Exploring DSP Performance

Size: px
Start display at page:

Download "Exploring DSP Performance"

Transcription

1 ECE1756, Experiment 02, 2015 Communications Lab, University of Toronto Exploring DSP Performance Bruno Korst, Siu Pak Mok & Vaughn Betz Abstract The performance of two DSP architectures will be probed using an FIR routine in C and assembly. Results obtained here will be used for a comparison with an FPGA platform. Keywords FPGA DSP Floating Point Fixed Point Assembly Optimization Code Composer Studio Contents Introduction 1 1 Equipment and Software Tools 2 2 Connecting the Target Hardware Floating Point Target Fixed Point Target Running Programs on the Target Hardware FIR Filter Program Conclusion 5 References 5 Introduction In this experiment, you will run a given digital filtering program on two DSP platforms, in order to assess its performance and to compare it with a similar filter running on an FPGA. This is not an experiment on programming, nor it is an experiment on DSP. What is important here is to observe the difference in performance for a given code on different architectures, languages (i.e., C and assembly) and code optimization levels. You will be guided through the steps to make the program run, and will be required to identify and change parameters as needed. This outline pertains to the DSP portion of the experiment only; the FPGA portion is described in the companion handout in this.zip file. The DSP platforms utilized are a fixed point development board based on the TMS320C5505 processor and a development board based on a dual-core ARM/TMS320C6748 floating-point processor. Both are from Texas Instruments. These families of processors (the c5x and the c6x) are widely utilized in industry, and are suitable platforms for this experiment. The platforms have a stereo codec which operates for this experiment at a fixed sampling rate of 48KHz. Both channels will be utilized in the experiment. One signal path will go through a digital filter implemented in C and the other path will go through the same filter implemented in assembly. The sampling rate determines that a sample is taken every 10.4µs. The floating point DSP operates at 300 MHz, which gives 3.3 ns for every instruction cycle. Therefore, the maximum number of cycles available to process each sample under these conditions is The code utilized in this experiment is based on the C5000 Texas Instruments training material, prepared by Dr. Richard Sikora [1]. You will use a sinusoidal signal from an Arbitrary Signal Generator as an input and will monitor the output using an oscilloscope. It is assumed that you are familiar with these devices. You will also use Code Composer Studio v.6.1 (called CCS from here on) to monitor CPU cycles on particular routines. The programs will be opened from within CCS.

2 Exploring DSP Performance 2/5 1. Equipment and Software Tools The following list of equipment and software tools will be utilized in this experiment. Hardware: One Signal Generator; One Two-Channel Oscilloscope; One TI LCDK (ARM/TMS320C6748) floating-point development board; One TI TMS320C5505/TMS320VC5505 ezdsp fixed-point development board; Coaxial cables BNC-to-BNC and a T connector. Software: Code Composer Studio (CCS), v Connecting the Target Hardware You should start working with the floating-point platform first, and then move on to the fixed-point. 2.1 Floating Point Target The LCDK board is the PCB covered with thick plexiglass that has a power supply and a USB cable attached. It is the default platform for CCS, and is already connected to the workstation. Since the hardware is permanently on, all you have to do is to turn on the workstation, which will bring CCS up by default. The board has four BNC connectors. The two BNC connectors that have a resistor and capacitor attached to them are the output. Always connect both inputs and outputs. Inputs are connected to the Arbitrary signal generator, outputs to the scope. On the Arbitrary Signal Generator, select the Sine Wave as your signal and set it to 0.5V pp, 1KHz. Before turning the output on, ensure that the output impedance on the Arbitrary Signal Generator is set to High Z. This is found under the output setup on the Signal Generator. Now turn the output on. If you want, check whether you do have a signal at all connecting signal generator directly to scope. Do not forget to reconnect your input signal to the target hardware after you check if your input on. 2.2 Fixed Point Target You will use the fixed-point target after you use the floating-point one. If you try to plug the fixed-point platform with CCS open, there will be a conflict between the two platforms when you try to load your project onto the platform. Make sure to close CCS before connecting the fixed-point target. With CCS closed, plug in the board, connect the target hardware with a USB cable to the front panel of the workstation and open CCS. LEDs should be lighted up on the target. In addition to a male USB connector, to which the cable is connected, the hardware has four other connectors. Take a look at the labels on the PCB now and identify the two inputs and two outputs. If you want (you will be prompted again), connect the two inputs to the Arbitrary Signal Generator, and the two outputs to the two channels on the oscilloscope. Turn both devices on. The setup of the Arbitrary Signal Generator is the same as described above for the floating-point target. 3. Running Programs on the Target Hardware This section will describe the main steps to get the filtering program to run on the target platform. It is assumed that you are somewhat familiar with digital filtering, but some more details are given below. There are three CCS projects given to you: ECE1756 Floating Point, ECE1756 Fixed Point 5505 and ECE1756 Fixed Point VC5505. The two fixed-point projects are specific to which type of board you are using. The PCBs are labeled with the type C5505 or VC5505. Inspect your fixed-point hardware now to see which project you will run. As mentioned before, you should start with the floating-point hardware. Below are some details on the programs you will run: The projects are already configured for the respective platform (i.e., fixed point or floating point). The file which defines the target has the extension.ccxml. Please avoid changing these files;

3 Exploring DSP Performance 3/5 Always Compile/Rebuild the project. This will generate a.out file, which is your executable file; When you make any modifications, find the bug button on the CCS top, just under the menu, and click on it to recompile and reload the selected (active) project. When you make any changes, always click on the bug; Figure 1. The Bug Button When the compilation/building is done, CCS will switch to the debug view of the IDE. In order to run your program, you must press on the play button, which is a right-pointing green triangle found just below the menu items at the top of your window. With CCS open, click first on the project named ECE1756 Floating Point. This will highlight it and set it as active project. Explore the project, identifying where the FIR routines (C and assembly) are, and where the coefficients for the filter are found. You can expand the project tree and see the files comprising the project by clicking on the plus sign to the left of the project name. When a project is active, this means that the selected project is the one which will be compiled/built and loaded when you click on the bug. Be careful not to edit one project and compile another. It happens. Try to keep open only the files pertaining to the active project, so there won t be any mistakes. The IDE allows you to work on the debug view and an editing view, but you can actually edit code on either one of them. You just have to recompile afterwards (that means, click on the bug). After the program is compiled, built and loaded, you must place breakpoints at strategic places in the code that is ready to run. Breakpoints are placed by double clicking on the left column where the line numbers are displayed. The program you will run on the DSP platforms contains a long loop which polls samples from the A/D converter and puts them out to the D/A. There are two calls within this loop: one to an assembly function and one to a C function. Both of these implement an FIR (Finite Impulse Response) filter by means of a convolution. Specific details on how to run this program are given below. 3.1 FIR Filter Program The Low Pass FIR program uses coefficients generated using a Kaiser Window, designed for a 2KHz cutoff frequency. The sampling rate is 48KHz. The impulse response (or the coefficients ) for this filter are found in fir.cof, and are all represented in short format. You probably know that since this filter is a Low Pass, the coefficients should draw a sinc curve when plotted, as shown in Figure 2 below. Figure 2. Time Doman impulse response (sinc function), Low Pass Filter, Kaiser Window, 2 khz Cutoff, 48 khz sampling Freq. Note two things. First, the time domain plot on Figure 2 shows a truncated sinc function, represented by 51 coefficients. The fact that we are aiming at a 2KHz cutoff while using a 48KHz sampling rate, and using only 51 coefficients (i.e. order 50),

4 Exploring DSP Performance 4/5 Figure 3. Frequency Response, Low Pass Filter, Kaiser Window, 2 khz Cutoff, 48 khz sampling Freq. limits the extent to which the sinc function will be represented in the plot. Should we use a higher cutoff frequency, there would be more of the sinc represented here. Likewise, should we increase the order of our filter, we would achieve a sharper rolloff at 2KHz and, again, more of the sinc would be represented in the time domain. The numbers on the horizontal axis just represent the number of coefficients for Figure 2. Second, both vertical axes have strange-looking numbers. In the time domain (Figure 2), the coefficients are represented in fixed-point format, which explains the large values on the vertical axis. In the frequency domain (Figure 3), the values are the absolute values of the FFT performed on the coefficients. For the horizontal axis, if we consider that a 1024-point FFT was taken on a 48KHz sampled signal, it follows that point number 32 represents 1.5KHz. The filter was designed for a 2KHz cutoff. Check if the plot makes sense. Now turn your attention to the program main.c. You should see that the same filter is run twice; once for each output channel. For one channel it is run using the routine called in assembly and for the other it runs the routine in C. Note that since the channels are selected in software, it makes no sense to talk about which one is left or right; this can be changed in code. Your objective is to compare the performance in terms of cycles between these two routines, for different types of release and for different optimization levels of the compiler. You must set breakpoints to achieve this. Before you start setting them up, make sure the program compiles, loads and runs by clicking on the bug button. Test the program to see if it is doing what it should when it runs, i.e., it is a low pass filter with a 2KHz cutoff. Vary the input sinusoidal signal in frequency to observe a decay on the amplitude of the output occurring around 2KHz, and fill in the table below. You can find out the peak-to-peak voltage by pressing the Measure button on the oscilloscope. Having made sure it runs, open the files where the filtering routines are located. You should be able to visualize both files. If your program is running, stop your program (click on the red square icon). Your target should be connected and the executable program loaded. It s a good idea to run it and pause it prior to doing this. You may note that the fixed-point platform presents an attenuation of about 0.5 across all frequencies if compared to the floating-point platform. This is due to the way the A/D converter is set up on the platform. Also, the output sine wave appears noisier on the fixed-point platform. This is due to the lack of an RC Lowpass filter after the D/A converter as the floating-point platform presents. Since the exercise is to measure the cutoff frequency, none of these items impact the work at hand. Record on the table below the values you find for the output voltage at different frequency values. Frequency 1.0 khz 1.5 khz 2.0 khz 2.5 khz V out (C5x) V out (C6x) Pause execution of the FIR filter, using the pause button. Now you will set breakpoints so you can time the C and assembly versions of the FIR filter. The breakpoints are set by double clicking beside the line number on the leftmost column of the editor. Be sure to set the breakpoints at a reasonable place, so that the comparison will be meaningful. Before starting program execution, and while still within the CCS Debug, select Run -- Clock -- Enable. At the bottom of the IDE window you should see a little clock appearing. This is where your cycle reading will be done. When you click Play (green arrow), the program will run until a breakpoint and the cycle count will be displayed beside the little clock. If you double-click on the clock, the cycle count will be reset. You should reset the clock prior to pressing Play. So far you have been running the debug version of the program, with no compiler optimizations. To test the effect of compiler optimizations you will choose different optimization levels. The options are found under Project -- Properties. A new window will open. Under the Compiler, expand the menu and choose Optimization options, and set the

5 Exploring DSP Performance 5/5 Optimization to blank (no optimization) or level 2 as shown in Figure 4. Figure 4. Changing Optimization to level 2 Note that every time you change these parameters, you must rebuild your project. When you are done, record below the values you found. Feel free to run many times to see what happens. Assembly C no opt. C opt -o2 C5x Debug C6x Debug 4. Conclusion The experiment today lead you to explore the performance of a Digital Signal Processor when performing a filtering function. You have explored two implementations in C and in assembly and compared them in terms of cycles. In a future experiment, you will do the same for an FPGA platform, and hopefully you will draw conclusions as to the pros and cons of each type of architecture. References [1] R. Sikora. C5000 Teaching Material CD. Texas Instruments, 2009.

Experiment # 4. Frequency Modulation

Experiment # 4. Frequency Modulation ECE 416 Fall 2002 Experiment # 4 Frequency Modulation 1 Purpose In Experiment # 3, a modulator and demodulator for AM were designed and built. In this experiment, another widely used modulation technique

More information

Contents. Introduction 1 1 Suggested Reading 2 2 Equipment and Software Tools 2 3 Experiment 2

Contents. Introduction 1 1 Suggested Reading 2 2 Equipment and Software Tools 2 3 Experiment 2 ECE363, Experiment 02, 2018 Communications Lab, University of Toronto Experiment 02: Noise Bruno Korst - bkf@comm.utoronto.ca Abstract This experiment will introduce you to some of the characteristics

More information

Introduction to Lab Instruments

Introduction to Lab Instruments ECE316, Experiment 00, 2017 Communications Lab, University of Toronto Introduction to Lab Instruments Bruno Korst - bkf@comm.utoronto.ca Abstract This experiment will review the use of three lab instruments

More information

Experiment 02: Amplitude Modulation

Experiment 02: Amplitude Modulation ECE316, Experiment 02, 2017 Communications Lab, University of Toronto Experiment 02: Amplitude Modulation Bruno Korst - bkf@comm.utoronto.ca Abstract In this second laboratory experiment, you will see

More information

Experiment # 5 Baseband Pulse Transmission

Experiment # 5 Baseband Pulse Transmission ECE 417 c 2017 Bruno Korst CommLab Name: Experiment # 5 Baseband Pulse Transmission Experiment Date: Student No.: Day of the week: Time: Name: Student No.: Grade: / 10 CHANNEL BIT SOURCE EYE DIAGRAM TX

More information

Experiment 8: An AC Circuit

Experiment 8: An AC Circuit Experiment 8: An AC Circuit PART ONE: AC Voltages. Set up this circuit. Use R = 500 Ω, L = 5.0 mh and C =.01 μf. A signal generator built into the interface provides the emf to run the circuit from Output

More information

EC310 Security Exercise 20

EC310 Security Exercise 20 EC310 Security Exercise 20 Introduction to Sinusoidal Signals This lab demonstrates a sinusoidal signal as described in class. In this lab you will identify the different waveform parameters for a pure

More information

Experiment # 2. Pulse Code Modulation: Uniform and Non-Uniform

Experiment # 2. Pulse Code Modulation: Uniform and Non-Uniform 10 8 6 4 2 0 2 4 6 8 3 2 1 0 1 2 3 2 3 4 5 6 7 8 9 10 3 2 1 0 1 2 3 4 1 2 3 4 5 6 7 8 9 1.5 1 0.5 0 0.5 1 ECE417 c 2017 Bruno Korst-Fagundes CommLab Experiment # 2 Pulse Code Modulation: Uniform and Non-Uniform

More information

Experiment 6: Multirate Signal Processing

Experiment 6: Multirate Signal Processing ECE431, Experiment 6, 2018 Communications Lab, University of Toronto Experiment 6: Multirate Signal Processing Bruno Korst - bkf@comm.utoronto.ca Abstract In this experiment, you will use decimation and

More information

Lab 3: RC Circuits. Construct circuit 2 in EveryCircuit. Set values for the capacitor and resistor to match those in figure 2 and set the frequency to

Lab 3: RC Circuits. Construct circuit 2 in EveryCircuit. Set values for the capacitor and resistor to match those in figure 2 and set the frequency to Lab 3: RC Circuits Prelab Deriving equations for the output voltage of the voltage dividers you constructed in lab 2 was fairly simple. Now we want to derive an equation for the output voltage of a circuit

More information

Experiment # 2 Pulse Code Modulation: Uniform and Non-Uniform

Experiment # 2 Pulse Code Modulation: Uniform and Non-Uniform 10 8 6 4 2 0 2 4 6 8 3 2 1 0 1 2 3 2 3 4 5 6 7 8 9 10 3 2 1 0 1 2 3 4 1 2 3 4 5 6 7 8 9 1.5 1 0.5 0 0.5 1 ECE417 c 2015 Bruno Korst-Fagundes CommLab Experiment # 2 Pulse Code Modulation: Uniform and Non-Uniform

More information

Lab #1 Lab Introduction

Lab #1 Lab Introduction Cir cuit s 212 Lab Lab #1 Lab Introduction Special Information for this Lab s Report Because this is a one-week lab, please hand in your lab report for this lab at the beginning of next week s lab. The

More information

Experiment 1.A. Working with Lab Equipment. ECEN 2270 Electronics Design Laboratory 1

Experiment 1.A. Working with Lab Equipment. ECEN 2270 Electronics Design Laboratory 1 .A Working with Lab Equipment Electronics Design Laboratory 1 1.A.0 1.A.1 3 1.A.4 Procedures Turn in your Pre Lab before doing anything else Setup the lab waveform generator to output desired test waveforms,

More information

ECE65 Introduction to the Function Generator and the Oscilloscope Created by: Eldridge Alcantara (Spring 2007)

ECE65 Introduction to the Function Generator and the Oscilloscope Created by: Eldridge Alcantara (Spring 2007) ECE65 Introduction to the Function Generator and the Oscilloscope Created by: Eldridge Alcantara (Spring 2007) I. Getting Started with the Function Generator OUTPUT Red Clip Small Black Clip 1) Turn on

More information

SGN Bachelor s Laboratory Course in Signal Processing Audio frequency band division filter ( ) Name: Student number:

SGN Bachelor s Laboratory Course in Signal Processing Audio frequency band division filter ( ) Name: Student number: TAMPERE UNIVERSITY OF TECHNOLOGY Department of Signal Processing SGN-16006 Bachelor s Laboratory Course in Signal Processing Audio frequency band division filter (2013-2014) Group number: Date: Name: Student

More information

P a g e 1 ST985. TDR Cable Analyzer Instruction Manual. Analog Arts Inc.

P a g e 1 ST985. TDR Cable Analyzer Instruction Manual. Analog Arts Inc. P a g e 1 ST985 TDR Cable Analyzer Instruction Manual Analog Arts Inc. www.analogarts.com P a g e 2 Contents Software Installation... 4 Specifications... 4 Handling Precautions... 4 Operation Instruction...

More information

ECE 2274 Lab 1 (Intro)

ECE 2274 Lab 1 (Intro) ECE 2274 Lab 1 (Intro) Richard Dumene: Spring 2018 Revised: Richard Cooper: Spring 2018 Forward (DO NOT TURN IN) The purpose of this lab course is to familiarize you with high-end lab equipment, and train

More information

The oscilloscope and RC filters

The oscilloscope and RC filters (ta initials) first name (print) last name (print) brock id (ab17cd) (lab date) Experiment 4 The oscilloscope and C filters The objective of this experiment is to familiarize the student with the workstation

More information

Real Analog - Circuits 1 Chapter 11: Lab Projects

Real Analog - Circuits 1 Chapter 11: Lab Projects Real Analog - Circuits 1 Chapter 11: Lab Projects 11.2.1: Signals with Multiple Frequency Components Overview: In this lab project, we will calculate the magnitude response of an electrical circuit and

More information

Worksheet for the afternoon course Tune measurements simulated with a DSP card

Worksheet for the afternoon course Tune measurements simulated with a DSP card Worksheet for the afternoon course Tune measurements simulated with a DSP card CAS Tuusula, June 2018 D. Alves, S. Sadovich, H. Schmickler 1. Introduction In this course we will be replacing the betatron

More information

LABORATORY 4. Palomar College ENGR210 Spring 2017 ASSIGNED: 3/21/17

LABORATORY 4. Palomar College ENGR210 Spring 2017 ASSIGNED: 3/21/17 LABORATORY 4 ASSIGNED: 3/21/17 OBJECTIVE: The purpose of this lab is to evaluate the transient and steady-state circuit response of first order and second order circuits. MINIMUM EQUIPMENT LIST: You will

More information

EE 201 Lab! Tektronix 3021B function generator

EE 201 Lab! Tektronix 3021B function generator EE 201 Lab Tektronix 3021B function generator The function generator produces a time-varying voltage signal at its output terminal. The Tektronix 3021B is capable of producing several standard waveforms

More information

Introduction to Simulink

Introduction to Simulink EE 460 Introduction to Communication Systems MATLAB Tutorial #3 Introduction to Simulink This tutorial provides an overview of Simulink. It also describes the use of the FFT Scope and the filter design

More information

DIGITAL SIGNAL PROCESSING LABORATORY

DIGITAL SIGNAL PROCESSING LABORATORY DIGITAL SIGNAL PROCESSING LABORATORY SECOND EDITION В. Preetham Kumar CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Croup, an informa business

More information

Lab 3: AC Low pass filters (version 1.3)

Lab 3: AC Low pass filters (version 1.3) Lab 3: AC Low pass filters (version 1.3) WARNING: Use electrical test equipment with care! Always double-check connections before applying power. Look for short circuits, which can quickly destroy expensive

More information

Stratix II Filtering Lab

Stratix II Filtering Lab October 2004, ver. 1.0 Application Note 362 Introduction The filtering reference design provided in the DSP Development Kit, Stratix II Edition, shows you how to use the Altera DSP Builder for system design,

More information

EE477 Digital Signal Processing Laboratory Exercise #13

EE477 Digital Signal Processing Laboratory Exercise #13 EE477 Digital Signal Processing Laboratory Exercise #13 Real time FIR filtering Spring 2004 The object of this lab is to implement a C language FIR filter on the SHARC evaluation board. We will filter

More information

MAE106 Laboratory Exercises Lab # 1 - Laboratory tools

MAE106 Laboratory Exercises Lab # 1 - Laboratory tools MAE106 Laboratory Exercises Lab # 1 - Laboratory tools University of California, Irvine Department of Mechanical and Aerospace Engineering Goals To learn how to use the oscilloscope, function generator,

More information

Introduction to the Analog Discovery

Introduction to the Analog Discovery Introduction to the Analog Discovery The Analog Discovery from Digilent (http://store.digilentinc.com/all-products/scopes-instruments) is a versatile and powerful USB-connected instrument that lets you

More information

Cyclone II Filtering Lab

Cyclone II Filtering Lab May 2005, ver. 1.0 Application Note 376 Introduction The Cyclone II filtering lab design provided in the DSP Development Kit, Cyclone II Edition, shows you how to use the Altera DSP Builder for system

More information

ET 304A Laboratory Tutorial-Circuitmaker For Transient and Frequency Analysis

ET 304A Laboratory Tutorial-Circuitmaker For Transient and Frequency Analysis ET 304A Laboratory Tutorial-Circuitmaker For Transient and Frequency Analysis All circuit simulation packages that use the Pspice engine allow users to do complex analysis that were once impossible to

More information

Lab 9 Frequency Domain

Lab 9 Frequency Domain Lab 9 Frequency Domain 1 Components Required Resistors Capacitors Function Generator Multimeter Oscilloscope 2 Filter Design Filters are electric components that allow applying different operations to

More information

Laboratory Experiment #1 Introduction to Spectral Analysis

Laboratory Experiment #1 Introduction to Spectral Analysis J.B.Francis College of Engineering Mechanical Engineering Department 22-403 Laboratory Experiment #1 Introduction to Spectral Analysis Introduction The quantification of electrical energy can be accomplished

More information

UCE-DSO210 DIGITAL OSCILLOSCOPE USER MANUAL. FATIH GENÇ UCORE ELECTRONICS REV1

UCE-DSO210 DIGITAL OSCILLOSCOPE USER MANUAL. FATIH GENÇ UCORE ELECTRONICS REV1 UCE-DSO210 DIGITAL OSCILLOSCOPE USER MANUAL FATIH GENÇ UCORE ELECTRONICS www.ucore-electronics.com 2017 - REV1 Contents 1. Introduction... 2 2. Turn on or turn off... 3 3. Oscilloscope Mode... 3 3.1. Display

More information

Laboratory Equipment Instruction Manual 2011

Laboratory Equipment Instruction Manual 2011 University of Toronto Department of Electrical and Computer Engineering Instrumentation Laboratory GB341 Laboratory Equipment Instruction Manual 2011 Page 1. Wires and Cables A-2 2. Protoboard A-3 3. DC

More information

Lab 4 An FPGA Based Digital System Design ReadMeFirst

Lab 4 An FPGA Based Digital System Design ReadMeFirst Lab 4 An FPGA Based Digital System Design ReadMeFirst Lab Summary This Lab introduces a number of Matlab functions used to design and test a lowpass IIR filter. As you have seen in the previous lab, Simulink

More information

Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope.

Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope. 3.5 Laboratory Procedure / Summary Sheet Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope. Set the function generator to produce a 5 V pp 1kHz sinusoidal output.

More information

Page 1/10 Digilent Analog Discovery (DAD) Tutorial 6-Aug-15. Figure 2: DAD pin configuration

Page 1/10 Digilent Analog Discovery (DAD) Tutorial 6-Aug-15. Figure 2: DAD pin configuration Page 1/10 Digilent Analog Discovery (DAD) Tutorial 6-Aug-15 INTRODUCTION The Diligent Analog Discovery (DAD) allows you to design and test both analog and digital circuits. It can produce, measure and

More information

ASC-50. OPERATION MANUAL September 2001

ASC-50. OPERATION MANUAL September 2001 ASC-5 ASC-5 OPERATION MANUAL September 21 25 Locust St, Haverhill, Massachusetts 183 Tel: 8/252-774, 978/374-761 FAX: 978/521-1839 TABLE OF CONTENTS ASC-5 1. ASC-5 Overview.......................................................

More information

EE25266 ASIC/FPGA Chip Design. Designing a FIR Filter, FPGA in the Loop, Ethernet

EE25266 ASIC/FPGA Chip Design. Designing a FIR Filter, FPGA in the Loop, Ethernet EE25266 ASIC/FPGA Chip Design Mahdi Shabany Electrical Engineering Department Sharif University of Technology Assignment #8 Designing a FIR Filter, FPGA in the Loop, Ethernet Introduction In this lab,

More information

Exercise 1: AC Waveform Generator Familiarization

Exercise 1: AC Waveform Generator Familiarization Exercise 1: AC Waveform Generator Familiarization EXERCISE OBJECTIVE When you have completed this exercise, you will be able to operate an ac waveform generator by using equipment provided. You will verify

More information

Lab 2: Linear and Nonlinear Circuit Elements and Networks

Lab 2: Linear and Nonlinear Circuit Elements and Networks OPTI 380B Intermediate Optics Laboratory Lab 2: Linear and Nonlinear Circuit Elements and Networks Objectives: Lean how to use: Function of an oscilloscope probe. Characterization of capacitors and inductors

More information

Experiment 1: Instrument Familiarization (8/28/06)

Experiment 1: Instrument Familiarization (8/28/06) Electrical Measurement Issues Experiment 1: Instrument Familiarization (8/28/06) Electrical measurements are only as meaningful as the quality of the measurement techniques and the instrumentation applied

More information

Notes on Experiment #1

Notes on Experiment #1 Notes on Experiment #1 Bring graph paper (cm cm is best) From this week on, be sure to print a copy of each experiment and bring it with you to lab. There will not be any experiment copies available in

More information

UCE-DSO212 DIGITAL OSCILLOSCOPE USER MANUAL. UCORE ELECTRONICS

UCE-DSO212 DIGITAL OSCILLOSCOPE USER MANUAL. UCORE ELECTRONICS UCE-DSO212 DIGITAL OSCILLOSCOPE USER MANUAL UCORE ELECTRONICS www.ucore-electronics.com 2017 Contents 1. Introduction... 2 2. Turn on or turn off... 3 3. Oscilloscope Mode... 4 3.1. Display Description...

More information

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL and COMPUTER ENGINEERING. ECE 3084 Fall 2017 Lab #2: Amplitude Modulation

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL and COMPUTER ENGINEERING. ECE 3084 Fall 2017 Lab #2: Amplitude Modulation GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL and COMPUTER ENGINEERING ECE 3084 Fall 2017 Lab #2: Amplitude Modulation Date: 31 Oct 2017 1 Goals This lab explores the principles of amplitude modulation,

More information

Tektronix digital oscilloscope, BK Precision Function Generator, coaxial cables, breadboard, the crystal earpiece from your AM radio kit.

Tektronix digital oscilloscope, BK Precision Function Generator, coaxial cables, breadboard, the crystal earpiece from your AM radio kit. Experiment 0: Review I. References The 174 and 275 Lab Manuals Any standard text on error analysis (for example, Introduction to Error Analysis, J. Taylor, University Science Books, 1997) The manual for

More information

Laboratory 3 (drawn from lab text by Alciatore)

Laboratory 3 (drawn from lab text by Alciatore) Laboratory 3 (drawn from lab text by Alciatore) The Oscilloscope Required Components: 1 10 resistor 2 100 resistors 2 lk resistors 1 2k resistor 2 4.7M resistors 1 0.F capacitor 1 0.1 F capacitor 1 1.0uF

More information

AC : INTERACTIVE LEARNING DISCRETE TIME SIGNALS AND SYSTEMS WITH MATLAB AND TI DSK6713 DSP KIT

AC : INTERACTIVE LEARNING DISCRETE TIME SIGNALS AND SYSTEMS WITH MATLAB AND TI DSK6713 DSP KIT AC 2007-2807: INTERACTIVE LEARNING DISCRETE TIME SIGNALS AND SYSTEMS WITH MATLAB AND TI DSK6713 DSP KIT Zekeriya Aliyazicioglu, California State Polytechnic University-Pomona Saeed Monemi, California State

More information

Analog Discovery Arbitrary Function Generator for Windows 7 by Mr. David Fritz and Ms. Ellen Robertson

Analog Discovery Arbitrary Function Generator for Windows 7 by Mr. David Fritz and Ms. Ellen Robertson Analog Discovery Arbitrary Function Generator for Windows 7 by Mr. David Fritz and Ms. Ellen Robertson Financial support to develop this tutorial was provided by the Bradley Department of Electrical and

More information

Stratix Filtering Reference Design

Stratix Filtering Reference Design Stratix Filtering Reference Design December 2004, ver. 3.0 Application Note 245 Introduction The filtering reference designs provided in the DSP Development Kit, Stratix Edition, and in the DSP Development

More information

RC Filters and Basic Timer Functionality

RC Filters and Basic Timer Functionality RC-1 Learning Objectives: RC Filters and Basic Timer Functionality The student who successfully completes this lab will be able to: Build circuits using passive components (resistors and capacitors) from

More information

Pre-Lab. Introduction

Pre-Lab. Introduction Pre-Lab Read through this entire lab. Perform all of your calculations (calculated values) prior to making the required circuit measurements. You may need to measure circuit component values to obtain

More information

LLS - Introduction to Equipment

LLS - Introduction to Equipment Published on Advanced Lab (http://experimentationlab.berkeley.edu) Home > LLS - Introduction to Equipment LLS - Introduction to Equipment All pages in this lab 1. Low Light Signal Measurements [1] 2. Introduction

More information

Combinational logic: Breadboard adders

Combinational logic: Breadboard adders ! ENEE 245: Digital Circuits & Systems Lab Lab 1 Combinational logic: Breadboard adders ENEE 245: Digital Circuits and Systems Laboratory Lab 1 Objectives The objectives of this laboratory are the following:

More information

EC-3: Capacitors and RC-Decay

EC-3: Capacitors and RC-Decay Your TA will use this sheet to score your lab. It is to be turned in at the end of lab. You must use complete sentences and clearly explain your reasoning to receive full credit. EC-3, Part I: Do not do

More information

Lab 1B LabVIEW Filter Signal

Lab 1B LabVIEW Filter Signal Lab 1B LabVIEW Filter Signal Due Thursday, September 12, 2013 Submit Responses to Questions (Hardcopy) Equipment: LabVIEW Setup: Open LabVIEW Skills learned: Create a low- pass filter using LabVIEW and

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY /6.071 Introduction to Electronics, Signals and Measurement Spring 2006

MASSACHUSETTS INSTITUTE OF TECHNOLOGY /6.071 Introduction to Electronics, Signals and Measurement Spring 2006 MASSACHUSETTS INSTITUTE OF TECHNOLOGY.071/6.071 Introduction to Electronics, Signals and Measurement Spring 006 Lab. Introduction to signals. Goals for this Lab: Further explore the lab hardware. The oscilloscope

More information

Lab E5: Filters and Complex Impedance

Lab E5: Filters and Complex Impedance E5.1 Lab E5: Filters and Complex Impedance Note: It is strongly recommended that you complete lab E4: Capacitors and the RC Circuit before performing this experiment. Introduction Ohm s law, a well known

More information

ECE 4670 Spring 2014 Lab 1 Linear System Characteristics

ECE 4670 Spring 2014 Lab 1 Linear System Characteristics ECE 4670 Spring 2014 Lab 1 Linear System Characteristics 1 Linear System Characteristics The first part of this experiment will serve as an introduction to the use of the spectrum analyzer in making absolute

More information

Oscilloscope and Function Generators

Oscilloscope and Function Generators MEHRAN UNIVERSITY OF ENGINEERING AND TECHNOLOGY, JAMSHORO DEPARTMENT OF ELECTRONIC ENGINEERING ELECTRONIC WORKSHOP # 02 Oscilloscope and Function Generators Roll. No: Checked by: Date: Grade: Object: To

More information

Lab 6: Building a Function Generator

Lab 6: Building a Function Generator ECE 212 Spring 2010 Circuit Analysis II Names: Lab 6: Building a Function Generator Objectives In this lab exercise you will build a function generator capable of generating square, triangle, and sine

More information

Experiment 1: Instrument Familiarization

Experiment 1: Instrument Familiarization Electrical Measurement Issues Experiment 1: Instrument Familiarization Electrical measurements are only as meaningful as the quality of the measurement techniques and the instrumentation applied to the

More information

EE 210: CIRCUITS AND DEVICES

EE 210: CIRCUITS AND DEVICES EE 210: CIRCUITS AND DEVICES LAB #3: VOLTAGE AND CURRENT MEASUREMENTS This lab features a tutorial on the instrumentation that you will be using throughout the semester. More specifically, you will see

More information

The Oscilloscope. Vision is the art of seeing things invisible. J. Swift ( ) OBJECTIVE To learn to operate a digital oscilloscope.

The Oscilloscope. Vision is the art of seeing things invisible. J. Swift ( ) OBJECTIVE To learn to operate a digital oscilloscope. The Oscilloscope Vision is the art of seeing things invisible. J. Swift (1667-1745) OBJECTIVE To learn to operate a digital oscilloscope. THEORY The oscilloscope, or scope for short, is a device for drawing

More information

Physics 120 Lab 1 (2018) - Instruments and DC Circuits

Physics 120 Lab 1 (2018) - Instruments and DC Circuits Physics 120 Lab 1 (2018) - Instruments and DC Circuits Welcome to the first laboratory exercise in Physics 120. Your state-of-the art equipment includes: Digital oscilloscope w/usb output for SCREENSHOTS.

More information

Velleman Arbitrary Function Generator: Windows 7 by Mr. David Fritz

Velleman Arbitrary Function Generator: Windows 7 by Mr. David Fritz Velleman Arbitrary Function Generator: Windows 7 by Mr. David Fritz You should already have the drivers installed Launch the scope control software. Start > Programs > Velleman > PcLab2000LT What if the

More information

ECE 2274 Lab 2. Your calculator will have a setting that will automatically generate the correct format.

ECE 2274 Lab 2. Your calculator will have a setting that will automatically generate the correct format. ECE 2274 Lab 2 Forward (DO NOT TURN IN) You are expected to use engineering exponents for all answers (p,n,µ,m, N/A, k, M, G) and to give each with a precision between one and three leading digits and

More information

LAB I. INTRODUCTION TO LAB EQUIPMENT

LAB I. INTRODUCTION TO LAB EQUIPMENT LAB I. INTRODUCTION TO LAB EQUIPMENT 1. OBJECTIVE In this lab you will learn how to properly operate the basic bench equipment used for characterizing active devices: 1. Oscilloscope (Keysight DSOX 1102A),

More information

Equipment: You will use the bench power supply, function generator and oscilloscope.

Equipment: You will use the bench power supply, function generator and oscilloscope. EE203 Lab #0 Laboratory Equipment and Measurement Techniques Purpose Your objective in this lab is to gain familiarity with the properties and effective use of the lab power supply, function generator

More information

University of California, San Diego Department of Electrical and Computer Engineering

University of California, San Diego Department of Electrical and Computer Engineering University of California, San Diego Department of Electrical and Computer Engineering Part One: Introduction of Lab TAs ECE65, Spring 2007 Lab 0, ECE 65 Lab Orientation 1) James Liao, geniojames@yahoo.com

More information

Sept 13 Pre-lab due Sept 12; Lab memo due Sept 19 at the START of lab time, 1:10pm

Sept 13 Pre-lab due Sept 12; Lab memo due Sept 19 at the START of lab time, 1:10pm Sept 13 Pre-lab due Sept 12; Lab memo due Sept 19 at the START of lab time, 1:10pm EGR 220: Engineering Circuit Theory Lab 1: Introduction to Laboratory Equipment Pre-lab Read through the entire lab handout

More information

ECE 2274 Lab 2 (Network Theorems)

ECE 2274 Lab 2 (Network Theorems) ECE 2274 Lab 2 (Network Theorems) Forward (DO NOT TURN IN) You are expected to use engineering exponents for all answers (p,n,µ,m, N/A, k, M, G) and to give each with a precision between one and three

More information

Copyright 2015 by Stephen A. Zajac & Gregory M. Wierzba. All rights reserved..spring 2015.

Copyright 2015 by Stephen A. Zajac & Gregory M. Wierzba. All rights reserved..spring 2015. Copyright 2015 by Stephen A. Zajac & Gregory M. Wierzba. All rights reserved..spring 2015. Copyright 2015 by Stephen A. Zajac & Gregory M. Wierzba. All rights reserved..spring 2015. Copyright 2015 by Stephen

More information

Using the CODEC ReadMeFirst

Using the CODEC ReadMeFirst Using the CODEC ReadMeFirst Lab Summary This lab covers the use of the CODEC that is necessary in nearly all of the future labs. This lab is divided into three parts. In the first part, you will work with

More information

Function Generator Guide Tektronix AFG3102

Function Generator Guide Tektronix AFG3102 Tektronix AFG3102 ersion 2008-Jan-1 Dept. of Electrical & Computer Engineering Portland State University Copyright 2008 Portland State University 1 Basic Information This guide provides basic instructions

More information

EK307 Active Filters and Steady State Frequency Response

EK307 Active Filters and Steady State Frequency Response EK307 Active Filters and Steady State Frequency Response Laboratory Goal: To explore the properties of active signal-processing filters Learning Objectives: Active Filters, Op-Amp Filters, Bode plots Suggested

More information

Faculty of Engineering, Thammasat University

Faculty of Engineering, Thammasat University Faculty of Engineering, Thammasat University Experiment 6: Oscilloscope (For room 506) Objectives: 1. To familiarize you with the Oscilloscope and Function Generator User Manual: Oscilloscope 1 5 9 4 7

More information

Experiment #2: Introduction to Lab Equipment: Function Generator, Oscilloscope, and Multisim

Experiment #2: Introduction to Lab Equipment: Function Generator, Oscilloscope, and Multisim SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2110: CIRCUIT THEORY LABORATORY Experiment #2: Introduction to Lab Equipment: Function Generator, Oscilloscope,

More information

Name: Resistors and Basic Resistive Circuits. Objective: To gain experience with data acquisition proto-boards physical resistors. Table of Contents:

Name: Resistors and Basic Resistive Circuits. Objective: To gain experience with data acquisition proto-boards physical resistors. Table of Contents: Objective: To gain experience with data acquisition proto-boards physical resistors Table of Contents: Name: Resistors and Basic Resistive Circuits Pre-Lab Assignment 1 Background 2 National Instruments

More information

Laboratory Assignment 1 Sampling Phenomena

Laboratory Assignment 1 Sampling Phenomena 1 Main Topics Signal Acquisition Audio Processing Aliasing, Anti-Aliasing Filters Laboratory Assignment 1 Sampling Phenomena 2.171 Analysis and Design of Digital Control Systems Digital Filter Design and

More information

LAB II. INTRODUCTION TO LABVIEW

LAB II. INTRODUCTION TO LABVIEW 1. OBJECTIVE LAB II. INTRODUCTION TO LABVIEW In this lab, you are to gain a basic understanding of how LabView operates the lab equipment remotely. 2. OVERVIEW In the procedure of this lab, you will build

More information

Sweep / Function Generator User Guide

Sweep / Function Generator User Guide I. Overview Sweep / Function Generator User Guide The Sweep/Function Generator as developed by L. J. Haskell was designed and built as a multi-functional test device to help radio hobbyists align antique

More information

Introduction to Oscilloscopes Instructor s Guide

Introduction to Oscilloscopes Instructor s Guide Introduction to Oscilloscopes A collection of lab exercises to introduce you to the basic controls of a digital oscilloscope in order to make common electronic measurements. Revision 1.0 Page 1 of 25 Copyright

More information

When you have completed this exercise, you will be able to determine the frequency response of an

When you have completed this exercise, you will be able to determine the frequency response of an RC Coupling When you have completed this exercise, you will be able to determine the frequency response of an oscilloscope. The way in which the gain varies with frequency is called the frequency response.

More information

Agilent 33522A Function Arbitrary Waveform Generator. Tektronix TDS 3012B Oscilloscope

Agilent 33522A Function Arbitrary Waveform Generator. Tektronix TDS 3012B Oscilloscope Agilent 33522A Function/Arbitrary Waveform Generator and Tektronix TDS 3012B Oscilloscope Agilent 33522A Function Arbitrary Waveform Generator The signal source for this lab is the Agilent 33522A Function

More information

ENGR 210 Lab 12: Sampling and Aliasing

ENGR 210 Lab 12: Sampling and Aliasing ENGR 21 Lab 12: Sampling and Aliasing In the previous lab you examined how A/D converters actually work. In this lab we will consider some of the consequences of how fast you sample and of the signal processing

More information

LAB II. INTRODUCTION TO LAB EQUIPMENT

LAB II. INTRODUCTION TO LAB EQUIPMENT 1. OBJECTIVE LAB II. INTRODUCTION TO LAB EQUIPMENT In this lab you will learn how to properly operate the oscilloscope Keysight DSOX1102A, the Keithley Source Measure Unit (SMU) 2430, the function generator

More information

EE2210 Laboratory Project 1 Fall 2013 Function Generator and Oscilloscope

EE2210 Laboratory Project 1 Fall 2013 Function Generator and Oscilloscope EE2210 Laboratory Project 1 Fall 2013 Function Generator and Oscilloscope For students to become more familiar with oscilloscopes and function generators. Pre laboratory Work Read the TDS 210 Oscilloscope

More information

LAB I. INTRODUCTION TO LAB EQUIPMENT

LAB I. INTRODUCTION TO LAB EQUIPMENT 1. OBJECTIVE LAB I. INTRODUCTION TO LAB EQUIPMENT In this lab you will learn how to properly operate the oscilloscope Agilent MSO6032A, the Keithley Source Measure Unit (SMU) 2430, the function generator

More information

EE 462G Laboratory #1 Measuring Capacitance

EE 462G Laboratory #1 Measuring Capacitance EE 462G Laboratory #1 Measuring Capacitance Drs. A.V. Radun and K.D. Donohue (1/24/07) Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 Updated 8/31/2007 by

More information

ME 365 EXPERIMENT 1 FAMILIARIZATION WITH COMMONLY USED INSTRUMENTATION

ME 365 EXPERIMENT 1 FAMILIARIZATION WITH COMMONLY USED INSTRUMENTATION Objectives: ME 365 EXPERIMENT 1 FAMILIARIZATION WITH COMMONLY USED INSTRUMENTATION The primary goal of this laboratory is to study the operation and limitations of several commonly used pieces of instrumentation:

More information

ECE159H1S University of Toronto 2014 EXPERIMENT #2 OP AMP CIRCUITS AND WAVEFORMS ECE159H1S

ECE159H1S University of Toronto 2014 EXPERIMENT #2 OP AMP CIRCUITS AND WAVEFORMS ECE159H1S ECE159H1S University of Toronto 2014 EXPERIMENT #2 OP AMP CIRCUITS AND WAVEFORMS ECE159H1S OBJECTIVES: To study the performance and limitations of basic op-amp circuits: the inverting and noninverting

More information

An Introductory Guide to Circuit Simulation using NI Multisim 12

An Introductory Guide to Circuit Simulation using NI Multisim 12 School of Engineering and Technology An Introductory Guide to Circuit Simulation using NI Multisim 12 This booklet belongs to: This document provides a brief overview and introductory tutorial for circuit

More information

DSP Laboratory (EELE 4110) Lab#10 Finite Impulse Response (FIR) Filters

DSP Laboratory (EELE 4110) Lab#10 Finite Impulse Response (FIR) Filters Islamic University of Gaza OBJECTIVES: Faculty of Engineering Electrical Engineering Department Spring-2011 DSP Laboratory (EELE 4110) Lab#10 Finite Impulse Response (FIR) Filters To demonstrate the concept

More information

Lab 8 - INTRODUCTION TO AC CURRENTS AND VOLTAGES

Lab 8 - INTRODUCTION TO AC CURRENTS AND VOLTAGES 08-1 Name Date Partners ab 8 - INTRODUCTION TO AC CURRENTS AND VOTAGES OBJECTIVES To understand the meanings of amplitude, frequency, phase, reactance, and impedance in AC circuits. To observe the behavior

More information

Physics 334 Notes for Lab 2 Capacitors

Physics 334 Notes for Lab 2 Capacitors Physics 334 Notes for Lab 2 Capacitors January 19, 2009 Do the Lab Manual sections in the following order 2-1, 2-3, 2-4, 2-2, 2-5, 2-6, 2-8 (Skip 2-7 and 2-9). First, here s a review of some important

More information

EK307 Passive Filters and Steady State Frequency Response

EK307 Passive Filters and Steady State Frequency Response EK307 Passive Filters and Steady State Frequency Response Laboratory Goal: To explore the properties of passive signal-processing filters Learning Objectives: Passive filters, Frequency domain, Bode plots

More information

Build Your Own Bose WaveRadio Bass Preamp Active Filter Design

Build Your Own Bose WaveRadio Bass Preamp Active Filter Design EE230 Filter Laboratory Build Your Own Bose WaveRadio Bass Preamp Active Filter Design Objectives 1) Design an active filter on paper to meet a particular specification 2) Verify your design using Spice

More information

Digital Signal Processing System Design: LabVIEW-Based Hybrid Programming

Digital Signal Processing System Design: LabVIEW-Based Hybrid Programming Digital Signal Processing System Design: LabVIEW-Based Hybrid Programming by Nasser Kehtarnavaz University of Texas at Dallas With laboratory contributions by Namjin Kim and Qingzhong Peng 1111» AMSTERDAM

More information