An Adaptable Energy-Efficient Medium Access Control Protocol for Wireless Sensor Networks

Size: px
Start display at page:

Download "An Adaptable Energy-Efficient Medium Access Control Protocol for Wireless Sensor Networks"

Transcription

1 An Adaptable Energy-Efficient ium Access Control Protocol for Wireless Sensor Networks Justin T. Kautz 23 rd Information Operations Squadron, Lackland AFB TX Barry E. Mullins, Rusty O. Baldwin, Scott R. Graham Air Force Institute of Technology, Wright-Patterson AFB OH {Barry.Mullins, Rusty.Baldwin, Abstract We propose a medium access control protocol for wireless sensor networks (WSN) called Adaptive sensor ium Access Control (AMAC), which is based on the Sensor ium Access Control (S-MAC) protocol [1]. Since WSNs are energy constrained, the lifetime of the network must be increased by making it as energy efficient as possible. Whereas S-MAC uses a fixed duty cycle for sleeping, AMAC adapts to traffic conditions by incorporating multiple duty cycles. Under a high traffic load, AMAC has a short duty cycle and awakes more often. Under a low traffic load, AMAC has a longer duty cycle and awakes infrequently. The AMAC protocol is simulated in OPNET Modeler. Analysis indicates that AMAC uses 15% less power and 22% less energy cost per byte than S-MAC with a tradeoff in twice the latency. For an application insensitive to latency, the AMAC protocol offers an extended lifetime. 1. Introduction Wireless Sensor Networks (WSN) offer a powerful tool in information collection which can be deployed anywhere remotely with little to no maintenance required. A WSN collects and relays information until its energy is exhausted. Due to the inability to replenish the WSN with power after deployment, it becomes necessary to extend the lifetime of the network as much as possible to increase its effectiveness. Creating an energy-efficient, scalable medium access control (MAC) protocol is a vital part of this. There have been many approaches to creating energy-efficient wireless protocols; some are briefly discussed in Section 2. Creating an energy-efficient MAC is one technique to save energy. This paper describes how we modified an existing MAC protocol to make it more energy-efficient. The description of AMAC and the experiment to test it is provided in Section 3. Experimental results are discussed in Section 4. Section 5 provides the final conclusions and recommendations for future work. 2. Background WSNs are a logical extension of wireless networks, though with different priorities on performance such as throughput, latency, bandwidth, and energy consumption. One of the key differences between regular wireless networks and WSNs is the limited lifetime of a WSN. Normally, nodes in a WSN are powered by batteries and deployed to remote locations where it is not possible to change the battery. Such networks are deployed ad hoc with a limited communication range implying multi-hop routing is required to transfer data across the network [2]. Since the energy supply is limited, energy consumption is one of the primary metrics of interest when designing a WSN. Nodes can benefit from lower-level MAC innovations aimed more towards maximizing efficiency in point-to-point communications. Some MAC innovations take advantage of the fact that a node in a WSN spends the majority of its time idly listening to the medium instead of transmitting or receiving data. To save energy, the transceiver can be turned of for a time, called sleep cycles. The S-MAC protocol uses such an approach [1][3]. U.S. Government Work Not Protected by U.S. Copyright 1

2 A node will often receive transmissions intended for another node. To save energy, the transceiver could be turned off while nearby nodes are transmitting. Both the Power Aware Multi-Access protocol with Signaling (PAMAS) protocol [4] and S- MAC exhibit this behavior. Other approaches use a schedule-based as opposed to contention-based algorithm to maximize communication efficiency, e.g., the Traffic Adaptive ium Access (TRAMA) Protocol [5]. 3. Methodology S-MAC is energy efficient compared to standard wireless protocols like [1][6], yet it was not designed to be adaptable or flexible. The duty cycle of S-MAC, the duration of time it is awake compared to the entire cycle, is set before the network is deployed. The application drives the selection of the appropriate duty cycle; once set, the duty cycle is not varied. This static configuration limits the flexibility of S-MAC. The goal of our research is to make S-MAC more energy efficient by allowing it to dynamically adjust to various network conditions. We show that the average energy savings is, on average, better for this dynamic protocol, since it adjusts to traffic conditions and sleeps more during periods of inactivity. This behavior increases latency during these periods of low activity AMAC Protocol Design AMAC is similar in functionality to S-MAC, and therefore few changes are needed to the original protocol. AMAC changes its sleep duration (duty cycle) based upon recent traffic trends while maintaining communication. Duty cycles of inverse powers of 2 (e.g., 2 -n ) maintain common periods of activity as shown in Figure 1. An AMAC node informs neighboring nodes of changes which allows neighboring nodes to properly schedule communication with the node. Convergence of node schedules is on the order of minutes. This process continues throughout the operation of the network. Bounds are placed on the duty cycle to prevent it from waking up too often or sleeping too long between periods of activity. The first negates the effect of having an energy-efficient protocol, and the second decreases the response to network traffic increase after periods of inactivity. Moreover, synchronization must be maintained, and therefore an upper bound of 1/4 and lower bound of 1/64 were chosen for the duty cycle. Duty Cycle 1/2 1/4 1/4 1/16 1/32 = Listen Period = Sleep Period Figure 1. Duty cycle comparisons. Common periods of activity are maintained between neighbors. AMAC adapts to varying traffic conditions by maintaining a variable called currentusage which uses exponential forgetting. currentusage is affected by whether or not the listen period/slot of the duty cycle is used. A used slot means that data was either sent or received. The current usage value is Xn Xn-1 (1- ) ( ) 1 if slot was used, (1) 0 if slot was not used where is the sensitivity level. The sensitivity level can be varied between zero and one. The closer to zero, the more sensitive AMAC is to change; the closer to one, the less sensitive AMAC is to change. When the sensitivity is one, it behaves exactly like S-MAC. The different sensitivity levels of AMAC are discussed further in Section 3. Duty cycle transition points were determined via pilot studies and provide overlap with adjacent duty cycle speeds to minimize rapid fluctuation of duty cycles. The duty cycles are derived as 1 1 T DC min, max, DC if X n DC T 1if Xn 3DC, (2) 0 otherwise where DC is the duty cycle. With the duty cycle information from neighboring nodes, three optimizations can be made. The first involves the SYNC period; a node only wakes up for the SYNC period during the slot of its slowest neighbor. This prevents a node from sending a SYNC when all of its neighbors may not be listening. The second optimization is when a node transmits to a 2

3 node on a slower duty cycle. If the slower neighbor is not currently awake, the node does not send an RTS, thereby alleviating unproductive network traffic and the energy loss therein. The third optimization involves a slower neighbor transmitting to a faster neighbor. If the slower node fails to attain the medium, meaning it was not successful in sending an RTS or receiving the corresponding CTS, it reschedules to wakeup during the faster neighbor s next wakeup period. congestion and dependence on successful transmissions for currentusage can lead to network deadlock where each node eventually transmits at the slowest duty cycle. To avoid congestion, if a node s packet buffer exceeds an upper boundary, it enters a packet dump mode. When the packet buffer goes below a lower boundary it exits that mode. The boundaries are set to be 20% and 75% of the buffer size based upon initial tests. In packet dump mode, a node only acts as a receiver during adjacent slots. These are slots not synchronized with the next slowest duty cycle. Figure 2 shows an example with the 1/2 duty cycle. Additionally, that node counts every slot it hears an RTS or CTS as a used slot increasing currentusage which increases the duty cycle. This increases the transmission opportunity of that node allowing it to transmit faster and empty its buffer. Duty Cycle 1/2 1/4 = Common Slot = Adjacent Slot Figure 2. Adjacent slots illustrated 3.2. Experimental Design The evaluation technique is simulation using OPNET 11.0.A. A detailed model of AMAC was created using the S-MAC model as a baseline. A full factorial experiment with 20 repetitions was conducted. The first factor is traffic sensitivity,, with sensitivity levels of none (1.00), low (0.99), medium (0.98), and high (0.96). The high level, 0.96, was chosen so that at least two successful transmissions (used slots) will cause a transition to a faster duty cycle regardless of X n current value. For example, assuming X n-1 is zero, (1) can be used to derive a reasonable high traffic sensitivity level by equating the upper boundary for the slowest duty cycle (3/64) to two used slots (with 15 intermediate unused cycles): 3 st 01 used slot 15 unused slots 64 nd 2 used slot (3) The exponential forget factor is multiplied by the first success fifteen times in (3) since X n is based on the fastest duty cycle, there are fifteen slots of the fastest cycle between each slot of the slowest cycle. Therefore, the maximum for two successful sequential transmissions to cause a transition from the slowest duty cycle works out to be approximately The maximum for one successful transmission to cause a transition from the slowest duty cycle is the upper boundary for the slowest duty cycle, which is approximately The high level for the experiment, 0.96, is the midpoint between these two values, 0.97 and Therefore, at least two successful sequential transmissions will cause a transition from the slowest duty cycle. The medium and low levels were chosen so that it would require two and four times the amount of time as the high level to transition between duty cycles respectively. This means that the medium and low levels are two and four times less sensitive to change in traffic. The second factor is the packet interarrival period which is exponentially distributed and varied between low, medium and high, defined as 5, 10, and 20 packets per second respectively. The third factor is the duty cycle for burstiness which is exponentially distributed and varied between low, medium, and high, defined as 33%, 66%, and 100%. The period for the burstiness duty cycle is 9 minutes. This value is based upon the minimum time it takes to go from the fastest to the slowest duty cycle with the low sensitivity, 66% burstiness duty cycle and no usage. The node topology is the fourth factor and is varied between Topology 1 and Topology 2 to simulate two different variations of topologies. Topology 1 (Figure 3), the two source - two sink topology, has the highest expected power for an individual node at the intermediary node (node C). Topology 2 (Figure 4), a line network, has the longest expected latency. The 3

4 experimental factors and their levels are shown in Table Main Effects Plot for ETE Delay (S) 350 Mean of ETE Delay (S) Figure 3. Topology 1: Two hop network with two sources and sinks [3] 150 Figure 6. Mean end-to-end delay Figure 4. Topology 2: Ten node linear network with one source and sink Table 1 - List of factors and their levels Traffic Interarrival Period (S) Burstiness (duty cycle) Topology 5 33% Cross 10 66% Line % 4. Analysis and Results The analysis explores the fundamental tradeoffs in end-to-end latency and energy costs for sending messages using the AMAC protocol. The mean power and end-to-end delay for the different levels of sensitivity are plotted in Figure 5 and Figure 6. The overall mean for all levels is indicated by the bisecting line. The power in Figure 5 shows an overall average energy savings of 15% for AMAC (low, med, high) over S-MAC (none). This was not as much as expected; however, S-MAC used a 6.75% duty cycle which is close to optimal for the interarrival rates [1]. Furthermore, the burstiness of traffic did not allow for long periods of inactivity. As Figure 7 and Figure 8 show, as traffic decreases, the AMAC energy savings become more pronounced. Figure 6 shows that S-MAC has the least amount of end-to-end delay., medium and high sensitivity have two to three times more latency than S-MAC. The streamput response in Figure 9, which is the number of bytes delivered from source to destination per unit time, shows that the original S-MAC is better. Nodes using AMAC on faster duty cycles have to queue packets destined for slower nodes which increases the end-to-end delay and also lowers streamput. S-MAC has a constant duty cycle and therefore has no such problems and therefore has higher streamput Main Effects Plot for Power (mj/s) 2.75 Interaction Plot for Power (mj/s) Burstiness Mean of Energy (mj/s) Mean Figure 5. Mean power Figure 7. Mean power for interaction of sensitivity and burstiness 4

5 Interaction Plot for Power (mj/s) Main Effects Plot for Throughput (Bytes/S) Mean Interarrival Mean of Throughput (Bytes/S) Figure 8. Mean power for interaction of sensitivity and interarrival Figure 10. Mean throughput Main Effects Plot for Energy/Stream (µj/byte) Mean of Streamput (Bytes/S) Main Effects Plot for Streamput (Bytes/S) Mean of Energy/Stream (µj/byte) Figure 9. Mean streamput Throughput is defined as the amount of traffic delivered between adjacent nodes only. Figure 10 demonstrates that AMAC exhibits better throughput for all sensitivity levels. This is due to AMAC s ability to adapt its duty cycle; each node is awakened and transmits based on the characteristics of recent traffic. AMAC provides more throughput due to traffic adaptation, but provides less streamput due to temporary differences in duty cycle levels. Figure 7 and Figure 8 show that a low sensitivity provides the best energy savings. This assumption is valid as long as raw power is the most important variable. However, streamput and throughput, as shown in Figure 9 and Figure 10, show that the best level is medium despite the fact that the medium level exhibits the worst energy value for AMAC. The average energy cost of transmitting a byte is calculated by taking the ratio of power to streamput and power to throughput give energy/stream (Figure 11) and energy/link (Figure 12) measured in J/Byte. Figure 11. Mean energy/stream cost AMAC provides an energy cost per byte savings of 22% over S-MAC. Figure 11 shows that the low sensitivity level yields the best energy cost for delivering a packet from source to destination. However, Figure 12 shows the medium sensitivity level is better than low sensitivity in energy cost per byte in communication between neighbors. ium and low sensitivity are the two best candidates for use in the AMAC protocol since high sensitivity is noticeably worse in energy/stream and energy/link. Based on an analysis of the computational effects of each sensitivity level, the medium sensitivity provides the best protocol performance when considering all factors. 5. Conclusion The goal of this research is to modify an existing protocol to make it more adaptive and therefore more energy efficient. AMAC is the latest generation energy-efficient MAC by being able to adapt to traffic which enables higher energy savings. 5

6 The results are promising. AMAC performs better with a 15% decrease in overall network power, a 22% decrease in energy/byte and 4% more throughput. These came at the cost of 7% less streamput and double the latency. For applications which are not time sensitive and can accommodate some delay, AMAC offers a solution for extending the overall lifetime of a network. Mean of Energy/Link (µj/byte) Main Effects Plot for Energy/Link (µj/byte) Figure 12. Mean energy/link cost An example where AMAC will excel would be the deployment of sensors whose application or location precludes a small number of sensor events. For instance, ground motion sensors with the purpose of detecting vehicle or troop movements. Such sensors in certain locations would experience large periods of inactivity and AMAC has shown to have a faster growth in energy savings as traffic decreases (Figure 7, 8). Some issues to be addressed with AMAC are increase of latency and decrease of streamput. In addition, the energy savings and cost can be increased with further optimizations and testing various configurations. AMAC can be adapted to work with other protocol s optimizations, such as newer versions of S-MAC to ascertain whether energy-efficiency can be increased further. Also larger network configurations need to be tested with AMAC to determine how it performs under higher node and link density. Finally, how AMAC affects energy efficiency with mobility needs to be determined. 6. References [1] W. Ye, J. Heidemann, and D. Estrin, An energyefficient MAC protocol for wireless sensor networks, In 21st Conference of the IEEE Computer and Communications Societies (INFOCOM), Vol. 3, pp , June [2] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, "Wireless sensor networks: A survey," Computer Networks (Elsevier) Journal, vol. 38, no. 4, pp , Mar [3] W. Ye, J, Heidemann, and D. Estrin, "ium Access Control With Coordinated Adaptive Sleeping for Wireless Sensor Networks", IEEE/ACM Transactions on Networking, Vol. 12, No. 3, June 2004, pp [4] S. Singh and C.S. Raghavendra, "PAMAS: Power aware multi-access protocol with signaling for ad hoc networks", ACM Comput. Commun. Rev., vol. 28, no. 3, pp. 5-26, July [5] V. Rajendran, K. Obraczka, J.J. Garcia-Luna-Aceves, "Energy-Efficient, Collision-Free ium Access Control for Wireless Sensor Networks", in Proc. SENSYS03, [6] IEEE, Wireless LAN medium access control (MAC) and physical layer specifications, ANSI/IEEE standard , 1999 Edition, Acknowledgements We thank the reviewers for their constructive and insightful comments. The views expressed in this paper are those of the authors and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the U.S. Government. 6

Utilization Based Duty Cycle Tuning MAC Protocol for Wireless Sensor Networks

Utilization Based Duty Cycle Tuning MAC Protocol for Wireless Sensor Networks Utilization Based Duty Cycle Tuning MAC Protocol for Wireless Sensor Networks Shih-Hsien Yang, Hung-Wei Tseng, Eric Hsiao-Kuang Wu, and Gen-Huey Chen Dept. of Computer Science and Information Engineering,

More information

Ultra-Low Duty Cycle MAC with Scheduled Channel Polling

Ultra-Low Duty Cycle MAC with Scheduled Channel Polling Ultra-Low Duty Cycle MAC with Scheduled Channel Polling Wei Ye and John Heidemann CS577 Brett Levasseur 12/3/2013 Outline Introduction Scheduled Channel Polling (SCP-MAC) Energy Performance Analysis Implementation

More information

Energy-Efficient Duty Cycle Assignment for Receiver-Based Convergecast in Wireless Sensor Networks

Energy-Efficient Duty Cycle Assignment for Receiver-Based Convergecast in Wireless Sensor Networks Energy-Efficient Duty Cycle Assignment for Receiver-Based Convergecast in Wireless Sensor Networks Yuqun Zhang, Chen-Hsiang Feng, Ilker Demirkol, Wendi B. Heinzelman Department of Electrical and Computer

More information

An Improved MAC Model for Critical Applications in Wireless Sensor Networks

An Improved MAC Model for Critical Applications in Wireless Sensor Networks An Improved MAC Model for Critical Applications in Wireless Sensor Networks Gayatri Sakya Vidushi Sharma Trisha Sawhney JSSATE, Noida GBU, Greater Noida JSSATE, Noida, ABSTRACT The wireless sensor networks

More information

Active RFID System with Wireless Sensor Network for Power

Active RFID System with Wireless Sensor Network for Power 38 Active RFID System with Wireless Sensor Network for Power Raed Abdulla 1 and Sathish Kumar Selvaperumal 2 1,2 School of Engineering, Asia Pacific University of Technology & Innovation, 57 Kuala Lumpur,

More information

AS-MAC: An Asynchronous Scheduled MAC Protocol for Wireless Sensor Networks

AS-MAC: An Asynchronous Scheduled MAC Protocol for Wireless Sensor Networks AS-MAC: An Asynchronous Scheduled MAC Protocol for Wireless Sensor Networks By Beakcheol Jang, Jun Bum Lim, Mihail Sichitiu, NC State University 1 Presentation by Andrew Keating for CS577 Fall 2009 Outline

More information

Adaptation of MAC Layer for QoS in WSN

Adaptation of MAC Layer for QoS in WSN Adaptation of MAC Layer for QoS in WSN Sukumar Nandi and Aditya Yadav IIT Guwahati Abstract. In this paper, we propose QoS aware MAC protocol for Wireless Sensor Networks. In WSNs, there can be two types

More information

Data Dissemination in Wireless Sensor Networks

Data Dissemination in Wireless Sensor Networks Data Dissemination in Wireless Sensor Networks Philip Levis UC Berkeley Intel Research Berkeley Neil Patel UC Berkeley David Culler UC Berkeley Scott Shenker UC Berkeley ICSI Sensor Networks Sensor networks

More information

Performance Analysis of Energy Consumption of AFECA in Wireless Sensor Networks

Performance Analysis of Energy Consumption of AFECA in Wireless Sensor Networks Proceedings of the World Congress on Engineering 2 Vol II WCE 2, July 6-8, 2, London, U.K. Performance Analysis of Energy Consumption of AFECA in Wireless Sensor Networks Yun Won Chung Abstract Energy

More information

Feasibility and Benefits of Passive RFID Wake-up Radios for Wireless Sensor Networks

Feasibility and Benefits of Passive RFID Wake-up Radios for Wireless Sensor Networks Feasibility and Benefits of Passive RFID Wake-up Radios for Wireless Sensor Networks He Ba, Ilker Demirkol, and Wendi Heinzelman Department of Electrical and Computer Engineering University of Rochester

More information

TIME- OPTIMAL CONVERGECAST IN SENSOR NETWORKS WITH MULTIPLE CHANNELS

TIME- OPTIMAL CONVERGECAST IN SENSOR NETWORKS WITH MULTIPLE CHANNELS TIME- OPTIMAL CONVERGECAST IN SENSOR NETWORKS WITH MULTIPLE CHANNELS A Thesis by Masaaki Takahashi Bachelor of Science, Wichita State University, 28 Submitted to the Department of Electrical Engineering

More information

An Empirical Study of Harvesting-Aware Duty Cycling in Sustainable Wireless Sensor Networks

An Empirical Study of Harvesting-Aware Duty Cycling in Sustainable Wireless Sensor Networks An Empirical Study of Harvesting-Aware Duty Cycling in Sustainable Wireless Sensor Networks Pius Lee Mingding Han Hwee-Pink Tan Alvin Valera Institute for Infocomm Research (I2R), A*STAR 1 Fusionopolis

More information

INTRODUCTION TO WIRELESS SENSOR NETWORKS. CHAPTER 3: RADIO COMMUNICATIONS Anna Förster

INTRODUCTION TO WIRELESS SENSOR NETWORKS. CHAPTER 3: RADIO COMMUNICATIONS Anna Förster INTRODUCTION TO WIRELESS SENSOR NETWORKS CHAPTER 3: RADIO COMMUNICATIONS Anna Förster OVERVIEW 1. Radio Waves and Modulation/Demodulation 2. Properties of Wireless Communications 1. Interference and noise

More information

ODMAC: An On Demand MAC Protocol for Energy Harvesting Wireless Sensor Networks

ODMAC: An On Demand MAC Protocol for Energy Harvesting Wireless Sensor Networks ODMAC: An On Demand MAC Protocol for Energy Harvesting Wireless Sensor Networks Xenofon Fafoutis DTU Informatics Technical University of Denmark xefa@imm.dtu.dk Nicola Dragoni DTU Informatics Technical

More information

MAC Protocol with Regression based Dynamic Duty Cycle Feature for Mission Critical Applications in WSN

MAC Protocol with Regression based Dynamic Duty Cycle Feature for Mission Critical Applications in WSN MAC Protocol with Regression based Dynamic Duty Cycle Feature for Mission Critical Applications in WSN Gayatri Sakya Department of Electronics and Communication Engineering JSS Academy of Technical Education,

More information

Mobile Base Stations Placement and Energy Aware Routing in Wireless Sensor Networks

Mobile Base Stations Placement and Energy Aware Routing in Wireless Sensor Networks Mobile Base Stations Placement and Energy Aware Routing in Wireless Sensor Networks A. P. Azad and A. Chockalingam Department of ECE, Indian Institute of Science, Bangalore 5612, India Abstract Increasing

More information

A ROBUST SCHEME TO TRACK MOVING TARGETS IN SENSOR NETS USING AMORPHOUS CLUSTERING AND KALMAN FILTERING

A ROBUST SCHEME TO TRACK MOVING TARGETS IN SENSOR NETS USING AMORPHOUS CLUSTERING AND KALMAN FILTERING A ROBUST SCHEME TO TRACK MOVING TARGETS IN SENSOR NETS USING AMORPHOUS CLUSTERING AND KALMAN FILTERING Gaurang Mokashi, Hong Huang, Bharath Kuppireddy, and Subin Varghese Klipsch School of Electrical and

More information

Deployment Design of Wireless Sensor Network for Simple Multi-Point Surveillance of a Moving Target

Deployment Design of Wireless Sensor Network for Simple Multi-Point Surveillance of a Moving Target Sensors 2009, 9, 3563-3585; doi:10.3390/s90503563 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Article Deployment Design of Wireless Sensor Network for Simple Multi-Point Surveillance

More information

Behavioral Analysis of Cognitive Radio Sensor Networks for Intra Cluster and Inter Cluster Data Transmission

Behavioral Analysis of Cognitive Radio Sensor Networks for Intra Cluster and Inter Cluster Data Transmission Behavioral Analysis of Cognitive Radio Sensor Networks for Intra Cluster and Inter Cluster Data Transmission Rabiyathul Basariya.F 1 PG scholar, Department of Electronics and Communication Engineering,

More information

FTSP Power Characterization

FTSP Power Characterization 1. Introduction FTSP Power Characterization Chris Trezzo Tyler Netherland Over the last few decades, advancements in technology have allowed for small lowpowered devices that can accomplish a multitude

More information

Energy Efficient MAC Protocol with Localization scheme for Wireless Sensor Networks using Directional Antennas

Energy Efficient MAC Protocol with Localization scheme for Wireless Sensor Networks using Directional Antennas Energy Efficient MAC Protocol with Localization scheme for Wireless Sensor Networks using Directional Antennas Anique Akhtar Department of Electrical Engineering aakhtar13@ku.edu.tr Buket Yuksel Department

More information

Sense in Order: Channel Selection for Sensing in Cognitive Radio Networks

Sense in Order: Channel Selection for Sensing in Cognitive Radio Networks Sense in Order: Channel Selection for Sensing in Cognitive Radio Networks Ying Dai and Jie Wu Department of Computer and Information Sciences Temple University, Philadelphia, PA 19122 Email: {ying.dai,

More information

Analysis and Experiments for Dual-Rate Beacon Scheduling in ZigBee/IEEE

Analysis and Experiments for Dual-Rate Beacon Scheduling in ZigBee/IEEE The First International Workshop on Cyber-Physical Networking Systems Analysis and Experiments for Dual-Rate Beacon Scheduling in ZigBee/IEEE 82.15.4 Shantao Chen The State Key Laboratory of Industrial

More information

Guaranteeing the network lifetime in wireless sensor networks: A MAC layer approach

Guaranteeing the network lifetime in wireless sensor networks: A MAC layer approach Computer Communications 3 (27) 2532 2545 www.elsevier.com/locate/comcom Guaranteeing the network lifetime in wireless sensor networks: A MAC layer approach Yongsub Nam a, Taekyoung Kwon b, *, Hojin Lee

More information

Performance comparison of AODV, DSDV and EE-DSDV routing protocol algorithm for wireless sensor network

Performance comparison of AODV, DSDV and EE-DSDV routing protocol algorithm for wireless sensor network Performance comparison of AODV, DSDV and EE-DSDV routing algorithm for wireless sensor network Mohd.Taufiq Norhizat a, Zulkifli Ishak, Mohd Suhaimi Sauti, Md Zaini Jamaludin a Wireless Sensor Network Group,

More information

Ultra-Low Duty Cycle MAC with Scheduled Channel Polling

Ultra-Low Duty Cycle MAC with Scheduled Channel Polling USC/ISI Technical Report ISI-TR-64, July 25. This report is superseded by a later version published at ACM SenSys 6. 1 Ultra-Low Duty Cycle MAC with Scheduled Channel Polling Wei Ye and John Heidemann

More information

Politecnico di Milano Advanced Network Technologies Laboratory. Beyond Standard MAC Sublayer

Politecnico di Milano Advanced Network Technologies Laboratory. Beyond Standard MAC Sublayer Politecnico di Milano Advanced Network Technologies Laboratory Beyond Standard 802.15.4 MAC Sublayer MAC Design Approaches o Conten&on based n Allow collisions n O2en CSMA based (SMAC, STEM, Z- MAC, GeRaF,

More information

PMAC: An adaptive energy-efficient MAC protocol for Wireless Sensor Networks

PMAC: An adaptive energy-efficient MAC protocol for Wireless Sensor Networks PMAC: An adaptive energy-efficient MAC protocol for Wireless Sensor Networks Tao Zheng School of Computer Science University of Oklahoma Norman, Oklahoma 7309 65 Email: tao@ou.edu Sridhar Radhakrishnan

More information

Performance study of node placement in sensor networks

Performance study of node placement in sensor networks Performance study of node placement in sensor networks Mika ISHIZUKA and Masaki AIDA NTT Information Sharing Platform Labs, NTT Corporation 3-9-, Midori-Cho Musashino-Shi Tokyo 8-8585 Japan {ishizuka.mika,

More information

Modulated Backscattering Coverage in Wireless Passive Sensor Networks

Modulated Backscattering Coverage in Wireless Passive Sensor Networks Modulated Backscattering Coverage in Wireless Passive Sensor Networks Anusha Chitneni 1, Karunakar Pothuganti 1 Department of Electronics and Communication Engineering, Sree Indhu College of Engineering

More information

Fault-tolerant Coverage in Dense Wireless Sensor Networks

Fault-tolerant Coverage in Dense Wireless Sensor Networks Fault-tolerant Coverage in Dense Wireless Sensor Networks Akshaye Dhawan and Magdalena Parks Department of Mathematics and Computer Science, Ursinus College, 610 E Main Street, Collegeville, PA, USA {adhawan,

More information

Jinbao Li, Desheng Zhang, Longjiang Guo, Shouling Ji, Yingshu Li. Heilongjiang University Georgia State University

Jinbao Li, Desheng Zhang, Longjiang Guo, Shouling Ji, Yingshu Li. Heilongjiang University Georgia State University Jinbao Li, Desheng Zhang, Longjiang Guo, Shouling Ji, Yingshu Li Heilongjiang University Georgia State University Outline Introduction Protocols Design Theoretical Analysis Performance Evaluation Conclusions

More information

Scheduling Data Collection with Dynamic Traffic Patterns in Wireless Sensor Networks

Scheduling Data Collection with Dynamic Traffic Patterns in Wireless Sensor Networks Scheduling Data Collection with Dynamic Traffic Patterns in Wireless Sensor Networks Wenbo Zhao and Xueyan Tang School of Computer Engineering, Nanyang Technological University, Singapore 639798 Email:

More information

Lecture on Sensor Networks

Lecture on Sensor Networks Lecture on Sensor Networks Copyright (c) 2008 Dr. Thomas Haenselmann (University of Mannheim, Germany). Permission is granted to copy, distribute and/or modify this document under the terms of the GNU

More information

IEEE Wireless Access Method and Physical Specification

IEEE Wireless Access Method and Physical Specification IEEE 802.11 Wireless Access Method and Physical Specification Title: The importance of Power Management provisions in the MAC. Presented by: Abstract: Wim Diepstraten NCR WCND-Utrecht NCR/AT&T Network

More information

PW-MMAC: Predictive-Wakeup Multi-Channel MAC Protocol for Wireless Sensor Networks

PW-MMAC: Predictive-Wakeup Multi-Channel MAC Protocol for Wireless Sensor Networks 26 UKSim-AMSS 8th International Conference on Computer Modelling and Simulation : Predictive-Wakeup Multi-Channel MAC Protocol for Wireless Sensor Networks Shagufta Henna Computer Science Department Bahria

More information

Computer Networks II Advanced Features (T )

Computer Networks II Advanced Features (T ) Computer Networks II Advanced Features (T-110.5111) Wireless Sensor Networks, PhD Postdoctoral Researcher DCS Research Group For classroom use only, no unauthorized distribution Wireless sensor networks:

More information

Modeling and Analysis of Energy Conservation Scheme Based on Duty Cycling in Wireless Ad Hoc Sensor Network

Modeling and Analysis of Energy Conservation Scheme Based on Duty Cycling in Wireless Ad Hoc Sensor Network Sensors 2,, 5569-5589; doi:.339/s65569 OPEN ACCESS sensors ISSN 424-822 www.mdpi.com/journal/sensors Article Modeling and Analysis of Energy Conservation Scheme Based on Duty Cycling in Wireless Ad Hoc

More information

Starvation Mitigation Through Multi-Channel Coordination in CSMA Multi-hop Wireless Networks

Starvation Mitigation Through Multi-Channel Coordination in CSMA Multi-hop Wireless Networks Starvation Mitigation Through Multi-Channel Coordination in CSMA Multi-hop Wireless Networks Jingpu Shi Theodoros Salonidis Edward Knightly Networks Group ECE, University Simulation in single-channel multi-hop

More information

Preamble MAC Protocols with Non-persistent Receivers in Wireless Sensor Networks

Preamble MAC Protocols with Non-persistent Receivers in Wireless Sensor Networks Preamble MAC Protocols with Non-persistent Receivers in Wireless Sensor Networks Abdelmalik Bachir, Martin Heusse, and Andrzej Duda Grenoble Informatics Laboratory, Grenoble, France Abstract. In preamble

More information

Bottleneck Zone Analysis in WSN Using Low Duty Cycle in Wireless Micro Sensor Network

Bottleneck Zone Analysis in WSN Using Low Duty Cycle in Wireless Micro Sensor Network Bottleneck Zone Analysis in WSN Using Low Duty Cycle in Wireless Micro Sensor Network 16 1 Punam Dhawad, 2 Hemlata Dakhore 1 Department of Computer Science and Engineering, G.H. Raisoni Institute of Engineering

More information

Wireless ad hoc networks. Acknowledgement: Slides borrowed from Richard Y. Yale

Wireless ad hoc networks. Acknowledgement: Slides borrowed from Richard Y. Yale Wireless ad hoc networks Acknowledgement: Slides borrowed from Richard Y. Yang @ Yale Infrastructure-based v.s. ad hoc Infrastructure-based networks Cellular network 802.11, access points Ad hoc networks

More information

Part I: Introduction to Wireless Sensor Networks. Alessio Di

Part I: Introduction to Wireless Sensor Networks. Alessio Di Part I: Introduction to Wireless Sensor Networks Alessio Di Mauro Sensors 2 DTU Informatics, Technical University of Denmark Work in Progress: Test-bed at DTU 3 DTU Informatics, Technical

More information

Energy-Optimal and Energy-Balanced Sorting in a Single-Hop Wireless Sensor Network

Energy-Optimal and Energy-Balanced Sorting in a Single-Hop Wireless Sensor Network Energy-Optimal and Energy-Balanced Sorting in a Single-Hop Wireless Sensor Network Mitali Singh and Viktor K Prasanna Department of Computer Science University of Southern California Los Angeles, CA 90089,

More information

A Location-Aware Routing Metric (ALARM) for Multi-Hop, Multi-Channel Wireless Mesh Networks

A Location-Aware Routing Metric (ALARM) for Multi-Hop, Multi-Channel Wireless Mesh Networks A Location-Aware Routing Metric (ALARM) for Multi-Hop, Multi-Channel Wireless Mesh Networks Eiman Alotaibi, Sumit Roy Dept. of Electrical Engineering U. Washington Box 352500 Seattle, WA 98195 eman76,roy@ee.washington.edu

More information

ENERGY EFFICIENT SENSOR NODE DESIGN IN WIRELESS SENSOR NETWORKS

ENERGY EFFICIENT SENSOR NODE DESIGN IN WIRELESS SENSOR NETWORKS Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 4, April 2014,

More information

Optimized Asynchronous Multi-channel Neighbor Discovery

Optimized Asynchronous Multi-channel Neighbor Discovery Optimized Asynchronous Multi-channel Neighbor Discovery Niels Karowski TKN/TU-Berlin niels.karowski@tu-berlin.de Aline Carneiro Viana INRIA and TKN/TU-Berlin aline.viana@inria.fr Adam Wolisz TKN/TU-Berlin

More information

Modelling the Localization Scheme Integrated with a MAC Protocol in a Wireless Sensor Network

Modelling the Localization Scheme Integrated with a MAC Protocol in a Wireless Sensor Network Modelling the Localization Scheme Integrated with a MAC Protocol in a Wireless Sensor Network Suman Pandey Assistant Professor KNIT Sultanpur Sultanpur ABSTRACT Node localization is one of the major issues

More information

WUR-MAC: Energy efficient Wakeup Receiver based MAC Protocol

WUR-MAC: Energy efficient Wakeup Receiver based MAC Protocol WUR-MAC: Energy efficient Wakeup Receiver based MAC Protocol S. Mahlknecht, M. Spinola Durante Institute of Computer Technology Vienna University of Technology Vienna, Austria {mahlknecht,spinola}@ict.tuwien.ac.at

More information

PERFORMANCE ANALYSIS OF ROUTING PROTOCOLS FOR P INCLUDING PROPAGATION MODELS

PERFORMANCE ANALYSIS OF ROUTING PROTOCOLS FOR P INCLUDING PROPAGATION MODELS PERFORMANCE ANALYSIS OF ROUTING PROTOCOLS FOR 802.11P INCLUDING PROPAGATION MODELS Mit Parmar 1, Kinnar Vaghela 2 1 Student M.E. Communication Systems, Electronics & Communication Department, L.D. College

More information

Cross-layer Approach to Low Energy Wireless Ad Hoc Networks

Cross-layer Approach to Low Energy Wireless Ad Hoc Networks Cross-layer Approach to Low Energy Wireless Ad Hoc Networks By Geethapriya Thamilarasu Dept. of Computer Science & Engineering, University at Buffalo, Buffalo NY Dr. Sumita Mishra CompSys Technologies,

More information

Heterogenous Quorum-based Wakeup Scheduling for Duty-Cycled Wireless Sensor Networks

Heterogenous Quorum-based Wakeup Scheduling for Duty-Cycled Wireless Sensor Networks Heterogenous Quorum-based Wakeup Scheduling for Duty-Cycled Wireless Sensor Networks Shouwen Lai Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial

More information

POWER CONSUMPTION OPTIMIZATION ANALYSIS BASED ON BERKELEY-MAC PROTOCOL USING TAGUCHI AND ANOVA METHODS FOR WSN

POWER CONSUMPTION OPTIMIZATION ANALYSIS BASED ON BERKELEY-MAC PROTOCOL USING TAGUCHI AND ANOVA METHODS FOR WSN 20 th June 206. Vol.88. No.2 2005-206 JATIT & LLS. All rights reserved. ISSN: 992-8645 www.jatit.org E-ISSN: 87-395 POWER CONSUMPTION OPTIMIZATION ANALYSIS BASED ON BERKELEY-MAC PROTOCOL USING TAGUCHI

More information

Performance Limits of Fair-Access in Sensor Networks with Linear and Selected Grid Topologies John Gibson * Geoffrey G.

Performance Limits of Fair-Access in Sensor Networks with Linear and Selected Grid Topologies John Gibson * Geoffrey G. In proceedings of GLOBECOM Ad Hoc and Sensor Networking Symposium, Washington DC, November 7 Performance Limits of Fair-Access in Sensor Networks with Linear and Selected Grid Topologies John Gibson *

More information

On the Effects of Node Density and Duty Cycle on Energy Efficiency in Underwater Networks

On the Effects of Node Density and Duty Cycle on Energy Efficiency in Underwater Networks On the Effects of Node Density and Duty Cycle on Energy Efficiency in Underwater Networks Francesco Zorzi, Milica Stojanovic and Michele Zorzi Dipartimento di Ingegneria dell Informazione, Università degli

More information

Medium Access Control Protocol for WBANS

Medium Access Control Protocol for WBANS Medium Access Control Protocol for WBANS Using the slides presented by the following group: An Efficient Multi-channel Management Protocol for Wireless Body Area Networks Wangjong Lee *, Seung Hyong Rhee

More information

Multiple Receiver Strategies for Minimizing Packet Loss in Dense Sensor Networks

Multiple Receiver Strategies for Minimizing Packet Loss in Dense Sensor Networks Multiple Receiver Strategies for Minimizing Packet Loss in Dense Sensor Networks Bernhard Firner Chenren Xu Yanyong Zhang Richard Howard Rutgers University, Winlab May 10, 2011 Bernhard Firner (Winlab)

More information

Data Gathering. Chapter 4. Ad Hoc and Sensor Networks Roger Wattenhofer 4/1

Data Gathering. Chapter 4. Ad Hoc and Sensor Networks Roger Wattenhofer 4/1 Data Gathering Chapter 4 Ad Hoc and Sensor Networks Roger Wattenhofer 4/1 Environmental Monitoring (PermaSense) Understand global warming in alpine environment Harsh environmental conditions Swiss made

More information

Mobile and Sensor Systems. Lecture 6: Sensor Network Reprogramming and Mobile Sensors Dr Cecilia Mascolo

Mobile and Sensor Systems. Lecture 6: Sensor Network Reprogramming and Mobile Sensors Dr Cecilia Mascolo Mobile and Sensor Systems Lecture 6: Sensor Network Reprogramming and Mobile Sensors Dr Cecilia Mascolo In this lecture We will describe techniques to reprogram a sensor network while deployed. We describe

More information

Engineering Project Proposals

Engineering Project Proposals Engineering Project Proposals (Wireless sensor networks) Group members Hamdi Roumani Douglas Stamp Patrick Tayao Tyson J Hamilton (cs233017) (cs233199) (cs232039) (cs231144) Contact Information Email:

More information

EXTENDED BLOCK NEIGHBOR DISCOVERY PROTOCOL FOR HETEROGENEOUS WIRELESS SENSOR NETWORK APPLICATIONS

EXTENDED BLOCK NEIGHBOR DISCOVERY PROTOCOL FOR HETEROGENEOUS WIRELESS SENSOR NETWORK APPLICATIONS 31 st January 218. Vol.96. No 2 25 ongoing JATIT & LLS EXTENDED BLOCK NEIGHBOR DISCOVERY PROTOCOL FOR HETEROGENEOUS WIRELESS SENSOR NETWORK APPLICATIONS 1 WOOSIK LEE, 2* NAMGI KIM, 3 TEUK SEOB SONG, 4

More information

Performance Evaluation of Energy Consumption of Reactive Protocols under Self- Similar Traffic

Performance Evaluation of Energy Consumption of Reactive Protocols under Self- Similar Traffic International Journal of Computer Science & Communication Vol. 1, No. 1, January-June 2010, pp. 67-71 Performance Evaluation of Energy Consumption of Reactive Protocols under Self- Similar Traffic Dhiraj

More information

Exercise Data Networks

Exercise Data Networks (due till January 19, 2009) Exercise 9.1: IEEE 802.11 (WLAN) a) In which mode of operation is this network in? b) Why is the start of the back-off timers delayed until the DIFS contention phase? c) How

More information

Evaluation of the 6TiSCH Network Formation

Evaluation of the 6TiSCH Network Formation Evaluation of the 6TiSCH Network Formation Dario Fanucchi 1 Barbara Staehle 2 Rudi Knorr 1,3 1 Department of Computer Science University of Augsburg, Germany 2 Department of Computer Science University

More information

A Deadline-Aware Scheduling and Forwarding Scheme in Wireless Sensor Networks

A Deadline-Aware Scheduling and Forwarding Scheme in Wireless Sensor Networks Article A Deadline-Aware Scheduling and Forwarding Scheme in Wireless Sensor Networks Thi-Nga Dao 1, Seokhoon Yoon 1, * and Jangyoung Kim 2 Received: 8 November 15; Accepted: 17 December 15; Published:

More information

A Sensor Network Protocol for Automatic Meter Reading in an Apartment Building

A Sensor Network Protocol for Automatic Meter Reading in an Apartment Building A Sensor Network Protocol for Automatic Meter Reading in an Apartment Building Tetsuya Kawai 1 and Naoki Wakamiya 1 and Masayuki Murata 1 and Kentaro Yanagihara 2 and Masanori Nozaki 2 and Shigeru Fukunaga

More information

Comparison between Preamble Sampling and Wake-Up Receivers in Wireless Sensor Networks

Comparison between Preamble Sampling and Wake-Up Receivers in Wireless Sensor Networks Comparison between Preamble Sampling and Wake-Up Receivers in Wireless Sensor Networks Richard Su, Thomas Watteyne, Kristofer S. J. Pister BSAC, University of California, Berkeley, USA {yukuwan,watteyne,pister}@eecs.berkeley.edu

More information

ANT Channel Search ABSTRACT

ANT Channel Search ABSTRACT ANT Channel Search ABSTRACT ANT channel search allows a device configured as a slave to find, and synchronize with, a specific master. This application note provides an overview of ANT channel establishment,

More information

Coding aware routing in wireless networks with bandwidth guarantees. IEEEVTS Vehicular Technology Conference Proceedings. Copyright IEEE.

Coding aware routing in wireless networks with bandwidth guarantees. IEEEVTS Vehicular Technology Conference Proceedings. Copyright IEEE. Title Coding aware routing in wireless networks with bandwidth guarantees Author(s) Hou, R; Lui, KS; Li, J Citation The IEEE 73rd Vehicular Technology Conference (VTC Spring 2011), Budapest, Hungary, 15-18

More information

Wireless in the Real World. Principles

Wireless in the Real World. Principles Wireless in the Real World Principles Make every transmission count E.g., reduce the # of collisions E.g., drop packets early, not late Control errors Fundamental problem in wless Maximize spatial reuse

More information

Energy-Efficient Data Management for Sensor Networks

Energy-Efficient Data Management for Sensor Networks Energy-Efficient Data Management for Sensor Networks Al Demers, Cornell University ademers@cs.cornell.edu Johannes Gehrke, Cornell University Rajmohan Rajaraman, Northeastern University Niki Trigoni, Cornell

More information

Analysis of Bottleneck Delay and Throughput in Wireless Mesh Networks

Analysis of Bottleneck Delay and Throughput in Wireless Mesh Networks Analysis of Bottleneck Delay and Throughput in Wireless Mesh Networks Xiaobing Wu 1, Jiangchuan Liu 2, Guihai Chen 1 1 State Key Laboratory for Novel Software Technology, Nanjing University, China wuxb@dislab.nju.edu.cn,

More information

olsr.org 'Optimized Link State Routing' and beyond December 28th, 2005 Elektra

olsr.org 'Optimized Link State Routing' and beyond December 28th, 2005 Elektra olsr.org 'Optimized Link State Routing' and beyond December 28th, 2005 Elektra www.scii.nl/~elektra Introduction Olsr.org is aiming to an efficient opensource routing solution for wireless networks Work

More information

DiCa: Distributed Tag Access with Collision-Avoidance among Mobile RFID Readers

DiCa: Distributed Tag Access with Collision-Avoidance among Mobile RFID Readers DiCa: Distributed Tag Access with Collision-Avoidance among Mobile RFID Readers Kwang-il Hwang, Kyung-tae Kim, and Doo-seop Eom Department of Electronics and Computer Engineering, Korea University 5-1ga,

More information

Topology-Transparent Duty Cycling for Wireless Sensor Networks

Topology-Transparent Duty Cycling for Wireless Sensor Networks Topology-Transparent uty Cycling for Wireless Sensor Networks Yu Chen 1,EricFleury 2 and Violet R. Syrotiuk 3 1,2 ARES/INRIA 3 Computer Science& Engineering INSA de yon, France Arizona State University

More information

Adaptive Duty Cycling in Sensor Networks via Continuous Time Markov Chain Modelling

Adaptive Duty Cycling in Sensor Networks via Continuous Time Markov Chain Modelling Adaptive Duty Cycling in Sensor Networks via Continuous Time Markov Chain Modelling Ronald Chan, Pengfei Zhang, Wenyu Zhang, Ido Nevat, Alvin Valera, Hwee-Xian Tan and Natarajan Gautam Institute for Infocomm

More information

Validation of an Energy Efficient MAC Protocol for Wireless Sensor Network

Validation of an Energy Efficient MAC Protocol for Wireless Sensor Network Int. J. Com. Dig. Sys. 2, No. 3, 103-108 (2013) 103 International Journal of Computing and Digital Systems http://dx.doi.org/10.12785/ijcds/020301 Validation of an Energy Efficient MAC Protocol for Wireless

More information

The Use of A Mobile Sink for Quality Data Collection in Energy Harvesting Sensor Networks

The Use of A Mobile Sink for Quality Data Collection in Energy Harvesting Sensor Networks 3 IEEE Wireless Communications and Networking Conference (WCNC): NETWORKS The Use of A Mobile Sink for Quality Data Collection in Energy Harvesting Sensor Networks Xiaojiang Ren Weifa Liang Research School

More information

March 20 th Sensor Web Architecture and Protocols

March 20 th Sensor Web Architecture and Protocols March 20 th 2017 Sensor Web Architecture and Protocols Soukaina Filali Boubrahimi Why a energy conservation in WSN is needed? Growing need for sustainable sensor networks Slow progress on battery capacity

More information

Achieving Network Consistency. Octav Chipara

Achieving Network Consistency. Octav Chipara Achieving Network Consistency Octav Chipara Reminders Homework is postponed until next class if you already turned in your homework, you may resubmit Please send me your peer evaluations 2 Next few lectures

More information

Transmission Scheduling in Capture-Based Wireless Networks

Transmission Scheduling in Capture-Based Wireless Networks ransmission Scheduling in Capture-Based Wireless Networks Gam D. Nguyen and Sastry Kompella Information echnology Division, Naval Research Laboratory, Washington DC 375 Jeffrey E. Wieselthier Wieselthier

More information

Syed Obaid Amin. Date: February 11 th, Networking Lab Kyung Hee University

Syed Obaid Amin. Date: February 11 th, Networking Lab Kyung Hee University Detecting Jamming Attacks in Ubiquitous Sensor Networks Networking Lab Kyung Hee University Date: February 11 th, 2008 Syed Obaid Amin obaid@networking.khu.ac.kr Contents Background Introduction USN (Ubiquitous

More information

Multi-Channel Design Considerations

Multi-Channel Design Considerations Multi-Channel Design Considerations ABSTRACT This application note addresses some important considerations that ANT developers should take into account when designing multi-channel solutions. Potential

More information

Aloha with Preamble Sampling for Sporadic Traffic in Ad Hoc Wireless Sensor Networks

Aloha with Preamble Sampling for Sporadic Traffic in Ad Hoc Wireless Sensor Networks Aloha with reamble Sampling for Sporadic Traffic in Ad Hoc Wireless Sensor Networks Amre El-Hoiydi CSE-CentreSuissed Electroniqueetdeicrotechnique Rue Jaquet-Droz, 27 Neuchâtel, Switzerland Abstract This

More information

Mathematical Problems in Networked Embedded Systems

Mathematical Problems in Networked Embedded Systems Mathematical Problems in Networked Embedded Systems Miklós Maróti Institute for Software Integrated Systems Vanderbilt University Outline Acoustic ranging TDMA in globally asynchronous locally synchronous

More information

INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET)

INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET) INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET) International Journal of Electronics and Communication Engineering & Technology (IJECET), ISSN ISSN 0976 6464(Print)

More information

Optimal Clock Synchronization in Networks. Christoph Lenzen Philipp Sommer Roger Wattenhofer

Optimal Clock Synchronization in Networks. Christoph Lenzen Philipp Sommer Roger Wattenhofer Optimal Clock Synchronization in Networks Christoph Lenzen Philipp Sommer Roger Wattenhofer Time in Sensor Networks Synchronized clocks are essential for many applications: Sensing TDMA Localization Duty-

More information

Fast and efficient randomized flooding on lattice sensor networks

Fast and efficient randomized flooding on lattice sensor networks Fast and efficient randomized flooding on lattice sensor networks Ananth Kini, Vilas Veeraraghavan, Steven Weber Department of Electrical and Computer Engineering Drexel University November 19, 2004 presentation

More information

A survey on broadcast protocols in multihop cognitive radio ad hoc network

A survey on broadcast protocols in multihop cognitive radio ad hoc network A survey on broadcast protocols in multihop cognitive radio ad hoc network Sureshkumar A, Rajeswari M Abstract In the traditional ad hoc network, common channel is present to broadcast control channels

More information

Design of an energy efficient Medium Access Control protocol for wireless sensor networks. Thesis Committee

Design of an energy efficient Medium Access Control protocol for wireless sensor networks. Thesis Committee Design of an energy efficient Medium Access Control protocol for wireless sensor networks Thesis Committee Masters Thesis Defense Kiran Tatapudi Dr. Chansu Yu, Dr. Wenbing Zhao, Dr. Yongjian Fu Organization

More information

An Efficient Forward Error Correction Scheme for Wireless Sensor Network

An Efficient Forward Error Correction Scheme for Wireless Sensor Network Available online at www.sciencedirect.com Procedia Technology 4 (2012 ) 737 742 C3IT-2012 An Efficient Forward Error Correction Scheme for Wireless Sensor Network M.P.Singh a, Prabhat Kumar b a Computer

More information

Reliable and Energy-Efficient Data Delivery in Sparse WSNs with Multiple Mobile Sinks

Reliable and Energy-Efficient Data Delivery in Sparse WSNs with Multiple Mobile Sinks Reliable and Energy-Efficient Data Delivery in Sparse WSNs with Multiple Mobile Sinks Giuseppe Anastasi Pervasive Computing & Networking Lab () Dept. of Information Engineering, University of Pisa E-mail:

More information

A Performance Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols

A Performance Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols A Performance Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols Josh Broch, David Maltz, David Johnson, Yih-Chun Hu and Jorjeta Jetcheva Computer Science Department Carnegie Mellon University

More information

Increasing Broadcast Reliability for Vehicular Ad Hoc Networks. Nathan Balon and Jinhua Guo University of Michigan - Dearborn

Increasing Broadcast Reliability for Vehicular Ad Hoc Networks. Nathan Balon and Jinhua Guo University of Michigan - Dearborn Increasing Broadcast Reliability for Vehicular Ad Hoc Networks Nathan Balon and Jinhua Guo University of Michigan - Dearborn I n t r o d u c t i o n General Information on VANETs Background on 802.11 Background

More information

EFFECT OF DUTY CYCLE ON ENERGY CONSUMPTION IN WIRELESS SENSOR NETWORKS

EFFECT OF DUTY CYCLE ON ENERGY CONSUMPTION IN WIRELESS SENSOR NETWORKS EFFECT OF DUTY CYCLE ON ENERGY CONSUMPTION IN WIRELESS SENSOR NETWORKS Jyoti Saraswat 1, and Partha Pratim Bhattacharya 2 Department of Electronics and Communication Engineering Faculty of Engineering

More information

Opportunistic Routing in Wireless Mesh Networks

Opportunistic Routing in Wireless Mesh Networks Opportunistic Routing in Wireless Mesh Networks Amir arehshoorzadeh amir@ac.upc.edu Llorenç Cerdá-Alabern llorenc@ac.upc.edu Vicent Pla vpla@dcom.upv.es August 31, 2012 Opportunistic Routing in Wireless

More information

Energy Efficient Data Gathering with Mobile Element Path Planning and SDMA-MIMO in WSN

Energy Efficient Data Gathering with Mobile Element Path Planning and SDMA-MIMO in WSN Energy Efficient Data Gathering with Mobile Element Path Planning and SDMA-MIMO in WSN G.R.Divya M.E., Communication System ECE DMI College of engineering Chennai, India S.Rajkumar Assistant Professor,

More information

Link State Routing. Stefano Vissicchio UCL Computer Science CS 3035/GZ01

Link State Routing. Stefano Vissicchio UCL Computer Science CS 3035/GZ01 Link State Routing Stefano Vissicchio UCL Computer Science CS 335/GZ Reminder: Intra-domain Routing Problem Shortest paths problem: What path between two vertices offers minimal sum of edge weights? Classic

More information

An approach for solving target coverage problem in wireless sensor network

An approach for solving target coverage problem in wireless sensor network An approach for solving target coverage problem in wireless sensor network CHINMOY BHARADWAJ KIIT University, Bhubaneswar, India E mail: chinmoybharadwajcool@gmail.com DR. SANTOSH KUMAR SWAIN KIIT University,

More information

An Energy Efficient Multi-Target Tracking in Wireless Sensor Networks Based on Polygon Tracking Method

An Energy Efficient Multi-Target Tracking in Wireless Sensor Networks Based on Polygon Tracking Method International Journal of Emerging Trends in Science and Technology DOI: http://dx.doi.org/10.18535/ijetst/v2i8.03 An Energy Efficient Multi-Target Tracking in Wireless Sensor Networks Based on Polygon

More information