E-200D ALIGNMENT. See the end of the procedure for the location of the calibration points. EQUIPMENT REQUIRED

Size: px
Start display at page:

Download "E-200D ALIGNMENT. See the end of the procedure for the location of the calibration points. EQUIPMENT REQUIRED"

Transcription

1 E-200D ALIGNMENT NOTE: This is not an official B&K alignment procedure. This procedure was created by experimenting with an E-200D. However when this procedure is followed, the resulting calibration should be very close. See the end of the procedure for the location of the calibration points. EQUIPMENT REQUIRED Frequency counter Oscilloscope RF millivoltmeter Plastic hex-shaped alignment tool (see text) PRELIMINARY 1. Remove the cover from the generator. 2. With generator off, adjust the mechanical zero of the meter. 3. Turn on the generator, allow a 15 minute warm-up. FREQUENCY ADJUSTMENT 1. Connect a frequency counter to the generator output. 2. Set controls as follows: XTAL CALIBRATOR set to OFF MODULATION set to CW 6db attenuator switch IN, all others OUT METER set to CARRIER Adjust the FINE ATTENUATOR so the meter reads 0db There is an "offset knob" at the top of the frequency dial, which adjusts the cursor left and right. Adjust this knob to the center position (the mark should be at the 12:00 position). 3. Pry off the large silver plug to expose the frequency adjustments. Just inside you will see 5 screw adjustors. These are trimmer capacitors. On older units the screw adjustors look like machine screws, and on newer units they are traditional ceramic trimmer capacitors. Farther in back you will see 5 coil adjustors. Refer to the diagram. A plastic hex-shaped alignment tool is needed to adjust the coils, available from electronic suppliers. You could use a metal hex wrench, but you must withdraw the wrench to observe the results of your adjustment. The adjustors for band A are in the upper-right corner (both the screw adjustor and the coil). Bands B through E are in sequence, going counter-clockwise.

2 The frequency for each band is adjusted in the same manner, using the corresponding screw and coil for each band. Start with band A and continue through band E. The coil is for adjusting the low end of the band, and the screw is for adjusting the high end of the band. Repeat steps a-g for each band as listed below: a. Set the Range switch to the desired band. b. Set the frequency dial to the coil adjustment frequency. c. Adjust the coil for the proper reading on the frequency counter. d. Set the frequency dial to the screw adjustment frequency. e. Adjust the screw for the proper reading on the frequency counter. f. The coil and screw adjustments will interact. If you adjust one, be sure to re-check the other. You may need to go back-and-forth several times. g. Check a couple frequencies throughout the range. You may need to readjust the coil and screw to get the best dial accuracy throughout the range. The specification for dial accuracy is ±1.5% of the full-scale frequency, but you can probably get within ±1%. Coil Screw ±1.5% Dial ±1% Dial Band Adjustment Adjustment Accuracy Accuracy A 105KHz 360KHz ±6KHz ±3.7KHz B 380KHz 1350KHz ±21KHz ±14KHz C 1.44MHz 4.9MHz ±77KHz ±51KHz D 5.2MHz 15.5MHz ±240KHz ±160KHz E 15.4MHz 52MHz ±810KHz ±540KHz

3 RF METER ADJUSTMENTS The RF meter is calibrated by R48 and R50. R50 adjusts the low end of the scale and R48 adjusts the high end. When looking at the back of the signal generator, there will be 3 small holes along the bottom of the shielded box. R50 is located in the middle hole. R48 is located in the right-hand hole. 1. Set controls as follows: XTAL CALIBRATOR set to OFF MODULATION set to CW METER set to CARRIER One 20db attenuator switched IN, all others OUT 2. Connect an RF millivoltmeter to the generator output. Make sure that the RF millivoltmeter provides a 50 ohm load to the E-200D (this is very important). 3. Adjust the FINE ATTENUATOR for a signal level of 3.16mVon the RF millivoltmeter. 4. Adjust R50 until the meter on the generator reads -10db. 5. Adjust the FINE ATTENUATOR for a signal level of 10mVon the RF millivoltmeter. 6. Adjust R48 until the meter on the generator reads 0db. 7. Double-check both adjustments since there may be some interaction. 8. Try checking the accuracy at other settings per the chart at the end of this document. NOTE An oscilloscope can be used instead of an RF millivoltmeter. The calibration won t be as good, but if done carefully it will be reasonably close. Here is how to do it: a. The RF meter on the E-200D is accurate only when the generator is connected to a 50 ohm load. When using an oscilloscope, be sure to terminate the generator with a 50 ohm non-inductive load. During calibration connect the scope across the load (but not yet). b. Using a variable DC voltage source and an accurate DMM, connect the scope to exactly 89 millivolts and then to 283 millivolts. Take note as to the accuracy of your scope. When adjusting the generator, set it to the same amplitude you observed with the DC voltage source. In order to get voltages that low, you will probably need to use a couple of resistors as a voltage divider. For a 0-12V or 0-15V adjustable supply, try using a 10K resistor in series with a 330 resistor. Then take the voltage off the 330 resistor. You can change the resistor values as needed to get the proper voltages. c. Set the generator to approximately 500KHz. d. Set the time base of the scope to 0.2mS and do not try to trigger on the generator output. e. Use the settings in step #1 above, except have all attenuator switches OUT. f. Adjust the FINE ATTENUATOR for a signal level of 89 millivolts peak-to-peak on the scope. g. Adjust R50 until the meter on the generator reads -10db. h. Adjust the FINE ATTENUATOR for a signal level of 283 millivolts peak-to-peak on the scope. i. Adjust R48 until the meter on the generator reads 0db. j. Double-check both adjustments since there may be some interaction.

4 AUDIO OSCILLATOR ADJUSTMENT R42 is for adjusting the 400Hz audio oscillator. When viewing the back of the generator, R42 is located under the shielded box along the right-hand edge. There are 2 controls along the righthand edge, R42 is the one towards the front of the generator. R42 is adjusted to ensure reliable oscillation. 1. Set the MODULATION control to 400HZ OUT. 2. Connect an oscilloscope to the EXT MOD jacks. Set the time base on the scope to 1mS. 3. Adjust R42 until the 400Hz output is a good-looking, reliable sine wave as shown below. The peaks should be rounded as shown, not cut off (no clipping). MODULATION METER ADJUSTMENT R54 is for adjusting the modulation meter. When viewing the back of the generator, R54 is located under the shielded box along the right-hand edge. There are 2 controls along the righthand edge, R54 is the one towards the back of the generator. 1. Set controls as follows: Generator frequency to approximately 500KHz XTAL CALIBRATOR set to OFF MODULATION set to INT MOD LEVEL to mid range METER set to CARRIER 6db attenuator switch IN, all others OUT Adjust FINE ATTENUATOR so the meter reads 0db, then switch the METER to % MOD 2. Connect an oscilloscope to the generator output.

5 3. Set the time base on the oscilloscope to 0.5mS. Adjust the oscilloscope for a stable trigger. You should see a modulated waveform (refer to the diagram). 4. Adjust the volts/div on the oscilloscope just until the display exceeds 6 divisions. 5. Turn the variable control (usually located on the volts/div knob) until the peak-to-peak display is exactly 6 divisions. 6. R54 interacts with the MOD LEVEL control. You will need to adjust both of these to get the desired display. The desired display is 6 divisions peak-to-peak at the highest point, and 2 divisions peak-to-peak at the lowest point. Refer to the diagram. You must play with R58 and MOD LEVEL until you get the desired display AND the meter reads 50% modulation. You may need to readjust the variable control on the oscilloscope to maintain a peak-to-peak of 6 divisions. 7. When you have simultaneously achieved a 50% modulated signal on the oscilloscope and a meter reading of 50% modulation, you are done. Try adjusting MOD LEVEL until the meter reads 30% modulation. The signal on the oscilloscope should now show 6 divisions peak-to-peak at the highest point, and about 3.2 divisions peak-to-peak at the lowest point.

6 MIXER ADJUSTMENT The mixer adjustment seems to balance the volume between the 1MHz and 100KHz markers. If the control is turned too far either way, one of the markers will be faint and hard to hear. R28 is the adjustment for the mixer. When looking at the back of the signal generator, there will be 3 small holes along the bottom of the shielded box. R28 is located in the far left hole. 1. Set controls as follows: RANGE set to Band B Frequency dial set to 600KHz XTAL CALIBRATOR set to 100KHz MODULATION set to CW One 20db attenuator switched IN, all others switched OUT METER set to CARRIER Adjust the FINE ATTENUATOR so the meter reads 0db 2. Fine-tune the frequency dial for a zero-beat, taking note of the volume level. 3. Switch the range to Band D and adjust the frequency dial to 10MHz. 4. Set the XTAL CALIBRATOR to 1MHz. 5. Fine-tune the frequency dial for a zero-beat, taking note of the volume level. 6. Repeat steps 1-5, adjusting R28 until you achieve a suitable volume level at both check points. 100KHz MARKER ADJUSTMENT The 100KHz marker is not crystal controlled, it is an L-C oscillator. As such, it can drift over time. The 100KHz oscillator coil is located through a hole in the bottom of the generator. A plastic hex-shaped alignment tool is needed to adjust the coils, available from electronic suppliers. You could use a metal hex wrench, but you must withdraw the wrench to observe the results of your adjustment. 1. Set the controls as follows: RANGE set to Band B Frequency dial set to 600KHz XTAL CALIBRATOR set to 1MHz MODULATION set to CW 2. Slowly adjust the frequency dial until an exact zero beat is obtained. 3. Switch the XTAL CALIBRATOR to 100KHz. 4. Adjust the 100KHz oscillator coil for an exact zero beat. 5. Switch the XTAL CALIBRATOR between 1MHz and 100KHz to verify that they are both at zero beat. Fine tune as needed. This completes the alignment.

7 Location of calibration points:

8 E-200D Attenuator Setting to Microvolts Attenuator Microvolts Attenuator Microvolts Attenuator Microvolts Attenuator Microvolts , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,125 With an attenuator setting of 0db, the output will be 100,000 microvolts

Operation Manual. Model SG Elenco Precision Wide Band Signal Generator

Operation Manual. Model SG Elenco Precision Wide Band Signal Generator 99 Washington Street Melrose, MA 02176 Phone 781-665-1400 Toll Free 1-800-517-8431 Visit us at www.testequipmentdepot.com Elenco Precision Wide Band Signal Generator Model SG-9000 Operation Manual CONTENTS

More information

MASTR II BASE STATION MHz RECEIVER IF/AUDIO/SQUELCH & RF ASSEMBLY (25 khz/12.5 khz CHANNEL SPACING) Maintenance Manual LBI-38506A

MASTR II BASE STATION MHz RECEIVER IF/AUDIO/SQUELCH & RF ASSEMBLY (25 khz/12.5 khz CHANNEL SPACING) Maintenance Manual LBI-38506A A Mobile Communications MASTR II BASE STATION 806-824 MHz RECEIVER IF/AUDIO/SQUELCH & RF ASSEMBLY (25 khz/12.5 khz CHANNEL SPACING) TABLE OF CONTENTS RF ASSEMBLY, MIXER AND IF FILTER BOARD...... LBI-30482

More information

ig-5282 spec.txt IG-5282 Audio Generator

ig-5282 spec.txt IG-5282 Audio Generator IG-5282 Audio Generator ig-5282 spec.txt The Heathkit IG-5282 Audio Generator is an audio frequency signal generator. It provides sine wave and square wave signals that may be used as a signal source for

More information

The University of Jordan Mechatronics Engineering Department Electronics Lab.( ) Experiment 1: Lab Equipment Familiarization

The University of Jordan Mechatronics Engineering Department Electronics Lab.( ) Experiment 1: Lab Equipment Familiarization The University of Jordan Mechatronics Engineering Department Electronics Lab.(0908322) Experiment 1: Lab Equipment Familiarization Objectives To be familiar with the main blocks of the oscilloscope and

More information

Sapphire Instruments Co., Ltd. Calibration Procedure of SI-9101

Sapphire Instruments Co., Ltd. Calibration Procedure of SI-9101 Sapphire Instruments Co., Ltd. Calibration Procedure of SI-9101 1. How to open the case, please follow the steps. 1.1 Remove the battery lid. 1.2 You will see the two screws and loosen them. Fig. 1 1.3

More information

Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope.

Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope. 3.5 Laboratory Procedure / Summary Sheet Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope. Set the function generator to produce a 5 V pp 1kHz sinusoidal output.

More information

FT-897 Alignment. Local Oscillator Adjustment. PLL Adjustment

FT-897 Alignment. Local Oscillator Adjustment. PLL Adjustment FT-897 Local Oscillator Adjustment Reference Frequency Adjustment a. Connect a frequency counter to TP1032. b. Adjust the trimmer capacitor (TC5001) for 67.875000MHz ±5Hz on the frequency counter. c. Connect

More information

Hendricks QRP Kits BITX20A to BITX17A Conversion Instructions

Hendricks QRP Kits BITX20A to BITX17A Conversion Instructions Hendricks QRP Kits BITX20A to BITX17A Conversion Instructions 30 November 2008 Converting your BITX20A Kit to a BITX17A Kit is not all that complex. It only requires that you change crystals and some resonance

More information

Variable Gm Calibration Procedure

Variable Gm Calibration Procedure Variable Gm Calibration Procedure REV. 3 Sept. 16, 2018. Warm-up Power on the unit and let it warm for about 20-30 minutes, so that all circuitries stabilize. A.C. Check With a DMM (Digital Multi Meter)

More information

UNIVERSITY OF CALIFORNIA, SANTA BARBARA Department of Electrical and Computer Engineering. ECE 2A & 2B Laboratory Equipment Information

UNIVERSITY OF CALIFORNIA, SANTA BARBARA Department of Electrical and Computer Engineering. ECE 2A & 2B Laboratory Equipment Information UNIVERSITY OF CALIFORNIA, SANTA BARBARA Department of Electrical and Computer Engineering ECE 2A & 2B Laboratory Equipment Information Table of Contents Digital Multi-Meter (DMM)... 1 Features... 1 Using

More information

ECE 404 e-notes...copyright 2008 by Gregory M. Wierzba. All rights reserved...fall 2008.

ECE 404 e-notes...copyright 2008 by Gregory M. Wierzba. All rights reserved...fall 2008. ECE 404L: RF ELECTRONICS LABORATORY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING MICHIGAN STATE UNIVERSITY I. TITLE: Lab III - AM/FM Radio - AM Radio II. PURPOSE: This lab will focus on soldering

More information

HF Amateur SSB Receiver

HF Amateur SSB Receiver HF Amateur SSB Receiver PCB Set for radio club project http://rhelectronics.net PCB for DIY HF Amateur SSB Receiver 20M The receiver is a simple syperheterodyne type with quartz crystal filter. The circuit

More information

Building a Bitx20 Version 3

Building a Bitx20 Version 3 Building a Bitx20 Version 3 The board can be broken into sections and then built and tested one section at a time. This will make troubleshooting easier as any problems will be confined to one small section.

More information

hallicrafters PERFORMANCE SPECIFICATIONS MODEL: SR-2000 LATEST REVISION: 18 JAN 66 Code ident # Specification #

hallicrafters PERFORMANCE SPECIFICATIONS MODEL: SR-2000 LATEST REVISION: 18 JAN 66 Code ident # Specification # hallicrafters PERFORMANCE SPECIFICATIONS MODEL: SR-2000 LATEST REVISION: 18 JAN 66 Code ident # 26916 Specification # 093-002154 I. GENERAL A. Power input 117V 50-60 cycles from a source capable of delivering

More information

DEPARTMENT OF THE ARMY TECHNICAL BULLETIN CALIBRATION PROCEDURE FOR SHF SIGNAL GENERATOR AN/USM-47 (HEWLETT-PACKARD MODEL 626A) (NSN )

DEPARTMENT OF THE ARMY TECHNICAL BULLETIN CALIBRATION PROCEDURE FOR SHF SIGNAL GENERATOR AN/USM-47 (HEWLETT-PACKARD MODEL 626A) (NSN ) DEPARTMENT OF THE ARMY TECHNICAL BULLETIN CALIBRATION PROCEDURE FOR SHF SIGNAL GENERATOR AN/USM-47 (HEWLETT-PACKARD MODEL 626A) (NSN 6625-00-455-6917) Headquarters, Department of the Army, Washington,

More information

Assembly Manual for VFO Board 2 August 2018

Assembly Manual for VFO Board 2 August 2018 Assembly Manual for VFO Board 2 August 2018 Parts list (Preliminary) Arduino 1 Arduino Pre-programmed 1 Faceplate Assorted Header Pins Full Board Rev A 10 104 capacitors 1 Rotary encode with switch 1 5-volt

More information

Laboratory Equipment Instruction Manual 2011

Laboratory Equipment Instruction Manual 2011 University of Toronto Department of Electrical and Computer Engineering Instrumentation Laboratory GB341 Laboratory Equipment Instruction Manual 2011 Page 1. Wires and Cables A-2 2. Protoboard A-3 3. DC

More information

ACCESSORY CIRCUITS ALIGNMENT

ACCESSORY CIRCUITS ALIGNMENT UNIDEN 22 ACCESSOY CICUITS ALIGNMENT 1. NOISE BLANKE Adjustment 11. Test Equipment equired (1) DC Voltage Meter 12. Adjustment Procedures. (1) Set MODE SWITCH to USB, and recive 14.2 Mhz. (2) Activate

More information

Laboratory 3 (drawn from lab text by Alciatore)

Laboratory 3 (drawn from lab text by Alciatore) Laboratory 3 (drawn from lab text by Alciatore) The Oscilloscope Required Components: 1 10 resistor 2 100 resistors 2 lk resistors 1 2k resistor 2 4.7M resistors 1 0.F capacitor 1 0.1 F capacitor 1 1.0uF

More information

Frequency range: BAND RANGE MHz MHz

Frequency range: BAND RANGE MHz MHz INSTRUCTION SHEET NO. 20 POWER-MITE PM3 and PM3A DESCRIPTION The Power-Mite 3 and 3A are self-contained CW transceivers covering 40 and 20 meters. The receiver is compromised of a variable oscillator operating

More information

3 T856/857 Initial Tuning & Adjustment

3 T856/857 Initial Tuning & Adjustment M850-00 T856/857 Initial Tuning & Adjustment C3.1 3 T856/857 Initial Tuning & Adjustment The following section describes the full tuning and adjustment procedure and provides information on: channel programming

More information

10 MHz TCXO Stable Time Base

10 MHz TCXO Stable Time Base 10 MHz TCXO Stable Time Base Overview Older versions of the Qualcomm OmniTRACS satellite fleet tracking system are starting to show up at ham fests. These units include a very nice one watt RF power amplifier

More information

Experiment 1: Instrument Familiarization (8/28/06)

Experiment 1: Instrument Familiarization (8/28/06) Electrical Measurement Issues Experiment 1: Instrument Familiarization (8/28/06) Electrical measurements are only as meaningful as the quality of the measurement techniques and the instrumentation applied

More information

MFJ-752C SIGNAL ENHANCER II

MFJ-752C SIGNAL ENHANCER II MFJ-752C SIGNAL ENHANCER II INTRODUCTION The improved MFJ-752C SIGNAL ENHANCER II is comprised of two tunable audio filtering systems designed to clarity and remove interfering signals from both voice

More information

Q106A Oscillator. Aug The Q106A Oscillator module is a combination of the Q106 Oscillator and the Q141 Aid module, all on a single panel.

Q106A Oscillator. Aug The Q106A Oscillator module is a combination of the Q106 Oscillator and the Q141 Aid module, all on a single panel. Aug 2017 The Q106A Oscillator module is a combination of the Q106 Oscillator and the Q141 Aid module, all on a single panel. The Q106A Oscillator is the foundation of any synthesizer providing the basic

More information

VCA. Voltage Controlled Amplifier.

VCA. Voltage Controlled Amplifier. VCA Voltage Controlled Amplifier www.tiptopaudio.com Tiptop Audio VCA User Manual The Tiptop Audio VCA is a single-channel variable-slope voltage-controlled amplifier in Eurorack format. It has the following

More information

LBI-30398N. MAINTENANCE MANUAL MHz PHASE LOCK LOOP EXCITER 19D423249G1 & G2 DESCRIPTION TABLE OF CONTENTS. Page. DESCRIPTION...

LBI-30398N. MAINTENANCE MANUAL MHz PHASE LOCK LOOP EXCITER 19D423249G1 & G2 DESCRIPTION TABLE OF CONTENTS. Page. DESCRIPTION... MAINTENANCE MANUAL 138-174 MHz PHASE LOCK LOOP EXCITER 19D423249G1 & G2 LBI-30398N TABLE OF CONTENTS DESCRIPTION...Front Cover CIRCUIT ANALYSIS... 1 MODIFICATION INSTRUCTIONS... 4 PARTS LIST AND PRODUCTION

More information

DEM Part Number L144-28INTCK 144 MHz Transverter Kit and complete kit

DEM Part Number L144-28INTCK 144 MHz Transverter Kit and complete kit DEM Part Number L144-28INTCK 144 MHz Transverter Kit and complete kit Power Out: Noise Figure and Gain: DC Power Requirement: 50 mw linear minimum 3.5 db NF nominal, 5 dbg maximum 12-15.5 VDC, 13.8 nominal

More information

Q106 Oscillator. Controls and Connectors. Jun 2014

Q106 Oscillator. Controls and Connectors. Jun 2014 The Q106 Oscillator is the foundation of any synthesizer providing the basic waveforms used to construct sounds. With a total range of.05hz to 20kHz+, the Q106 operates as a powerful audio oscillator and

More information

resistor box inductor 3 BNC to banana + V L

resistor box inductor 3 BNC to banana + V L Physics ab II Inductance and Circuit Page 1/5 Name: Partner: Partner: Purpose: To investigate how the voltage across an inductor changes in response to changing currents. To measure the inductance by measuring

More information

Physics 323. Experiment # 1 - Oscilloscope and Breadboard

Physics 323. Experiment # 1 - Oscilloscope and Breadboard Physics 323 Experiment # 1 - Oscilloscope and Breadboard Introduction In order to familiarise yourself with the laboratory equipment, a few simple experiments are to be performed. References: XYZ s of

More information

ERICSSONZ LBI-30398P. MAINTENANCE MANUAL MHz PHASE LOCKED LOOP EXCITER 19D423249G1 & G2 DESCRIPTION TABLE OF CONTENTS

ERICSSONZ LBI-30398P. MAINTENANCE MANUAL MHz PHASE LOCKED LOOP EXCITER 19D423249G1 & G2 DESCRIPTION TABLE OF CONTENTS MAINTENANCE MANUAL 138-174 MHz PHASE LOCKED LOOP EXCITER 19D423249G1 & G2 TABLE OF CONTENTS Page DESCRIPTION... Front Cover CIRCUIT ANALYSIS...1 MODIFICATION INSTRUCTIONS...4 PARTS LIST...5 PRODUCTION

More information

PHYSICS 171 UNIVERSITY PHYSICS LAB II. Experiment 4. Alternating Current Measurement

PHYSICS 171 UNIVERSITY PHYSICS LAB II. Experiment 4. Alternating Current Measurement PHYSICS 171 UNIVERSITY PHYSICS LAB II Experiment 4 Alternating Current Measurement Equipment: Supplies: Oscilloscope, Function Generator. Filament Transformer. A sine wave A.C. signal has three basic properties:

More information

PHYSICS 107 LAB #9: AMPLIFIERS

PHYSICS 107 LAB #9: AMPLIFIERS Section: Monday / Tuesday (circle one) Name: Partners: PHYSICS 107 LAB #9: AMPLIFIERS Equipment: headphones, 4 BNC cables with clips at one end, 3 BNC T connectors, banana BNC (Male- Male), banana-bnc

More information

Fill in the following worksheet-style pages. A colored pen or pencil works best. The procedure is:

Fill in the following worksheet-style pages. A colored pen or pencil works best. The procedure is: 14: ALIASING I. PRELAB FOR ALIASING LAB You might expect that to record a frequency of 4000 Hz you would have to sample at a rate of at least 4000 Hz. It turns out, however, that you actually have to sample

More information

Using Circuits, Signals and Instruments

Using Circuits, Signals and Instruments Using Circuits, Signals and Instruments To be ignorant of one s ignorance is the malady of the ignorant. A. B. Alcott (1799-1888) Some knowledge of electrical and electronic technology is essential for

More information

A GOOD REGENERATIVE RECEIVER WITH SIMPLE FINE TUNING (2008)

A GOOD REGENERATIVE RECEIVER WITH SIMPLE FINE TUNING (2008) A GOOD REGENERATIVE RECEIVER WITH SIMPLE FINE TUNING (2008) A good SSB-CW-AM regenerative receiver with a fine tuning by moving the wooden stick with a grounded piece of PCB towards the coil. A good regenerative

More information

OBJECTIVES EQUIPMENT LIST

OBJECTIVES EQUIPMENT LIST 1 Reception of Amplitude Modulated Signals AM Demodulation OBJECTIVES The purpose of this experiment is to show how the amplitude-modulated signals are demodulated to obtain the original signal. Also,

More information

DEPARTMENT OF THE ARMY TECHNICAL BULLETIN

DEPARTMENT OF THE ARMY TECHNICAL BULLETIN *TB 9-6625-1356-24 DEPARTMENT OF THE ARMY TECHNICAL BULLETIN CALIBRATION PROCEDURE FOR TEST OSCILLATOR, HEWLETT-PACKARD MODELS 651A, 651B AND 652A (SG-763/U) Headquarters Department of the Army, Washington,

More information

Keysight Measuring High Impedance Sources Using the U8903B Audio Analyzer. Application Note

Keysight Measuring High Impedance Sources Using the U8903B Audio Analyzer. Application Note Keysight Measuring High Impedance Sources Using the U8903B Audio Analyzer Application Note Introduction This note details the input impedance of the U8903B Audio Analyzer, and shows that this needs to

More information

TECHNICAL MANUAL CALIBRATION PROCEDURE FOR SYNTHESIZED SIGNAL GENERATOR 7200() (GIGA-TRONICS)

TECHNICAL MANUAL CALIBRATION PROCEDURE FOR SYNTHESIZED SIGNAL GENERATOR 7200() (GIGA-TRONICS) T.O. 33K3-4-3051-1 TECHNICAL MANUAL CALIBRATION PROCEDURE FOR SYNTHESIZED SIGNAL GENERATOR 7200() (GIGA-TRONICS) This publication replaces TO. 33K3-4-3051-1 dated 30 July 1997 and Change 1 30 December

More information

EECS 318 Electronics Lab Laboratory #2 Electronic Test Equipment

EECS 318 Electronics Lab Laboratory #2 Electronic Test Equipment EECS 318 Electronics Lab Laboratory #2 Electronic Test Equipment Objectives: The purpose of this laboratory is to acquaint you with the electronic sources and measuring equipment you will be using throughout

More information

Connecting the FCC-2 to the Hendricks DC Kits Bob Okas, W3CD

Connecting the FCC-2 to the Hendricks DC Kits Bob Okas, W3CD Connecting the FCC-2 to the Hendricks DC Kits Bob Okas, W3CD This is an application note that describes how you can connect the NorCal FCC-1/2 combination to the DC kits. It involves a few extra components

More information

Cook/Sill Stereo Modulator C-1.2

Cook/Sill Stereo Modulator C-1.2 Cook/Sill Stereo Modulator C-1.2 Assembled and adjusted by J. A. Álvarez Amorós jalvarez@ua.es 1. Introduction This document contains my experience of assembling and adjusting the Cook/Sill Stereo Modulator

More information

Experiment 1: Instrument Familiarization

Experiment 1: Instrument Familiarization Electrical Measurement Issues Experiment 1: Instrument Familiarization Electrical measurements are only as meaningful as the quality of the measurement techniques and the instrumentation applied to the

More information

Building the Sawdust Regenerative Receiver

Building the Sawdust Regenerative Receiver Building the Sawdust Regenerative Receiver Introduction The Sawdust is a super regenerative receiver using the basic Armstrong design architecture. The receiver uses one toroidal transformer to provide

More information

FREQUENCY AGILE FM MODULATOR INSTRUCTION BOOK IB

FREQUENCY AGILE FM MODULATOR INSTRUCTION BOOK IB FMT615C FREQUENCY AGILE FM MODULATOR INSTRUCTION BOOK IB1215-02 TABLE OF CONTENTS SECTION SUBJECT 1.0 Introduction 2.0 Installation & Operating Instructions 3.0 Specification 4.0 Functional Description

More information

EXPERIMENT 1 PRELIMINARY MATERIAL

EXPERIMENT 1 PRELIMINARY MATERIAL EXPERIMENT 1 PRELIMINARY MATERIAL BREADBOARD A solderless breadboard, like the basic model in Figure 1, consists of a series of square holes, and those columns of holes are connected to each other via

More information

Radio Receivers. Al Penney VO1NO

Radio Receivers. Al Penney VO1NO Radio Receivers Al Penney VO1NO Role of the Receiver The Antenna must capture the radio wave. The desired frequency must be selected from all the EM waves captured by the antenna. The selected signal is

More information

Penrose Quantizer Assembly Guide

Penrose Quantizer Assembly Guide Penrose Quantizer Assembly Guide Schematic and BOM The schematic can be found here: www.sonic-potions.com/public/penrosequantizerschematic.pdf The BOM is available at google docs: Link to BOM Prepare the

More information

Building the Sawdust Regenerative Receiver

Building the Sawdust Regenerative Receiver Building the Sawdust Regenerative Receiver Introduction The Sawdust is a super regenerative receiver using the basic Armstrong design architecture. The receiver uses one toroidal transformer to provide

More information

General Construction & Operation of Oscilloscopes

General Construction & Operation of Oscilloscopes Science 14 Lab 2: The Oscilloscope Introduction General Construction & Operation of Oscilloscopes An oscilloscope is a widely used device which uses a beam of high speed electrons (on the order of 10 7

More information

ICOM IC-201 Allmode Transceiver

ICOM IC-201 Allmode Transceiver ICOM IC-201 Allmode Transceiver Alignment Procedure Please note: This procedure is reengineered by myself and may be not in accordance with the original procedure from the manufacturer! So I can t accept

More information

AP034-OM-E Rev D ISSUED: January 2000 ²

AP034-OM-E Rev D ISSUED: January 2000 ² 3HUIRUPDQFH9HULILFDWLRQ 3HUIRUPDQFH9HULILFDWLRQ This procedure can be used to verify the warranted characteristics of the AP034 Active Differential Probe. The recommended calibration interval for the model

More information

Laboratory Exercise 6 THE OSCILLOSCOPE

Laboratory Exercise 6 THE OSCILLOSCOPE Introduction Laboratory Exercise 6 THE OSCILLOSCOPE The aim of this exercise is to introduce you to the oscilloscope (often just called a scope), the most versatile and ubiquitous laboratory measuring

More information

Yaesu FT-8800R Alignment

Yaesu FT-8800R Alignment DUAL BAND FM TRANSCEIVER Introduction and Precautions The FT-8800R has been carefully aligned at the factory for the specified performance across the 144 MHz and 430 MHz amateur bands. Realignment should

More information

ENGR 1110: Introduction to Engineering Lab 7 Pulse Width Modulation (PWM)

ENGR 1110: Introduction to Engineering Lab 7 Pulse Width Modulation (PWM) ENGR 1110: Introduction to Engineering Lab 7 Pulse Width Modulation (PWM) Supplies Needed Motor control board, Transmitter (with good batteries), Receiver Equipment Used Oscilloscope, Function Generator,

More information

Read This Page First

Read This Page First Read This Page First If you are reading this you know the manuals are always available at QRPKITS.com. This is version 8.0 of the manual dated 4/27/2016. There is no need to print out the whole assembly

More information

PHYS 235: Homework Problems

PHYS 235: Homework Problems PHYS 235: Homework Problems 1. The illustration is a facsimile of an oscilloscope screen like the ones you use in lab. sinusoidal signal from your function generator is the input for Channel 1, and your

More information

Physics 120 Lab 1 (2018) - Instruments and DC Circuits

Physics 120 Lab 1 (2018) - Instruments and DC Circuits Physics 120 Lab 1 (2018) - Instruments and DC Circuits Welcome to the first laboratory exercise in Physics 120. Your state-of-the art equipment includes: Digital oscilloscope w/usb output for SCREENSHOTS.

More information

Beta-test ED1 PCB installed in I0CG s K1

Beta-test ED1 PCB installed in I0CG s K1 K1 SSB Modification (Ed.2) This description provides the receiver (RX) modifications, assembly, alignment and operation as a first step. In a second step you can add the remaining transmitter (TX) modifications,

More information

HAMTRONICS R144 VHF FM RECEIVER, REV. 4/94: INSTALLATION AND MAINTENANCE

HAMTRONICS R144 VHF FM RECEIVER, REV. 4/94: INSTALLATION AND MAINTENANCE HAMTRONICS R144 VHF FM RECEIVER, REV. 4/94: INSTALLATION AND MAINTENANCE FUNCTIONAL DESCRIPTION. The R144 is a premium commercial grade single-channel vhf fm receiver. It features a helical resonator front

More information

Lab 4. Crystal Oscillator

Lab 4. Crystal Oscillator Lab 4. Crystal Oscillator Modeling the Piezo Electric Quartz Crystal Most oscillators employed for RF and microwave applications use a resonator to set the frequency of oscillation. It is desirable to

More information

ENGR 210 Lab 6 Use of the Function Generator & Oscilloscope

ENGR 210 Lab 6 Use of the Function Generator & Oscilloscope ENGR 210 Lab 6 Use of the Function Generator & Oscilloscope In this laboratory you will learn to use two additional instruments in the laboratory, namely the function/arbitrary waveform generator, which

More information

Lab #11 Rapid Relaxation Part I... RC and RL Circuits

Lab #11 Rapid Relaxation Part I... RC and RL Circuits Rev. D. Day 10/18/06; 7/15/10 HEFW PH262 Page 1 of 6 Lab #11 Rapid Relaxation Part I... RC and RL Circuits INTRODUCTION Exponential behavior in electrical circuits is frequently referred to as "relaxation",

More information

Introduction to Basic Laboratory Instruments

Introduction to Basic Laboratory Instruments Introduction to Contents: 1. Objectives... 2 2. Laboratory Safety... 2 3.... 2 4. Using a DC Power Supply... 2 5. Using a Function Generator... 3 5.1 Turn on the Instrument... 3 5.2 Setting Signal Type...

More information

Sampling and Reconstruction

Sampling and Reconstruction Experiment 10 Sampling and Reconstruction In this experiment we shall learn how an analog signal can be sampled in the time domain and then how the same samples can be used to reconstruct the original

More information

Instruction Manual. SSQ-2F Controller Board. For the. v1.41 For Rife Plasma Tube Systems. Manual v by Ralph Hartwell Spectrotek Services

Instruction Manual. SSQ-2F Controller Board. For the. v1.41 For Rife Plasma Tube Systems. Manual v by Ralph Hartwell Spectrotek Services Instruction Manual For the SSQ-2F Controller Board v1.41 For Rife Plasma Tube Systems Manual v1.00 2012 by Ralph Hartwell Spectrotek Services This page intentionally blank. 2 Index and Table of Contents

More information

SPECIFICATIONS: Subcarrier Frequency 5.5MHz adjustable, FM Modulated +/- 50KHz. 2nd 11MHz >40dB down from 5.5MHz

SPECIFICATIONS: Subcarrier Frequency 5.5MHz adjustable, FM Modulated +/- 50KHz. 2nd 11MHz >40dB down from 5.5MHz Mini-kits AUDIO / SUBCARRIER KIT EME75 Version4 SPECIFICATIONS: Subcarrier Frequency 5.5MHz adjustable, FM Modulated +/- 50KHz Subcarrier Output 1.5v p-p Output @ 5.5MHz DESCRIPTION & FEATURES: The Notes

More information

BUILD A 10 MHZ EXTERNAL REFERENCE DEVICE PART 2

BUILD A 10 MHZ EXTERNAL REFERENCE DEVICE PART 2 First published in the July-August 2016 issue of The Canadian Amateur BUILD A 10 MHZ EXTERNAL REFERENCE DEVICE PART 2 Special thanks to Brian Grant, VE3GEN, in providing the initial information for this

More information

12kHz LIF Converter V2.43 9Mhz version

12kHz LIF Converter V2.43 9Mhz version 12kHz LIF Converter V2.43 9Mhz version Please Note: This document supersedes all previously released documents and drawings on the LIF subject. This is the latest and most up-to-date document at this time.

More information

MFJ-219/219N 440 MHz UHF SWR Analyzer TABLE OF CONTENTS

MFJ-219/219N 440 MHz UHF SWR Analyzer TABLE OF CONTENTS MFJ-219/219N 440 MHz UHF SWR Analyzer TABLE OF CONTENTS Introduction...2 Powering The MFJ-219/219N...3 Battery Installation...3 Operation Of The MFJ-219/219N...4 SWR and the MFJ-219/219N...4 Measuring

More information

file:///c /BoatAnchors/Hammarlund/HQ170A/HQ170SVC.TXT Dear OM: This form is being prepared to provide prompt attention to a complaint as a result of trouble that may be experienced in the field. In addition

More information

Introduction to basic laboratory instruments

Introduction to basic laboratory instruments BEE 233 Laboratory-1 Introduction to basic laboratory instruments 1. Objectives To learn safety procedures in the laboratory. To learn how to use basic laboratory instruments: power supply, function generator,

More information

Lab 6 Instrument Familiarization

Lab 6 Instrument Familiarization Lab 6 Instrument Familiarization What You Need To Know: Voltages and currents in an electronic circuit as in a CD player, mobile phone or TV set vary in time. Throughout todays lab you will investigate

More information

LABORATORY 4. Palomar College ENGR210 Spring 2017 ASSIGNED: 3/21/17

LABORATORY 4. Palomar College ENGR210 Spring 2017 ASSIGNED: 3/21/17 LABORATORY 4 ASSIGNED: 3/21/17 OBJECTIVE: The purpose of this lab is to evaluate the transient and steady-state circuit response of first order and second order circuits. MINIMUM EQUIPMENT LIST: You will

More information

LLS - Introduction to Equipment

LLS - Introduction to Equipment Published on Advanced Lab (http://experimentationlab.berkeley.edu) Home > LLS - Introduction to Equipment LLS - Introduction to Equipment All pages in this lab 1. Low Light Signal Measurements [1] 2. Introduction

More information

HAMTRONICS TB901 FM EXCITER INSTALLATION, OPERATION, & MAINTENANCE

HAMTRONICS TB901 FM EXCITER INSTALLATION, OPERATION, & MAINTENANCE HAMTRONICS TB901 FM EXCITER INSTALLATION, OPERATION, & MAINTENANCE GENERAL INFORMATION. The TB901 is a single-channel low power fm transmitter (exciter) designed to provide 300-600 milliwatts continuous

More information

RITEK RIT for Collins KWM-2/2A 10/01/2002

RITEK RIT for Collins KWM-2/2A 10/01/2002 RITEK RIT for Collins KWM-2/2A 10/01/2002 The RITEK RIT (receiver incremental tuning) control was developed for KWM-2/2A in 1992 to "clarify" received signals differing from the transmit frequency indicated

More information

CHAPTER 6. Motor Driver

CHAPTER 6. Motor Driver CHAPTER 6 Motor Driver In this lab, we will construct the circuitry that your robot uses to drive its motors. However, before testing the motor circuit we will begin by making sure that you are able to

More information

Preliminary Information (There will be updates)

Preliminary Information (There will be updates) This Manual is provided by CBTricks.com Someone who wanted to help you repair your equipment put together this information. Cobra150GTL DX If you would like to help us put more manuals online support us.

More information

PN9000 PULSED CARRIER MEASUREMENTS

PN9000 PULSED CARRIER MEASUREMENTS The specialist of Phase noise Measurements PN9000 PULSED CARRIER MEASUREMENTS Carrier frequency: 2.7 GHz - PRF: 5 khz Duty cycle: 1% Page 1 / 12 Introduction When measuring a pulse modulated signal the

More information

IC-781: Installing the Inrad Roofing Filter Mod

IC-781: Installing the Inrad Roofing Filter Mod IC-781: Installing the Inrad Roofing Filter Mod The Icom IC-781 roofing filter mod consists of a 6-pole, 4 to 5 khz wide filter followed by a high dynamic range, feedback amplifier. The amplifier provides

More information

AME140 Lab #2 INTRODUCTION TO ELECTRONIC TEST EQUIPMENT AND BASIC ELECTRONICS MEASUREMENTS

AME140 Lab #2 INTRODUCTION TO ELECTRONIC TEST EQUIPMENT AND BASIC ELECTRONICS MEASUREMENTS INTRODUCTION TO ELECTRONIC TEST EQUIPMENT AND BASIC ELECTRONICS MEASUREMENTS The purpose of this document is to guide students through a few simple activities to increase familiarity with basic electronics

More information

1, Bandwidth (Hz) ,

1, Bandwidth (Hz) , A Crystal Filter Tutorial Abstract: The general topic of crystal filters will be discussed in a manner that is intended to help the user to better understand, specify, test, and use them. The center frequency

More information

User Guide V

User Guide V XV User Guide V1.10 25-02-2017 Diode Ladder Wave Filter Thank you for purchasing the AJH Synth Sonic XV Eurorack synthesiser module, which like all AJH Synth products, has been designed and handbuilt in

More information

HAMTRONICS R451 UHF FM RECEIVER: INSTALLATION, OPERATION, & MAINTENANCE

HAMTRONICS R451 UHF FM RECEIVER: INSTALLATION, OPERATION, & MAINTENANCE HAMTRONICS R451 UHF FM RECEIVER: INSTALLATION, OPERATION, & MAINTENANCE FUNCTIONAL DESCRIPTION. The R451 is a premium, commercial- grade single-channel uhf fm receiver. It features a GaAs FET rf amplifier

More information

FUNCTION GENERATOR OPERATION MANUAL

FUNCTION GENERATOR OPERATION MANUAL FUNCTION GENERATOR OPERATION MANUAL INDEX 1. Introduction (3) 2. Specifications (3) 3. Working Theory (7) 4. Structure (8) 5. Operation & Maintenance (9) 6. Accessories (14) 1 This instrument is a highly

More information

Tektronix digital oscilloscope, BK Precision Function Generator, coaxial cables, breadboard, the crystal earpiece from your AM radio kit.

Tektronix digital oscilloscope, BK Precision Function Generator, coaxial cables, breadboard, the crystal earpiece from your AM radio kit. Experiment 0: Review I. References The 174 and 275 Lab Manuals Any standard text on error analysis (for example, Introduction to Error Analysis, J. Taylor, University Science Books, 1997) The manual for

More information

RC Filters and Basic Timer Functionality

RC Filters and Basic Timer Functionality RC-1 Learning Objectives: RC Filters and Basic Timer Functionality The student who successfully completes this lab will be able to: Build circuits using passive components (resistors and capacitors) from

More information

FIELD INTENSITY METER MODEL FIM-41 OPERATING INSTRUCTIONS

FIELD INTENSITY METER MODEL FIM-41 OPERATING INSTRUCTIONS FIELD INTENSITY METER MODEL FIM-41 OPERATING INSTRUCTIONS POTOMAC INSTRUMENTS, INC. 932 Philadelphia Ave. Silver Spring, MD 20910 Phone (301) 589-2662 Fax (301) 589-2665 www.pi-usa.com 2.1 General SECTION

More information

Foxhunt Offset Attenuator. Parts List:

Foxhunt Offset Attenuator. Parts List: When your closing in on the fox you may find the signals to be so strong that you can no longer find a peak or null with your antenna. Sometimes the signal is so strong that the RF will leak straight into

More information

MFJ-203 Bandswitched Dip Meter

MFJ-203 Bandswitched Dip Meter MFJ-203 Bandswitched Dip Meter Thank you for purchasing the MFJ-203 Bandswitched Dip Meter. The MFJ-203 Bandswitched Dip Meter is a solid state bandswitched adaptation of the traditional grid dip meter.

More information

Amateur Wireless Station Operators License Exam

Amateur Wireless Station Operators License Exam Amateur Wireless Station Operators License Exam Study material 2017 South India Amateur Radio Society, Chennai CHAPTER 5 1 Chapter 5 Amateur Wireless Station Operators License Exam Study Material Chapter

More information

HT-1A Dual Band CW QRP Transceiver. Kit Building Instructions

HT-1A Dual Band CW QRP Transceiver. Kit Building Instructions HT-A Dual Band CW QRP Transceiver Kit Building Instructions Rev B, July 8, 08 Designed by BD4RG Exclusively distributed by CRKITS.COM and its worldwide distributors Join the group http://groups.io/g/crkits

More information

Electron Spin Resonance v2.0

Electron Spin Resonance v2.0 Electron Spin Resonance v2.0 Background. This experiment measures the dimensionless g-factor (g s ) of an unpaired electron using the technique of Electron Spin Resonance, also known as Electron Paramagnetic

More information

Treetop Circuits Owner s Manual for SB-SB-600 Adapter Version 1

Treetop Circuits Owner s Manual for SB-SB-600 Adapter Version 1 The SB-600 SSB adapter from Treetop Circuits (Fig. 1) is designed specifically as an accessory to the Hammarlund SP-600 series of receivers. It provides enhanced performance on SSB and CW signals, using

More information

Radio Receivers. Al Penney VO1NO

Radio Receivers. Al Penney VO1NO Radio Receivers Role of the Receiver The Antenna must capture the radio wave. The desired frequency must be selected from all the EM waves captured by the antenna. The selected signal is usually very weak

More information

Department of Electrical and Computer Engineering. Laboratory Experiment 1. Function Generator and Oscilloscope

Department of Electrical and Computer Engineering. Laboratory Experiment 1. Function Generator and Oscilloscope Department of Electrical and Computer Engineering Laboratory Experiment 1 Function Generator and Oscilloscope The purpose of this first laboratory assignment is to acquaint you with the function generator

More information

CT-2 and CT-3 Channel Taggers OPERATION MANUAL

CT-2 and CT-3 Channel Taggers OPERATION MANUAL CT-2 and CT-3 Channel Taggers OPERATION MANUAL Trilithic Company Profile Trilithic is a privately held manufacturer founded in 1986 as an engineering and assembly company that built and designed customer-directed

More information