Models of ionospheric VLF absorption of powerful ground based transmitters

Size: px
Start display at page:

Download "Models of ionospheric VLF absorption of powerful ground based transmitters"

Transcription

1 GEOPHYSICAL RESEARCH LETTERS, VOL. 39,, doi: /2012gl054437, 2012 Models of ionospheric VLF absorption of powerful ground based transmitters M. B. Cohen, 1 N. G. Lehtinen, 1 and U. S. Inan 1,2 Received 5 November 2012; accepted 16 November 2012; published 29 December [1] Ground based Very Low Frequency (VLF, 3 30 khz) radio transmitters play a role in precipitation of energetic Van Allen electrons. Initial analyses of the contribution of VLF transmitters to radiation belt losses were based on early models of trans-ionospheric propagation known as the Helliwell absorption curves, but some recent studies have found that the model overestimates (by db) the VLF energy reaching the magnetosphere. It was subsequently suggested that conversion of wave energy into electrostatic modes may be responsible for the error. We utilize a newly available extensive record of VLF transmitter energy reaching the magnetosphere, taken from the DEMETER satellite, and perform a direct comparison with a sophisticated full wave model of trans-ionospheric propagation. Although the model does not include the effect of ionospheric irregularities, it correctly predicts the average total power injected into the magnetosphere within several db. The results, particularly at nighttime, appear to be robust against the variability of the ionospheric electron density. We conclude that the global effect of irregularity scattering on whistler mode conversion to quasi-electrostatic may be no larger than 6 db. Citation: Cohen, M. B., N. G. Lehtinen, and U. S. Inan (2012), Models of ionospheric VLF absorption of powerful ground based transmitters, Geophys. Res. Lett., 39,, doi: /2012gl Introduction [2] The near-earth space environment is filled with energetic particles which threaten orbiting astronauts and satellite. The solar wind interaction with the magnetosphere injects particles into the magnetosphere which are subsequently accelerated to relativistic energies (>1 MeV). There exist two radiation belts, an inner belt between L of 1.2 3, and an outer belt between L of 4 6. The region between them is known as the slot region, and is typically depleted during quiet times, filling temporarily during geomagnetic storms. Satellites launched into orbit, particularly during solar maximum, must be shielded (adding weight and cost), or be at risk for degradation and failure. [3] The loss processes of energetic electrons are not fully understood. In the outer belt, the dominant processes are believed to include chorus waves, plasmaspheric hiss, 1 Department of Electrical Engineering, Stanford University, Stanford, California, USA. 2 Department of Electrical Engineering, Koc University, Sariyer- Istanbul, Turkey. Corresponding author: M. B. Cohen, 350 Serra Mall Rm. 356, Stanford, CA 94305, USA. (mcohen@stanford.edu) American Geophysical Union. All Rights Reserved /12/2012GL lightning-generated whistlers, and radial diffusion [Thorne, 2010]. The steadier inner radiation belt may also be influenced by manmade waves emitted by a set of Very Low Frequency (VLF, 3 30 khz) radio wave transmitters present at mid-latitudes. VLF radio waves are nominally for global communications or ionospheric remote sensing, due to their efficient propagation in the Earth-ionosphere waveguide. [4] Coherent signals from VLF transmitters are known to interact with radiation belt electrons [Helliwell, 1965, p. 279], as have ELF waves generated by the Siple Station transmitter [Helliwell and Katsufrakis, 1974] and the HAARP facility in Alaska [Gołkowski et al., 2008]. Efforts to quantify the total role of VLF transmitters were made by Inan et al. [1984], and then expanded by Abel and Thorne [1998], which found that transmitters play a significant role in determining radiation belt lifetimes below L 2.5, based on data from the Starfish experiment. [5] The calculations in Abel and Thorne [1998] were based on an early model of trans-ionospheric propagation to estimate the power reaching the magnetosphere, known as the Helliwell absorption curves [Helliwell, 1965, p. 71]. Starks et al. [2008] compared the curves with individual satellite passes and find that the model overestimates the magnetic field by at >20 db during nighttime, and 10 db during daytime, in mid-latitudes. Tao et al. [2010] note that the ionospheric electron density profile assumed by Helliwell [1965, p. 71] was different from both the International Reference Ionosphere (IRI) and from rocket data. If a more realistic profile is used, the overestimation is larger ( db). [6] The most prominent theory for explaining this overestimation centers around scattering of the VLF transmitter signal off irregularities in the ionosphere, and their subsequent conversion into quasi-electrostatic modes with high wave normal angle, which do not propagate efficiently. Bell et al. [2011] present DEMETER observations showing a clear impact of VLF heating on the ionosphere observable at 700 km altitude, which are not taken into account in smooth ionosphere models such as in Helliwell [1965, p. 71], Lehtinen and Inan [2009] and Tao et al. [2010]. Theoretical calculations can explain 3 6 db of loss in the F-region from irregularities [Foust et al., 2010]. Shao et al. [2012] account for irregularities generated by the nonlinear VLF transmitter heating and calculate 9 15 db of loss in the D and E regions. [7] Cohen and Inan [2012] present an extensive set of VLF transmitter measurements based on six years of compiled observations from the DEMETER satellite (680 km altitude) using survey mode data that include one electric and one magnetic field horizontal component. With this large database, the full radiation pattern is observed, both day and night, and the total power injected into the 1of5

2 Figure 1. Comparison of data and modeling for the NWC transmitter (1 MW, 19.8 khz). (a) The ionospheric electron density profile used, taken from the IRI. The calculated magnetic field (one horizontal component) (b) on the ground, (c) at 150 km altitude, and (d) at 680 km altitude, with the transmitter located at the origin. (e) The observed radiation pattern from DEMETER, taken from Cohen and Inan [2012]. magnetosphere summed, giving much more detail than individual satellite passes provide. In this paper, we provide an initial comparison of these measurements with a full wave model described by Lehtinen and Inan [2008] and Lehtinen and Inan [2009], and to the Helliwell absorption curves. 2. Modeling Results [8] Lehtinen and Inan [2008] and Lehtinen and Inan [2009] describe the full wave model of VLF transmitter propagation. We assume a flat Earth with s =10 4 S/m, and horizontally stratified slabs. The model calculates the reflection coefficient at each slab boundary and the modal solutions at specified locations either in or below the ionosphere. The method is similar to many previous analytical methods (summarized by Budden [1985, chapter 18]) but utilizes a new calculation method to eliminate the numerical swamping problem that plagued earlier efforts. [9] Figure 1 shows the inputs and outputs of the model, applied to the NWC transmitter in Australia ( S, E), radiating 1 MW at 19.8 khz. The geomagnetic field is taken from the IGRF model. Figure 1a shows the ionospheric electron density, taken from the IRI model for both daytime (02:24 UT on 21-Jun-2007) and nighttime (14:24 UT on 21-Dec-2007). The collision frequency includes electron-neutral and electron-ion collisions as in Swamy [1992], as used by Lehtinen and Inan [2009]. Figures 1b 1e show the results from the nighttime comparison. The source is assumed to be a vertical current dipole 100 m above the ground. Figures 1a and 1e show the calculated radiation pattern from NWC (one component of the horizontal electric field, RMS amplitude) on the ground (Figure 1b), 150 km altitude (Figure 1c), and 680 km altitude (Figure 1d), over a km area around the transmitter. [10] The ground signal is dominated by propagation in the Earth-ionosphere waveguide, with a modal interference pattern that manifests as concentric rings around the transmitter. Most of the absorption of VLF waves occurs in the D and E regions (i.e. below 150 km), after which point the wave propagates mostly along magnetic field lines, so that the ground model interference pattern is still evident, resembling the upward mapping of the ground interference pattern observed by Parrot et al. [2008]. The energy from the transmitter is strongest in a 300 km radius around a point centered 250 km to the north of the transmitter, due to the bending of the VLF energy along the magnetic field. [11] Figure 1e shows the observations of the electric field (RMS amplitude) from the six-year DEMETER data, as shown in Cohen and Inan [2012], excluding one long period in 2007 when NWC was off for maintenance. The data are binned into 25 km pixels and plotted over the same spatial range and colorscale for direct comparison. [12] Figure 2 shows the observed and modeled electric field values for 10 VLF transmitters at nighttime. Each horizontal set of three panels corresponds to one transmitter, whose call signs and frequencies are labeled at the top of the first two panels. The first of the three panels show the observed electric field data from DEMETER averaged over its lifetime [Cohen and Inan, 2012] using the calibrated color scale in the top right edge. The middle panel shows the calculated electric field data from the full wave model, using the same color scale. The third panel show the difference (in db) between the modeled and observed data, using the dimensionless color scale in the bottom right edge. High ratios (red) indicate that the model results overestimate the field strength, while low ratios (blue) means the model results underestimate the field strength, and light colors mean the model and data are fairly close. [13] The radiated powers taken as input to simulate the fields at 700 km are not known exactly but are estimated (at worst a couple db error) based either on near field measurements by the transmitter operators, or from comparisons of the fields on the ground with validated subionospheric propagation models such as Long Wave Propagation Capability [Ferguson, 1988]. The three transmitters at khz form the Russian Alpha network, a ground based predecessor to GPS. [14] It is difficult to directly compare the spatial pattern of the averaged radiation to a single model run. As seen in Figures 2 and 3, the calculated pattern has finer detail in the interference pattern. This difference results from the variability of the ionosphere from day to day. The spacing of the concentric ring interference pattern is largely set by the reflection height of VLF waves in the Earth-ionosphere waveguide, so that an averaged pattern over six years 2of5

3 Figure 2. Side by side comparisons of the observed and modeled VLF transmitter signals for each of 10 VLF transmitters (nighttime). contains an amalgamation of observations with different ionospheres, which smooths the averaged pattern. [15] The model correctly predicts the location of the energy emerging from the ionosphere, which is largely a function of the geomagnetic field direction. On each of the plots, a black dot indicates the location of the magnetic field line traced from 80 km above the transmitter, to the altitude 680 km, and the white dot is the location directly above the transmitter. On the other hand, the energy released by lower latitude transmitters such as NPM emerges hundreds of km equator-ward from the transmitter. The wave energy exits the ionosphere close to the geomagnetic field direction, Figure 3. Same as Figure 2 but for daytime. 3of5

4 Figure 4. Comparison of trans-ionospheric absorption models to observations. (top) The DEMETER-inferred absorption as a function of (left) radiated power of the transmitter and (right) geomagnetic latitude. (middle) The error of full wave model calculations, with positive values indicating an overestimation of the total power by the model. Values using the true IRI, as well as scaled versions with both higher and lower density are indicated. (bottom) the error of the Helliwell absorption curves. nearly parallel along the field line. Figure 3 shows the same comparison for daytime cases, and all the results are very similar. The same figures for magnetic field are included as auxiliary material. 1 [16] One notable shortcoming is apparent for the NPM comparison. The azimuthal distribution of the emerging power is beamed southward in the observed data more than in the model. This result is likely due to the horizontal stratification of the model, which takes a single value of the geomagnetic field in each plane. NPM is close enough to the equator that the power radiating southward encounters a rapidly changing geomagnetic field. [17] Cohen and Inan [2012] present calculations of the total power injected into space from each transmitter, using both the electric and magnetic field recordings from the DEMETER satellite survey mode. Electromagnetic waves propagating into the magnetosphere in this frequency range are dominated by the whistler mode, a right hand circularly polarized wave, allowing approximation of the Poynting Flux from! S av ¼ 1 E!! B =m 2 0 since propagation is nearly (within 10 ) parallel to the geomagnetic field. The total power is found by integrating that flux over the region encompassing the energy from the transmitter, as described by Cohen and Inan [2012], and is calculated in the same manner for the model results. [18] The total power of both the observed and calculated radiation patterns into the ionosphere are labeled in the panels in Figures 2 and 3. For nighttime calculations, the model errors range from a 5.2 db overestimation (ICV) to a 2.6 db underestimation (KOM). For daytime calculations, the model errors range from a 5.9 db overestimation of the 1 Auxiliary materials are available in the HTML. doi: / 2012GL total power at 700 km (NWC) to a 4.2 db underestimation (NPM). 3. Discussion [19] The ionospheric variability presents some uncertainty in our results. The collision frequency choice may impact the trans-ionospheric propagation by 0 3 db, as seen in Figure 2c of Lehtinen and Inan [2009]. However, the choice of electron density is very important [Tao et al., 2010]. [20] The IRI is known to be less accurate for the D-region, particularly at nighttime, although the ionospheric absorption of VLF waves may be dominated by the D region. Tao et al. [2010, Figure 6] addressed this uncertainty by analyzing a large number of rocket passes through the ionosphere, and finding a variability of nearly 1 2 orders of magnitude for the nighttime electron density in the D region, and order of magnitude for the daytime electron density. [21] To rule out a systematic error, we repeat the simulations with scaled versions of the IRI model. The model calculations are repeated with the electron density doubled and halved for daytime, multiplied by 5 and by 1/5 for nighttime. This technique injects a similar variability into the model calculations as may be in the IRI, and bounds our theoretical calculations. The nighttime power absorption calculation was altered by 1 db or less in all cases, while the daytime power absorption calculations changed by 5 10 db. Tao et al. [2010] found that correcting the electron density in the Helliwell absorption curve using rocket pass based data reduced the predicted absorption by 4 8 db for 20 khz at night, and db at daytime, in agreement with the conclusion here that the electron density variations in the daytime have a larger effect. [22] Figure 4 shows a comparison between observations and modeling. The top row shows the total DEMETER- 4of5

5 derived absorption, defined as the ratio of the power at 700 km to the radiated power on the ground. The left panel shows the absorption as a function of the radiated power, the right panel qffiffi as a function of geomagnetic latitude (defined as 1 arccos with respect to the L-shell value taken from the L IGRF model for 80 km above the transmitter). The lower two rows show the error between the model and observations for the full wave model described by Lehtinen and Inan [2008] (Figure 4, middle), and the 20 khz Helliwell absorption curves [Helliwell, 1965, p. 71] (Figure 4, bottom). Positive values indicate that the model overestimates the power reaching the satellite. [23] For the Lehtinen model, the calculated and observed powers for each transmitter are within 6 db for each transmitter and both daytime and nighttime with the correct IRI. Even when including the large uncertainty in the ionospheric electron density, the model calculations are within 6 db of the observed values for nighttime, and within 12 db for daytime, with one exception (NPM). It is possible that the magnetic field strength is correctly estimated by the model near the transmitter but is incorrect at large distances. [24] Lehtinen and Inan [2009] looked at a small number of satellite passes and found that the model overestimates the field by 10 db. This result was in part due to the differing method of model-data comparison, and in part because Lehtinen and Inan [2009] only carried the calculations out to 110 km altitude, and then projected the power flux to 700 km. In this present work we extended the full wave calculations all the way to 680 km. [25] At low latitudes, the Helliwell curves underestimate the absorbed power by as much as db due to its known shortcoming for nearly horizontal geomagnetic field lines. At mid latitudes, the Helliwell curves appear to overestimate the nighttime power by db, and underestimate the daytime power by 10 db. This indicates slightly closer agreement than found by Starks et al. [2008]. [26] The model error does not appear to be a strong function of transmitter power. The conversion from whistler mode to quasi-electrostatic modes Shao et al. [2012] relies at least in part on coherent transmitter heating for the generation of irregularities, leading to nonlinear transionospheric absorption. However, our results appear to suggest that the transionospheric absorption is linear at least up to 1 MW. We conclude that existing smooth full wave models of transionospheric absorption correctly predict the total power injected into the magnetosphere from VLF transmitters within 6 db, especially at nighttime. [27] Future work will compare the spatial pattern of the predicted and observed power and fields, to more precisely establish the global role (if any) of ionospheric irregularities. There is also a need for a set of absorption curves to replace those of Helliwell [1965, p. 71]. [28] Acknowledgments. This work has been supported by AFRL award FA C-0011 to Stanford University. We thank Michael Starks, Kevin Graf, Peder Hansen, and Dave Lauben for helpful discussions. We thank the DEMETER team, including Michel Parrot and Jean Jacques Berthelier for making the IMSC and ICE data available. [29] The Editor thanks one anonymous reviewer for assistance in evaluating this paper. References Abel, B., and R. M. Thorne (1998), Electron scattering loss in Earth s inner magnetosphere: 1. Dominant physical processes, J. Geophys. Res., 103(A2), Bell, T. F., K. L. Graf, U. S. Inan, D. Piddyachiy, and M. Parrot (2011), DEMETER observations of ionospheric heating by powerful VLF transmitters, Geophys. Res. Lett., 38, L11103, doi: /2011gl Budden, K. G. (1985), The Propagation of Radio Waves: The Theory of Radio Waves of Low Power in the Ionosphere and Magnetosphere, Cambridge Univ. Press, Cambridge, U. K. Cohen, M. B., and U. S. Inan (2012), Terrestrial VLF transmitter injection into the magnetosphere, J. Geophys. Res., 117, A08310, doi: / 2012JA Ferguson, J. A. (1988), Computer programs for assessment of longwavelength radio communications, version 2.0, Tech. Rep. Doc. 3030, Space and Nav. Warfare Syst. Command, San Diego, Calif. Foust, F. R., U. S. Inan, T. F. Bell, and Lehtinen (2010), Quasi-electrostatic whistler mode wave excitation by linear scattering of EM whistler mode waves from magnetic field-aligned density irregularities, J. Geophys. Res., 115, A11310, doi: /2010ja Gołkowski, M., U. S. Inan, A. R. Gibby, and M. B. Cohen (2008), Magnetospheric amplification and emission triggering by ELF/VLF waves injected by the 3.6 MW HAARP ionospheric heater, J. Geophys. Res., 113, A10201, doi: /2008ja Helliwell, R. A. (1965), Whistlers and Related Ionospheric Phenomena, Dover, New York. Helliwell, R. A., and J. P. Katsufrakis (1974), VLF wave injection into the magnetosphere from Siple Station, Antarctica, J. Geophys. Res., 79(16), Inan, U. S., H. C. Chang, and R. A. Helliwell (1984), Electron precipitation zones around major ground-based VLF signal sources, J. Geophys. Res., 89(A5), Lehtinen, N. G., and U. S. Inan (2008), Radiation of ELF/VLF waves by harmonically varying currents into a stratified ionosphere with application to radiation by a modulated electrojet, J. Geophys. Res., 113, A06301, doi: /2007ja Lehtinen, N. G., and U. S. Inan (2009), Full-wave modeling of transionospheric propagation of VLF waves, Geophys. Res. Lett., 36, L03104, doi: /2008gl Parrot, M., U. S. Inan, and N. G. Lehtinen (2008), V-shaped VLF streaks recorded on DEMETER above powerful thunderstorms, J. Geophys. Res., 113, A10310, doi: /2008ja Shao, X., B. Eliasson, A. S. Sharma, G. Milikh, and K. Papadopoulos (2012), Attenuation of whistler waves through conversion to lower hybrid waves in the low-altitude ionosphere, J. Geophys. Res., 117, A04311, doi: /2011ja Starks, M. J., R. A. Quinn, G. P. Ginet, J. M. Albert, G. S. Sales, B. W. Reinisch, and P. Song (2008), Illumination of the plasmasphere by terrestrial very low frequency transmitters: Model validation, J. Geophys. Res., 113, A09320, doi: /2008ja Swamy, A. C. (1992), Equatorial electro-jet parameters and the relevance of electromagnetic drafts (EMD) over Thumba, Astrophys. Space Sci., 191, Tao, X., J. Bortnik, and M. Friedrich (2010), Variance of transionospheric VLF wave power absorption, J. Geophys. Res., 115, A07303, doi: /2009ja Thorne, R. M. (2010), Radiation belt dynamics: The importance of waveparticle interactions, Geophys. Res. Lett., 37, L22107, doi: / 2010GL of5

Terrestrial VLF transmitter injection into the magnetosphere

Terrestrial VLF transmitter injection into the magnetosphere JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2012ja017992, 2012 Terrestrial VLF transmitter injection into the magnetosphere M. B. Cohen 1 and U. S. Inan 1,2 Received 1 June 2012; revised 15

More information

HAARP Generated ELF/VLF Waves for Magnetospheric Probing. Mark Gołkowski

HAARP Generated ELF/VLF Waves for Magnetospheric Probing. Mark Gołkowski HAARP Generated ELF/VLF Waves for Magnetospheric Probing Mark Gołkowski University of Colorado Denver M.B. Cohen, U. S. Inan, D. Piddyachiy Stanford University RF Ionospheric Workshop 20 April 2010 Outline

More information

V-shaped VLF streaks recorded on DEMETER above powerful thunderstorms

V-shaped VLF streaks recorded on DEMETER above powerful thunderstorms Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2008ja013336, 2008 V-shaped VLF streaks recorded on DEMETER above powerful thunderstorms M. Parrot, 1,2 U. S. Inan, 3

More information

Variance of transionospheric VLF wave power absorption

Variance of transionospheric VLF wave power absorption Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:1.129/29ja15115, 21 Variance of transionospheric VLF wave power absorption X. Tao, 1 J. Bortnik, 1 and M. Friedrich 2 Received

More information

Ionospheric Absorption

Ionospheric Absorption Ionospheric Absorption Prepared by Forrest Foust Stanford University, Stanford, CA IHY Workshop on Advancing VLF through the Global AWESOME Network VLF Injection Into the Magnetosphere Earth-based VLF

More information

Daytime modelling of VLF radio waves over land and sea, comparison with data from DEMETER Satellite

Daytime modelling of VLF radio waves over land and sea, comparison with data from DEMETER Satellite Daytime modelling of VLF radio waves over land and sea, comparison with data from DEMETER Satellite S. G. Meyer 1,2, A. B. Collier 1,2, C. J. Rodger 3 1 SANSA Space Science, Hermanus, South Africa 2 School

More information

Precipitation Signatures of Ground-Based VLF Transmitters

Precipitation Signatures of Ground-Based VLF Transmitters JOURNAL OF GEOPHYSICAL RESEARCH, VOL.???, XXXX, DOI:10.1029/, Precipitation Signatures of Ground-Based VLF Transmitters P. Kulkarni, 1 U. S. Inan, 1 T. F. Bell, 1 and J. Bortnik 2 P. Kulkarni, STAR Laboratory,

More information

Precipitation of Energetic Protons from the Radiation Belts. using Lower Hybrid Waves

Precipitation of Energetic Protons from the Radiation Belts. using Lower Hybrid Waves Precipitation of Energetic Protons from the Radiation Belts using Lower Hybrid Waves Lower hybrid waves are quasi-electrostatic whistler mode waves whose wave normal direction is very close to the whistler

More information

Abstract. Introduction

Abstract. Introduction Subionospheric VLF measurements of the effects of geomagnetic storms on the mid-latitude D-region W. B. Peter, M. Chevalier, and U. S. Inan Stanford University, 350 Serra Mall, Stanford, CA 94305 Abstract

More information

VLF wave intensity in the plasmasphere due to tropospheric lightning

VLF wave intensity in the plasmasphere due to tropospheric lightning JOURNAL OF GEOPHYSICAL RESEARCH: SPACE PHYSICS, VOL. 118, 4471 4482, doi:10.1002/jgra.50217, 2013 VLF wave intensity in the plasmasphere due to tropospheric lightning J. J. Colman 1 and M. J. Starks 1

More information

Whistler Wave Generation by Continuous HF Heating of the F-region Ionosphere

Whistler Wave Generation by Continuous HF Heating of the F-region Ionosphere Whistler Wave Generation by Continuous HF Heating of the F-region Ionosphere Aram Vartanyan 1 G. M. Milikh 1, B. Eliasson 1,2, A. C. Najmi 1, M. Parrot 3, K. Papadopoulos 1 1 Departments of Physics and

More information

Controlled precipitation of radiation belt electrons

Controlled precipitation of radiation belt electrons JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. A5, 1186, doi:10.1029/2002ja009580, 2003 Controlled precipitation of radiation belt electrons U. S. Inan, T. F. Bell, and J. Bortnik STAR Laboratory, Stanford

More information

C4: Collaborative Work on Novel Approaches to ELF/VLF Generation

C4: Collaborative Work on Novel Approaches to ELF/VLF Generation C4: Collaborative Work on Novel Approaches to ELF/VLF Generation Mark Golkowski University of Colorado Denver Robb Moore, Umran Inan, Morris Cohen, Ray Ingram, Tom Lee, Ed Kennedy, Paul Kossey C4: Collaborative

More information

Attenuation of whistler waves through conversion to lower hybrid waves in the low-altitude ionosphere

Attenuation of whistler waves through conversion to lower hybrid waves in the low-altitude ionosphere JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2011ja017339, 2012 Attenuation of whistler waves through conversion to lower hybrid waves in the low-altitude ionosphere X. Shao, 1 B. Eliasson,

More information

Energy distribution and lifetime of magnetospherically reflecting whistlers in the plasmasphere

Energy distribution and lifetime of magnetospherically reflecting whistlers in the plasmasphere JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. A5, 1199, doi:10.1029/2002ja009316, 2003 Energy distribution and lifetime of magnetospherically reflecting whistlers in the plasmasphere J. Bortnik, U. S.

More information

Radiation belt electron precipitation by manmade VLF transmissions

Radiation belt electron precipitation by manmade VLF transmissions Monday, 14 July, 2008 1 Radiation belt electron precipitation by manmade VLF transmissions 2 3 Rory J. Gamble and Craig J. Rodger Department of Physics, University of Otago, Dunedin, New Zealand 4 5 Mark

More information

Ground based measurements of ionospheric turbulence manifestations induced by the VLF transmitter ABSTRACT

Ground based measurements of ionospheric turbulence manifestations induced by the VLF transmitter ABSTRACT Ground based measurements of ionospheric turbulence manifestations induced by the VLF transmitter Dmitry S. Kotik, 1 Fedor I. Vybornov, 1 Alexander V. Ryabov, 1 Alexander V. Pershin 1 and Vladimir A. Yashnov

More information

The relationship between median intensities of electromagnetic emissions in the VLF range and lightning activity

The relationship between median intensities of electromagnetic emissions in the VLF range and lightning activity JOURNAL OF GEOPHYSICAL RESEARCH, VOL.???, XXXX, DOI:10.1029/, The relationship between median intensities of electromagnetic emissions in the VLF range and lightning activity F. Němec 1,2,3, O. Santolík

More information

DEMETER observations of an intense upgoing column of ELF/VLF radiation excited by the HAARP HF heater

DEMETER observations of an intense upgoing column of ELF/VLF radiation excited by the HAARP HF heater Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2008ja013208, 2008 DEMETER observations of an intense upgoing column of ELF/VLF radiation excited by the HAARP HF heater

More information

Azimuthal dependence of VLF propagation

Azimuthal dependence of VLF propagation JOURNAL OF GEOPHYSICAL RESEARCH: SPACE PHYSICS, VOL. 118, 1 5, doi:.0/jgra.533, 013 Azimuthal dependence of VLF propagation M. L. Hutchins, 1 Abram R. Jacobson, 1 Robert H. Holzworth, 1 and James B. Brundell

More information

Ionospheric effects of whistler waves from rocket-triggered lightning

Ionospheric effects of whistler waves from rocket-triggered lightning GEOPHYSICAL RESEARCH LETTERS, VOL. 38,, doi:10.1029/2011gl049869, 2011 Ionospheric effects of whistler waves from rocket-triggered lightning B. R. T. Cotts, 1 M. Gołkowski, 1 and R. C. Moore 2 Received

More information

NON-TYPICAL SERIES OF QUASI-PERIODIC VLF EMISSIONS

NON-TYPICAL SERIES OF QUASI-PERIODIC VLF EMISSIONS NON-TYPICAL SERIES OF QUASI-PERIODIC VLF EMISSIONS J. Manninen 1, N. Kleimenova 2, O. Kozyreva 2 1 Sodankylä Geophysical Observatory, Finland, e-mail: jyrki.manninen@sgo.fi; 2 Institute of Physics of the

More information

Radiation belt electron precipitation due to VLF transmitters: satellite observations

Radiation belt electron precipitation due to VLF transmitters: satellite observations Radiation belt electron precipitation due to VLF transmitters: satellite observations J.-A. Sauvaud 1, R. Maggiolo 1, C. Jacquey 1, M. Parrot 2, J.-J. Berthelier 3, R. J. Gamble 4 and Craig J. Rodger 4

More information

Relationship between median intensities of electromagnetic emissions in the VLF range and lightning activity

Relationship between median intensities of electromagnetic emissions in the VLF range and lightning activity Relationship between median intensities of electromagnetic emissions in the VLF range and lightning activity F Němec, O Santolík, Michel Parrot, C.J. Rodger To cite this version: F Němec, O Santolík, Michel

More information

The Ionosphere and Thermosphere: a Geospace Perspective

The Ionosphere and Thermosphere: a Geospace Perspective The Ionosphere and Thermosphere: a Geospace Perspective John Foster, MIT Haystack Observatory CEDAR Student Workshop June 24, 2018 North America Introduction My Geospace Background (Who is the Lecturer?

More information

CONTROLLED WAVE PARTICLE INTERACTION STUDIES IN THE RADIATION BELTS

CONTROLLED WAVE PARTICLE INTERACTION STUDIES IN THE RADIATION BELTS CONTROLLED WAVE PARTICLE INTERACTION STUDIES IN THE RADIATION BELTS DENNIS PAPADOPOULOS UMCP ACKNOWLEDGE: C.L.CHANG, J.LEBINSKY AT BAE SYSTEMS XI SHAO, B.ELIASSON, S. SHARMA AND G. MILIKH AT UMCP SUPPORT:

More information

POLAR AERONOMY AND RADIO SCIENCE (PARS) ULF/ELF/VLF PROJECT

POLAR AERONOMY AND RADIO SCIENCE (PARS) ULF/ELF/VLF PROJECT Page 1 of 28 POLAR AERONOMY AND RADIO SCIENCE (PARS) ULF/ELF/VLF PROJECT U. S. Inan and T. F. Bell STAR Laboratory, Stanford University Page 2 of 28 Outline 1. INTRODUCTION 2. SCIENTIFIC BACKGROUND 2.1.

More information

RADIATION BELT DYNAMICS

RADIATION BELT DYNAMICS AFRL-RV-PS- TR-2016-0007 AFRL-RV-PS- TR-2016-0007 RADIATION BELT DYNAMICS Jay M. Albert, et al. 27 December 2015 Final Report APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED. AIR FORCE RESEARCH

More information

Amplitude and phase of nonlinear magnetospheric wave growth excited by the HAARP HF heater

Amplitude and phase of nonlinear magnetospheric wave growth excited by the HAARP HF heater Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2009ja014610, 2010 Amplitude and phase of nonlinear magnetospheric wave growth excited by the HAARP HF heater M. Gołkowski,

More information

ELF/VLF wave generation using simultaneous CW and modulated HF heating of the ionosphere

ELF/VLF wave generation using simultaneous CW and modulated HF heating of the ionosphere JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116,, doi:10.1029/2010ja015902, 2011 ELF/VLF wave generation using simultaneous CW and modulated HF heating of the ionosphere R. C. Moore 1 and D. Agrawal 1 Received

More information

IONOSPHERIC SIGNATURES OF SEISMIC EVENTS AS OBSERVED BY THE DEMETER SATELLITE

IONOSPHERIC SIGNATURES OF SEISMIC EVENTS AS OBSERVED BY THE DEMETER SATELLITE IONOSPHERIC SIGNATURES OF SEISMIC EVENTS AS OBSERVED BY THE DEMETER SATELLITE M. Parrot and F. Lefeuvre LPC2E/CNRS, 3 A Av Recherche Scientifique 45071 Orleans cedex 2 France lefeuvre@cnrs-orleans.fr URSI

More information

SA11A Emission of ELF/VLF Waves by a Modulated Electrojet upwards into the Ionosphere and into the Earth- Ionosphere Waveguide

SA11A Emission of ELF/VLF Waves by a Modulated Electrojet upwards into the Ionosphere and into the Earth- Ionosphere Waveguide SA11A-0297 Emission of ELF/VLF Waves by a Modulated Electrojet upwards into the Ionosphere and into the Earth- Ionosphere Waveguide Nikolai G. Lehtinen (nleht@stanford.edu) Umran S. Inan Stanford University

More information

Significance of lightning-generated whistlers to inner radiation belt electron lifetimes

Significance of lightning-generated whistlers to inner radiation belt electron lifetimes JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. A12, 1462, doi:10.1029/2003ja009906, 2003 Significance of lightning-generated whistlers to inner radiation belt electron lifetimes Craig J. Rodger Department

More information

ALTITUDE PROFILES OF ELECTRON DENSITY DURING LEP EVENTS FROM VLF MONITORING OF THE LOWER IONOSPHERE

ALTITUDE PROFILES OF ELECTRON DENSITY DURING LEP EVENTS FROM VLF MONITORING OF THE LOWER IONOSPHERE The Sharjah-Stanford AWESOME VLF Workshop Sharjah, UAE, Feb 22-24, 2010. ALTITUDE PROFILES OF ELECTRON DENSITY DURING LEP EVENTS FROM VLF MONITORING OF THE LOWER IONOSPHERE Desanka Šulić 1 and Vladimir

More information

SPACE WEATHER SIGNATURES ON VLF RADIO WAVES RECORDED IN BELGRADE

SPACE WEATHER SIGNATURES ON VLF RADIO WAVES RECORDED IN BELGRADE Publ. Astron. Obs. Belgrade No. 80 (2006), 191-195 Contributed paper SPACE WEATHER SIGNATURES ON VLF RADIO WAVES RECORDED IN BELGRADE DESANKA ŠULIĆ1, VLADIMIR ČADEŽ2, DAVORKA GRUBOR 3 and VIDA ŽIGMAN4

More information

Influence of a ground-based VLF radio transmitter on the inner electron radiation belt

Influence of a ground-based VLF radio transmitter on the inner electron radiation belt JOURNAL OF GEOPHYSICAL RESEARCH: SPACE PHYSICS, VOL. 8, 628 635, doi:.02/jgra.50095, 203 Influence of a ground-based VLF radio transmitter on the inner electron radiation belt R. S. Selesnick, J. M. Albert,

More information

Illumination of the plasmasphere by terrestrial very low frequency transmitters: Model validation

Illumination of the plasmasphere by terrestrial very low frequency transmitters: Model validation JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2008ja013112, 2008 Illumination of the plasmasphere by terrestrial very low frequency transmitters: Model validation M. J. Starks, 1,2 R. A. Quinn,

More information

Modeling and Subionospheric VLF perturbations caused by direct and indirect effects of lightning

Modeling and Subionospheric VLF perturbations caused by direct and indirect effects of lightning Modeling and Subionospheric VLF perturbations caused by direct and indirect effects of lightning Prepared by Benjamin Cotts Stanford University, Stanford, CA IHY Workshop on Advancing VLF through the Global

More information

Longitudinal dependence of lightning induced electron precipitation

Longitudinal dependence of lightning induced electron precipitation JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116,, doi:10.1029/2011ja016581, 2011 Longitudinal dependence of lightning induced electron precipitation Benjamin R. T. Cotts, 1 Umran S. Inan, 2 and Nikolai G. Lehtinen

More information

Penetration of lightning MF signals to the upper ionosphere over VLF ground-based transmitters

Penetration of lightning MF signals to the upper ionosphere over VLF ground-based transmitters Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114,, doi:10.1029/2009ja014598, 2009 Penetration of lightning MF signals to the upper ionosphere over VLF ground-based transmitters M.

More information

Model for artificial ionospheric duct formation due to HF heating

Model for artificial ionospheric duct formation due to HF heating Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2010gl042684, 2010 Model for artificial ionospheric duct formation due to HF heating G. M. Milikh, 1 A. G. Demekhov, 2 K.

More information

Research Letter Waveguide Parameters of 19.8 khz Signal Propagating over a Long Path

Research Letter Waveguide Parameters of 19.8 khz Signal Propagating over a Long Path Research Letters in Physics Volume 29, Article ID 216373, 4 pages doi:1.1155/29/216373 Research Letter Waveguide Parameters of 19.8 khz Signal Propagating over a Long Path Sushil Kumar School of Engineering

More information

Asymmetric V shaped streaks recorded on board DEMETER satellite above powerful thunderstorms

Asymmetric V shaped streaks recorded on board DEMETER satellite above powerful thunderstorms JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116,, doi:10.1029/2011ja016794, 2011 Asymmetric V shaped streaks recorded on board DEMETER satellite above powerful thunderstorms F. El Lemdani Mazouz, 1 J. L. Pincon,

More information

Role of VLF power line harmonic radiation in precipitating energetic electrons at high latitude

Role of VLF power line harmonic radiation in precipitating energetic electrons at high latitude Indian Journal of adio & Space Physics Vol. 38, April 009, pp. 74-79 ole of VLF power line harmonic radiation in precipitating energetic electrons at high latitude am Prakash *, D D Gupta & Manoj Kumar

More information

High time resolution observations of HF cross-modulation within the D region ionosphere

High time resolution observations of HF cross-modulation within the D region ionosphere GEOPHYSICAL RESEARCH LETTERS, VOL. 4, 1912 1916, doi:1.12/grl.5391, 213 High time resolution observations of HF cross-modulation within the D region ionosphere J. Langston 1 andr.c.moore 1 Received 17

More information

Optical signatures of radiation belt electron precipitation induced by ground based VLF transmitters

Optical signatures of radiation belt electron precipitation induced by ground based VLF transmitters JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2010ja015394, 2010 Optical signatures of radiation belt electron precipitation induced by ground based VLF transmitters R. A. Marshall, 1 R. T. Newsome,

More information

VLF electromagnetic field structures in ionosphere disturbed by Sura RF heating facility

VLF electromagnetic field structures in ionosphere disturbed by Sura RF heating facility JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2010ja015484, 2010 VLF electromagnetic field structures in ionosphere disturbed by Sura RF heating facility V. O. Rapoport, 1 V. L. Frolov, 1 S.

More information

Large amplitude transmitter associated and lightning associated whistler waves in the Earth s inner plasmasphere at L < 2,

Large amplitude transmitter associated and lightning associated whistler waves in the Earth s inner plasmasphere at L < 2, JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116,, doi:10.1029/2010ja016288, 2011 Large amplitude transmitter associated and lightning associated whistler waves in the Earth s inner plasmasphere at L

More information

Extended lateral heating of the nighttime ionosphere by ground-based VLF transmitters

Extended lateral heating of the nighttime ionosphere by ground-based VLF transmitters JOURNAL OF GEOPHYSICAL RESEARCH: SPACE PHYSICS, VOL. 8, 7783 7797, doi:.2/23ja9337, 23 Extended lateral heating of the nighttime ionosphere by ground-based VLF transmitters K. L. Graf, M. Spasojevic, R.

More information

The Demonstrations & Science Experiment (DSX)

The Demonstrations & Science Experiment (DSX) The Demonstrations & Science Experiment (DSX) Radiation Belt Storm Probes Science Working Group 31 Aug 2010 Gregory Ginet, MIT/LL Michael Starks, AFRL Bob Johnston, AFRL Jay Albert, AFRL The Team Program

More information

Particle simulations of whistler-mode rising-tone emissions triggered by waves with different amplitudes

Particle simulations of whistler-mode rising-tone emissions triggered by waves with different amplitudes JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2011ja017428, 2012 Particle simulations of whistler-mode rising-tone emissions triggered by waves with different amplitudes Mitsuru Hikishima 1,2

More information

Multi-hop whistler-mode ELF/VLF signals and triggered emissions excited by the HAARP HF heater

Multi-hop whistler-mode ELF/VLF signals and triggered emissions excited by the HAARP HF heater GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L24805, doi:10.1029/2004gl021647, 2004 Multi-hop whistler-mode ELF/VLF signals and triggered emissions excited by the HAARP HF heater U. S. Inan, 1 M. Gol-kowski,

More information

ESS 7 Lectures 15 and 16 November 3 and 5, The Atmosphere and Ionosphere

ESS 7 Lectures 15 and 16 November 3 and 5, The Atmosphere and Ionosphere ESS 7 Lectures 15 and 16 November 3 and 5, 2008 The Atmosphere and Ionosphere The Earth s Atmosphere The Earth s upper atmosphere is important for groundbased and satellite radio communication and navigation.

More information

Effect of frequency modulation on whistler mode waves in the magnetosphere

Effect of frequency modulation on whistler mode waves in the magnetosphere Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114,, doi:10.1029/2009ja014155, 2009 Effect of frequency modulation on whistler mode waves in the magnetosphere A. V. Streltsov, 1 M. Gołkowski,

More information

Analysis of fine ELF wave structures observed poleward from the ionospheric trough by the low-altitude satellite DEMETER

Analysis of fine ELF wave structures observed poleward from the ionospheric trough by the low-altitude satellite DEMETER Analysis of fine ELF wave structures observed poleward from the ionospheric trough by the low-altitude satellite DEMETER Michel Parrot, František Nĕmec, Ondřej Santolík To cite this version: Michel Parrot,

More information

New applications of the portable heater. Gennady Milikh, UMD-SPP group

New applications of the portable heater. Gennady Milikh, UMD-SPP group New applications of the portable heater Gennady Milikh, UMD-SPP group 1 Stabilization of equatorial spread F (ESF) by ion injection 2 ESF characterizes spreading in the height of F-region backscatter return

More information

Radio Science. Estimate of a D region ionospheric electron density profile from MF radio wave observations by the S rocket

Radio Science. Estimate of a D region ionospheric electron density profile from MF radio wave observations by the S rocket RESEARCH ARTICLE Key Points: Observed the MF radio wave propagation characteristics in the ionospheric D region The polarized mode waves propagation characteristics obtained by analyzing the observed waveform

More information

VARIATIONS OF VLF SIGNALS RECEIVED ON DEMETER SATELLITE. IN ASSOCIATION WITH SEISMICITY A. Rozhnoi 1, M. Solovieva 1, Molchanov O.

VARIATIONS OF VLF SIGNALS RECEIVED ON DEMETER SATELLITE. IN ASSOCIATION WITH SEISMICITY A. Rozhnoi 1, M. Solovieva 1, Molchanov O. VARIATIONS OF VLF SIGNALS RECEIVED ON DEMETER SATELLITE IN ASSOCIATION WITH SEISMICITY A. Rozhnoi 1, M. Solovieva 1, Molchanov O. 1 1 Institute of the Earth Physics, RAS, Bolshaya Gruzinskaya 10, Moscow,

More information

HAARP-induced Ionospheric Ducts

HAARP-induced Ionospheric Ducts HAARP-induced Ionospheric Ducts Gennady Milikh, University of Maryland in collaboration with: Dennis Papadopoulos, Chia-Lee Chang, Hira Shroff, BAE systems Evgeny Mishin, AFRL/RVBXI, Hanscom AFB Michel

More information

Optical and VLF Imaging of Lightning-Ionosphere Interactions

Optical and VLF Imaging of Lightning-Ionosphere Interactions Optical and VLF Imaging of Lightning-Ionosphere Interactions Umran Inan Packard Bldg. 355, STAR Laboratory phone: (650) 723-4994 fax: (650) 723-9251 email: inan@nova.stanford.edu Award Number: N000140310333

More information

Multi-band Whistler-mode Chorus Emissions Observed by the Cluster Spacecraft

Multi-band Whistler-mode Chorus Emissions Observed by the Cluster Spacecraft WDS'11 Proceedings of Contributed Papers, Part II, 91 96, 211. ISBN 978-8-7378-185-9 MATFYZPRESS Multi-band Whistler-mode Chorus Emissions Observed by the Cluster Spacecraft E. Macúšová and O. Santolík

More information

RESONANCE Project for Studies of Wave-Particle Interactions in the Inner Magnetosphere. Anatoly Petrukovich and Resonance team

RESONANCE Project for Studies of Wave-Particle Interactions in the Inner Magnetosphere. Anatoly Petrukovich and Resonance team RESONANCE Project for Studies of Wave-Particle Interactions in the Inner Magnetosphere Ω Anatoly Petrukovich and Resonance team РЕЗОНАНС RESONANCE Resonance Inner magnetospheric mission Space weather Ring

More information

A study of the ionospheric effect on GBAS (Ground-Based Augmentation System) using the nation-wide GPS network data in Japan

A study of the ionospheric effect on GBAS (Ground-Based Augmentation System) using the nation-wide GPS network data in Japan A study of the ionospheric effect on GBAS (Ground-Based Augmentation System) using the nation-wide GPS network data in Japan Takayuki Yoshihara, Electronic Navigation Research Institute (ENRI) Naoki Fujii,

More information

The Earth s Atmosphere

The Earth s Atmosphere ESS 7 Lectures 15 and 16 May 5 and 7, 2010 The Atmosphere and Ionosphere The Earth s Atmosphere The Earth s upper atmosphere is important for groundbased and satellite radio communication and navigation.

More information

DEMETER observations of ELF waves injected with the HAARP HF transmitter

DEMETER observations of ELF waves injected with the HAARP HF transmitter Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 33, L16101, doi:10.1029/2006gl026462, 2006 DEMETER observations of ELF waves injected with the HAARP HF transmitter M. Platino, 1 U. S. Inan,

More information

CLUSTER observations of lower hybrid waves excited at high altitudes by electromagnetic whistler mode signals from the HAARP facility

CLUSTER observations of lower hybrid waves excited at high altitudes by electromagnetic whistler mode signals from the HAARP facility GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L06811, doi:10.1029/2003gl018855, 2004 CLUSTER observations of lower hybrid waves excited at high altitudes by electromagnetic whistler mode signals from the HAARP

More information

First Results from the 2014 Coordinated Measurements Campaign with HAARP and CASSIOPE/ePOP

First Results from the 2014 Coordinated Measurements Campaign with HAARP and CASSIOPE/ePOP First Results from the 2014 Coordinated Measurements Campaign with HAARP and CASSIOPE/ePOP Carl L. Siefring, Paul A. Bernhardt, Stanley J. Briczinski, and Michael McCarrick Naval Research Laboratory Matthew

More information

Early VLF perturbations caused by lightning EMP-driven dissociative attachment

Early VLF perturbations caused by lightning EMP-driven dissociative attachment GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L21807, doi:10.1029/2008gl035358, 2008 Early VLF perturbations caused by lightning EMP-driven dissociative attachment R. A. Marshall, 1 U. S. Inan, 1 and T. W. Chevalier

More information

Three-dimensional ray tracing of VLF waves in a magnetospheric environment containing a plasmaspheric plume

Three-dimensional ray tracing of VLF waves in a magnetospheric environment containing a plasmaspheric plume Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L22101, doi:10.1029/2009gl040451, 2009 Three-dimensional ray tracing of VLF waves in a magnetospheric environment containing a plasmaspheric

More information

Comparing the Low-- and Mid Latitude Ionosphere and Electrodynamics of TIE-GCM and the Coupled GIP TIE-GCM

Comparing the Low-- and Mid Latitude Ionosphere and Electrodynamics of TIE-GCM and the Coupled GIP TIE-GCM Comparing the Low-- and Mid Latitude Ionosphere and Electrodynamics of TIE-GCM and the Coupled GIP TIE-GCM Clarah Lelei Bryn Mawr College Mentors: Dr. Astrid Maute, Dr. Art Richmond and Dr. George Millward

More information

Anomalistic wave propagation phenomena in whistler waveforms detected on wide-band VLF recordings of the DEMETER satellite

Anomalistic wave propagation phenomena in whistler waveforms detected on wide-band VLF recordings of the DEMETER satellite International Symposium DEMETER. Results of the DEMETER project and of the recent advances in the seismo-electromagnetic effects and the ionospheric physic CNES, Toulouse-Labege, 14-16 June 2006 Anomalistic

More information

Observations of the impenetrable barrier, the plasmapause, and the VLF bubble during the 17 March 2015 storm

Observations of the impenetrable barrier, the plasmapause, and the VLF bubble during the 17 March 2015 storm Observations of the impenetrable barrier, the plasmapause, and the VLF bubble during the 17 March 2015 storm The MIT Faculty has made this article openly available. Please share how this access benefits

More information

SATELLITE THREAT DUE TO HIGH ALTITUDE NUCLEAR DETONATIONS

SATELLITE THREAT DUE TO HIGH ALTITUDE NUCLEAR DETONATIONS SATELLITE THREAT DUE TO HIGH ALTITUDE NUCLEAR DETONATIONS DENNIS PAPADOPOULOS PHYSICS DEPARTMENT UNIVERSITY OF MARYLAND Acknowledge Input From DTRA HAND/HALEOS STUDY TETHER PANEL HAARP STUDY OUTLINE The

More information

Sferic signals for lightning sourced electromagnetic surveys

Sferic signals for lightning sourced electromagnetic surveys Sferic signals for lightning sourced electromagnetic surveys Lachlan Hennessy* RMIT University hennessylachlan@gmail.com James Macnae RMIT University *presenting author SUMMARY Lightning strikes generate

More information

Contrasting the efficiency of radiation belt losses caused by ducted and nonducted whistler mode waves from ground based transmitters

Contrasting the efficiency of radiation belt losses caused by ducted and nonducted whistler mode waves from ground based transmitters JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2010ja015880, 2010 Contrasting the efficiency of radiation belt losses caused by ducted and nonducted whistler mode waves from ground based transmitters

More information

Experimental Observations of ELF/VLF Wave Generation Using Optimized Beam-Painting

Experimental Observations of ELF/VLF Wave Generation Using Optimized Beam-Painting Experimental Observations of ELF/VLF Wave Generation Using Optimized Beam-Painting R. C. Moore Department of Electrical and Computer Engineering University of Florida, Gainesville, FL 32611. Abstract Observations

More information

Study of small scale plasma irregularities. Đorđe Stevanović

Study of small scale plasma irregularities. Đorđe Stevanović Study of small scale plasma irregularities in the ionosphere Đorđe Stevanović Overview 1. Global Navigation Satellite Systems 2. Space weather 3. Ionosphere and its effects 4. Case study a. Instruments

More information

Power line harmonic radiation observed by satellite: Properties and propagation through the ionosphere

Power line harmonic radiation observed by satellite: Properties and propagation through the ionosphere Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2008ja013184, 2008 Power line harmonic radiation observed by satellite: Properties and propagation through the ionosphere

More information

HF signatures of powerful lightning recorded on DEMETER

HF signatures of powerful lightning recorded on DEMETER JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2008ja013323, 2008 HF signatures of powerful lightning recorded on DEMETER M. Parrot, 1,2 U. Inan, 3 N. Lehtinen, 3 E. Blanc, 4 and J. L. Pinçon

More information

DEMETER observations of the ionospheric trough over HAARP in relation to HF heating experiments

DEMETER observations of the ionospheric trough over HAARP in relation to HF heating experiments DEMETER observations of the ionospheric trough over HAARP in relation to HF heating experiments D. Piddyachiy, T. F. Bell, Jean-Jacques Berthelier, U. S. Inan, Michel Parrot To cite this version: D. Piddyachiy,

More information

Scientific Studies of the High-Latitude Ionosphere with the Ionosphere Dynamics and ElectroDynamics - Data Assimilation (IDED-DA) Model

Scientific Studies of the High-Latitude Ionosphere with the Ionosphere Dynamics and ElectroDynamics - Data Assimilation (IDED-DA) Model DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Scientific Studies of the High-Latitude Ionosphere with the Ionosphere Dynamics and ElectroDynamics - Data Assimilation

More information

Daytime ionospheric D region sharpness derived from VLF radio atmospherics

Daytime ionospheric D region sharpness derived from VLF radio atmospherics JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116,, doi:10.1029/2010ja016299, 2011 Daytime ionospheric D region sharpness derived from VLF radio atmospherics Feng Han, 1 Steven A. Cummer, 1 Jingbo Li, 1 and Gaopeng

More information

Testing Plasma Physics in the Ionosphere

Testing Plasma Physics in the Ionosphere Testing Plasma Physics in the Ionosphere Dennis Papadopoulos University of Maryland College Park, MD 20742 X. Shao, G. Milikh - UMCP C. Chang, T. Wallace, M. McCarrick, I Doxas BAE Systems-AT U. Inan,

More information

Page 1 of 8 Search Contact NRL Personnel Locator Human Resources Public Affairs Office Visitor Info Planning a Visit Directions Maps Weather & Traffic Field Sites Stennis Monterey VXS-1 Chesapeake Bay

More information

Perturbations of midlatitude subionospheric VLF signals associated with lower ionospheric disturbances during major geomagnetic storms

Perturbations of midlatitude subionospheric VLF signals associated with lower ionospheric disturbances during major geomagnetic storms JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.1029/2005ja011346, 2006 Perturbations of midlatitude subionospheric VLF signals associated with lower ionospheric disturbances during major geomagnetic

More information

Received: 24 June 2008 Revised: 1 September 2008 Accepted: 1 September 2008 Published: 16 October Introduction

Received: 24 June 2008 Revised: 1 September 2008 Accepted: 1 September 2008 Published: 16 October Introduction Author(s) 2008. This work is distributed under the Creative Commons Attribution 3.0 License. Natural Hazards and Earth System Sciences Statistical correlation of spectral broadening in VLF transmitter

More information

A generation mechanism of chorus emissions using BWO theory

A generation mechanism of chorus emissions using BWO theory Journal of Physics: Conference Series A generation mechanism of chorus emissions using BWO theory To cite this article: Ashutosh K Singh et al 2010 J. Phys.: Conf. Ser. 208 012067 View the article online

More information

Study of Very Low Frequency (VLF) Phenomena at Maitri, Antarctica

Study of Very Low Frequency (VLF) Phenomena at Maitri, Antarctica Nineteenth Indian Expedition to Antarctica, Scientific Report, 2004 Department of Ocean Development, Technical Publication No. 17, pp 107-114 Study of Very Low Frequency (VLF) Phenomena at Maitri, Antarctica

More information

Rec. ITU-R P RECOMMENDATION ITU-R P *

Rec. ITU-R P RECOMMENDATION ITU-R P * Rec. ITU-R P.682-1 1 RECOMMENDATION ITU-R P.682-1 * PROPAGATION DATA REQUIRED FOR THE DESIGN OF EARTH-SPACE AERONAUTICAL MOBILE TELECOMMUNICATION SYSTEMS (Question ITU-R 207/3) Rec. 682-1 (1990-1992) The

More information

Long-range tracking of thunderstorms using sferic measurements

Long-range tracking of thunderstorms using sferic measurements JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. D21, 4553, doi:10.1029/2001jd002008, 2002 Long-range tracking of thunderstorms using sferic measurements T. G. Wood and U. S. Inan STAR Laboratory, Stanford

More information

Characterization of terminal impedance and radiation properties of a horizontal VLF antenna over Antarctic ice

Characterization of terminal impedance and radiation properties of a horizontal VLF antenna over Antarctic ice RADIO SCIENCE, VOL. 41,, doi:10.1029/2005rs003298, 2006 Characterization of terminal impedance and radiation properties of a horizontal VLF antenna over Antarctic ice T. W. Chevalier, 1 U. S. Inan, 1 and

More information

A generic description of planetary aurora

A generic description of planetary aurora A generic description of planetary aurora J. De Keyser, R. Maggiolo, and L. Maes Belgian Institute for Space Aeronomy, Brussels, Belgium Johan.DeKeyser@aeronomie.be Context We consider a rotating planetary

More information

Diurnal dependence of ELF/VLF hiss and its relation to chorus at L = 2.4

Diurnal dependence of ELF/VLF hiss and its relation to chorus at L = 2.4 Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114,, doi:10.1029/2008ja013946, 2009 Diurnal dependence of ELF/VLF hiss and its relation to chorus at L = 2.4 D. I. Golden, 1 M. Spasojevic,

More information

PoS(2nd MCCT -SKADS)003

PoS(2nd MCCT -SKADS)003 The Earth's ionosphere: structure and composition. Dispersive effects, absorption and emission in EM wave propagation 1 Observatorio Astronómico Nacional Calle Alfonso XII, 3; E-28014 Madrid, Spain E-mail:

More information

Power line harmonic radiation (PLHR) observed by the DEMETER spacecraft

Power line harmonic radiation (PLHR) observed by the DEMETER spacecraft JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.1029/2005ja011480, 2006 Power line harmonic radiation (PLHR) observed by the DEMETER spacecraft F. Němec, 1,2 O. Santolík, 3,4 M. Parrot, 1 and J. J.

More information

Article in Proof. 2. Numerical Model of Formation of the Artificial 84 Ducts LXXXXX

Article in Proof. 2. Numerical Model of Formation of the Artificial 84 Ducts LXXXXX Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2010gl042684, 2010 1 Model for artificial ionospheric duct formation due to HF heating 2 G. M. Milikh, 1 A. G. Demekhov,

More information

Ionospheric Impacts on UHF Space Surveillance. James C. Jones Darvy Ceron-Gomez Dr. Gregory P. Richards Northrop Grumman

Ionospheric Impacts on UHF Space Surveillance. James C. Jones Darvy Ceron-Gomez Dr. Gregory P. Richards Northrop Grumman Ionospheric Impacts on UHF Space Surveillance James C. Jones Darvy Ceron-Gomez Dr. Gregory P. Richards Northrop Grumman CONFERENCE PAPER Earth s atmosphere contains regions of ionized plasma caused by

More information

H3-5 Mode conversion of downward-propagating Langmuir waves in the topside ionosphere

H3-5 Mode conversion of downward-propagating Langmuir waves in the topside ionosphere E N G I N E E R I N G H3-5 Mode conversion of downward-propagating Langmuir waves in the topside ionosphere Nikolai G. Lehtinen, Nicholas L. Bunch, and Umran S. Inan STAR Laboratory, Stanford University,

More information

SEMEP. Search for ElectroMagnetic Earthquake Precursors

SEMEP. Search for ElectroMagnetic Earthquake Precursors Page: 1 of 11 SEMEP Search for ElectroMagnetic Earthquake Precursors Identification of ionospheric perturbations connected to seismicity from the analysis VLF/LF signals on the DEMETER satellite Deliverable

More information

Discovery of very large amplitude whistler-mode waves in Earth s radiation belts

Discovery of very large amplitude whistler-mode waves in Earth s radiation belts GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L01105, doi:10.1029/2007gl032009, 2008 Discovery of very large amplitude whistler-mode waves in Earth s radiation belts C. Cattell, 1 J. R. Wygant, 1 K. Goetz, 1

More information