mosfet

More information

Separation of Effects of Statistical Impurity Number Fluctuations and Position Distribution on V th Fluctuations in Scaled MOSFETs

Separation of Effects of Statistical Impurity Number Fluctuations and Position Distribution on V th Fluctuations in Scaled MOSFETs 1838 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 47, NO. 10, OCTOBER 2000 Separation of Effects of Statistical Impurity Number Fluctuations and Position Distribution on V th Fluctuations in Scaled MOSFETs

More information

4.1 Device Structure and Physical Operation

4.1 Device Structure and Physical Operation 10/12/2004 4_1 Device Structure and Physical Operation blank.doc 1/2 4.1 Device Structure and Physical Operation Reading Assignment: pp. 235-248 Chapter 4 covers Field Effect Transistors ( ) Specifically,

More information

MSE 410/ECE 340: Electrical Properties of Materials Fall 2016 Micron School of Materials Science and Engineering Boise State University

MSE 410/ECE 340: Electrical Properties of Materials Fall 2016 Micron School of Materials Science and Engineering Boise State University MSE 410/ECE 340: Electrical Properties of Materials Fall 2016 Micron School of Materials Science and Engineering Boise State University Practice Final Exam 1 Read the questions carefully Label all figures

More information

In this lecture we will begin a new topic namely the Metal-Oxide-Semiconductor Field Effect Transistor.

In this lecture we will begin a new topic namely the Metal-Oxide-Semiconductor Field Effect Transistor. Solid State Devices Dr. S. Karmalkar Department of Electronics and Communication Engineering Indian Institute of Technology, Madras Lecture - 38 MOS Field Effect Transistor In this lecture we will begin

More information

Solid State Devices- Part- II. Module- IV

Solid State Devices- Part- II. Module- IV Solid State Devices- Part- II Module- IV MOS Capacitor Two terminal MOS device MOS = Metal- Oxide- Semiconductor MOS capacitor - the heart of the MOSFET The MOS capacitor is used to induce charge at the

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 11/01/2007 MOSFETs Lecture 5 Announcements HW7 set is due now HW8 is assigned, but will not be collected/graded. MOSFET Technology Scaling Technology

More information

Tradeoffs and Optimization in Analog CMOS Design

Tradeoffs and Optimization in Analog CMOS Design Tradeoffs and Optimization in Analog CMOS Design David M. Binkley University of North Carolina at Charlotte, USA A John Wiley & Sons, Ltd., Publication Contents Foreword Preface Acknowledgmerits List of

More information

UNIT-1 Fundamentals of Low Power VLSI Design

UNIT-1 Fundamentals of Low Power VLSI Design UNIT-1 Fundamentals of Low Power VLSI Design Need for Low Power Circuit Design: The increasing prominence of portable systems and the need to limit power consumption (and hence, heat dissipation) in very-high

More information

Section 2.3 Bipolar junction transistors - BJTs

Section 2.3 Bipolar junction transistors - BJTs Section 2.3 Bipolar junction transistors - BJTs Single junction devices, such as p-n and Schottkty diodes can be used to obtain rectifying I-V characteristics, and to form electronic switching circuits

More information

MOSFET Parasitic Elements

MOSFET Parasitic Elements MOSFET Parasitic Elements Three MITs of the ay Components of the source resistance and their influence on g m and R d Gate-induced drain leakage (GIL) and its effect on lowest possible leakage current

More information

SCALING AND NUMERICAL SIMULATION ANALYSIS OF 50nm MOSFET INCORPORATING DIELECTRIC POCKET (DP-MOSFET)

SCALING AND NUMERICAL SIMULATION ANALYSIS OF 50nm MOSFET INCORPORATING DIELECTRIC POCKET (DP-MOSFET) SCALING AND NUMERICAL SIMULATION ANALYSIS OF 50nm MOSFET INCORPORATING DIELECTRIC POCKET (DP-MOSFET) Zul Atfyi Fauzan M. N., Ismail Saad and Razali Ismail Faculty of Electrical Engineering, Universiti

More information

A New Model for Thermal Channel Noise of Deep-Submicron MOSFETS and its Application in RF-CMOS Design

A New Model for Thermal Channel Noise of Deep-Submicron MOSFETS and its Application in RF-CMOS Design IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 5, MAY 2001 831 A New Model for Thermal Channel Noise of Deep-Submicron MOSFETS and its Application in RF-CMOS Design Gerhard Knoblinger, Member, IEEE,

More information

problem grade total

problem grade total Fall 2005 6.012 Microelectronic Devices and Circuits Prof. J. A. del Alamo Name: Recitation: November 16, 2005 Quiz #2 problem grade 1 2 3 4 total General guidelines (please read carefully before starting):

More information

DG-FINFET LOGIC DESIGN USING 32NM TECHNOLOGY

DG-FINFET LOGIC DESIGN USING 32NM TECHNOLOGY International Journal of Knowledge Management & e-learning Volume 3 Number 1 January-June 2011 pp. 1-5 DG-FINFET LOGIC DESIGN USING 32NM TECHNOLOGY K. Nagarjuna Reddy 1, K. V. Ramanaiah 2 & K. Sudheer

More information

Numerical Simulation of a Nanoscale DG N-MOSFET Using SILVACO Software

Numerical Simulation of a Nanoscale DG N-MOSFET Using SILVACO Software Numerical Simulation of a Nanoscale DG N-MOSFET Using SILVACO Software Ahlam Guen Faculty of Technology Tlemcen University Tlemcen,Algeria guenahlam@yahoo.fr Benyounes Bouazza Faculty of Technology. Tlemcen

More information

Lecture #29. Moore s Law

Lecture #29. Moore s Law Lecture #29 ANNOUNCEMENTS HW#15 will be for extra credit Quiz #6 (Thursday 5/8) will include MOSFET C-V No late Projects will be accepted after Thursday 5/8 The last Coffee Hour will be held this Thursday

More information

FET. Field Effect Transistors ELEKTRONIKA KONTROL. Eka Maulana, ST, MT, M.Eng. Universitas Brawijaya. p + S n n-channel. Gate. Basic structure.

FET. Field Effect Transistors ELEKTRONIKA KONTROL. Eka Maulana, ST, MT, M.Eng. Universitas Brawijaya. p + S n n-channel. Gate. Basic structure. FET Field Effect Transistors ELEKTRONIKA KONTROL Basic structure Gate G Source S n n-channel Cross section p + p + p + G Depletion region Drain D Eka Maulana, ST, MT, M.Eng. Universitas Brawijaya S Channel

More information

FIELD EFFECT TRANSISTOR (FET) 1. JUNCTION FIELD EFFECT TRANSISTOR (JFET)

FIELD EFFECT TRANSISTOR (FET) 1. JUNCTION FIELD EFFECT TRANSISTOR (JFET) FIELD EFFECT TRANSISTOR (FET) The field-effect transistor (FET) is a three-terminal device used for a variety of applications that match, to a large extent, those of the BJT transistor. Although there

More information

Low Power Realization of Subthreshold Digital Logic Circuits using Body Bias Technique

Low Power Realization of Subthreshold Digital Logic Circuits using Body Bias Technique Indian Journal of Science and Technology, Vol 9(5), DOI: 1017485/ijst/2016/v9i5/87178, Februaru 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Low Power Realization of Subthreshold Digital Logic

More information

MOS Capacitance and Introduction to MOSFETs

MOS Capacitance and Introduction to MOSFETs ECE-305: Fall 2016 MOS Capacitance and Introduction to MOSFETs Professor Peter Bermel Electrical and Computer Engineering Purdue University, West Lafayette, IN USA pbermel@purdue.edu 11/4/2016 Pierret,

More information

FinFET vs. FD-SOI Key Advantages & Disadvantages

FinFET vs. FD-SOI Key Advantages & Disadvantages FinFET vs. FD-SOI Key Advantages & Disadvantages Amiad Conley Technical Marketing Manager Process Diagnostics & Control, Applied Materials ChipEx-2014, Apr 2014 1 Moore s Law The number of transistors

More information

Chapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier

Chapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier Chapter 5 Operational Amplifiers and Source Followers 5.1 Operational Amplifier In single ended operation the output is measured with respect to a fixed potential, usually ground, whereas in double-ended

More information

EJERCICIOS DE COMPONENTES ELECTRÓNICOS. 1 er cuatrimestre

EJERCICIOS DE COMPONENTES ELECTRÓNICOS. 1 er cuatrimestre EJECICIOS DE COMPONENTES ELECTÓNICOS. 1 er cuatrimestre 2 o Ingeniería Electrónica Industrial Juan Antonio Jiménez Tejada Índice 1. Basic concepts of Electronics 1 2. Passive components 1 3. Semiconductors.

More information

Direct calculation of metal oxide semiconductor field effect transistor high frequency noise parameters

Direct calculation of metal oxide semiconductor field effect transistor high frequency noise parameters Direct calculation of metal oxide semiconductor field effect transistor high frequency noise parameters C. H. Chen and M. J. Deen a) Engineering Science, Simon Fraser University, Burnaby, British Columbia

More information

(Refer Slide Time: 02:05)

(Refer Slide Time: 02:05) Electronics for Analog Signal Processing - I Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology Madras Lecture 27 Construction of a MOSFET (Refer Slide Time:

More information

Depletion-mode operation ( 공핍형 ): Using an input gate voltage to effectively decrease the channel size of an FET

Depletion-mode operation ( 공핍형 ): Using an input gate voltage to effectively decrease the channel size of an FET Ch. 13 MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor : I D D-mode E-mode V g The gate oxide is made of dielectric SiO 2 with e = 3.9 Depletion-mode operation ( 공핍형 ): Using an input gate voltage

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Dopant profiling and surface analysis of silicon nanowires using capacitance-voltage measurements Erik C. Garnett 1, Yu-Chih Tseng 4, Devesh Khanal 2,3, Junqiao Wu 2,3, Jeffrey

More information

ECSE-6300 IC Fabrication Laboratory Lecture 7 MOSFETs. Lecture Outline

ECSE-6300 IC Fabrication Laboratory Lecture 7 MOSFETs. Lecture Outline ECSE-6300 IC Fabrication Laboratory Lecture 7 MOSFETs Prof. Rensselaer Polytechnic Institute Troy, NY 12180 Office: CII-6229 Tel.: (518) 276-2909 e-mails: luj@rpi.edu http://www.ecse.rpi.edu/courses/s16/ecse

More information

Chapter 4. CMOS Cascode Amplifiers. 4.1 Introduction. 4.2 CMOS Cascode Amplifiers

Chapter 4. CMOS Cascode Amplifiers. 4.1 Introduction. 4.2 CMOS Cascode Amplifiers Chapter 4 CMOS Cascode Amplifiers 4.1 Introduction A single stage CMOS amplifier cannot give desired dc voltage gain, output resistance and transconductance. The voltage gain can be made to attain higher

More information

Body-Biased Complementary Logic Implemented Using AlN Piezoelectric MEMS Switches

Body-Biased Complementary Logic Implemented Using AlN Piezoelectric MEMS Switches University of Pennsylvania From the SelectedWorks of Nipun Sinha 29 Body-Biased Complementary Logic Implemented Using AlN Piezoelectric MEMS Switches Nipun Sinha, University of Pennsylvania Timothy S.

More information

BICMOS Technology and Fabrication

BICMOS Technology and Fabrication 12-1 BICMOS Technology and Fabrication 12-2 Combines Bipolar and CMOS transistors in a single integrated circuit By retaining benefits of bipolar and CMOS, BiCMOS is able to achieve VLSI circuits with

More information

Contents. Contents... v. Preface... xiii. Chapter 1 Introduction...1. Chapter 2 Significant Physical Effects In Modern MOSFETs...

Contents. Contents... v. Preface... xiii. Chapter 1 Introduction...1. Chapter 2 Significant Physical Effects In Modern MOSFETs... Contents Contents... v Preface... xiii Chapter 1 Introduction...1 1.1 Compact MOSFET Modeling for Circuit Simulation...1 1.2 The Trends of Compact MOSFET Modeling...5 1.2.1 Modeling new physical effects...5

More information