The 500 Series Z-Wave Single Chip ADC. Date CET Initials Name Justification

Size: px
Start display at page:

Download "The 500 Series Z-Wave Single Chip ADC. Date CET Initials Name Justification"

Transcription

1 Application Note The 500 Series Z-Wave Single Chip Document No.: APL12678 Version: 2 Description: This application note describes how to use the in the 500 Series Z-Wave Single Chip Written By: OPP;MVO;BBR Date: Reviewed By: Restrictions: MOS;MVITHANAGE;PNI None Approved by: Date CET Initials Name Justification :33:29 NTJ Niels Thybo Johansen This document is the property of Silicon Labs. The data contained herein, in whole or in part, may not be duplicated, used or disclosed outside the recipient for any purpose. This restriction does not limit the recipient's right to use information contained in the data if it is obtained from another source without restriction.

2 REVISION RECORD Doc. Rev Date By Pages affected Brief description of changes OPP All References fixed, quantities added OPP ALL Initial version BBR All Added Silicon Labs template silabs.com Building a more connected world. Page ii of iii

3 Table of Contents 1 ABBREVIATIONS INTRODUCTION Purpose Audience and prerequisites Application overview HW DESCRIPTION OF THE 500 SERIES Z-WAVE SINGLE CHIP CONFIGURATIONS Setting the resolution How to calculate the result Voltage references Input sources Input current Interrupt modes Battery supply monitoring HW CONSIDERATIONS Input filters Decoupling Routing considerations Avoid switching neighbor signals Avoid inductive pickup REFERENCES...12 Table of Figures Figure 1, Hybrid charge-redistribution conversion cycle... 2 Figure 2, equivalent circuit during sampling phase... 3 Figure 3, 12 bit conversion cycle and 8 bit conversion cycle... 3 Figure 4, Reference span and input signal dynamic range... 5 Figure 5, Voltage reference sources... 6 Figure 7, Interrupt generated when above threshold... 8 Figure 8, Interrupt generated when below threshold... 8 Figure 9, Various input filter possibilities... 9 Figure 10, Decoupling capacitor placement and connection to power planes Figure 11, How to minimize noise coupling Figure 12, trace routing to avoid inductive noise pickup Figure 13, Placement of potentially noisy circuits on multiple application PCB's Table of Tables No table of figures entries found. silabs.com Building a more connected world. Page iii of iii

4 1 ABBREVIATIONS Abbreviation API A VDD CO GND HW ISR LSB MSB N.A. PCB SFR SMPS SW Explanation Analog to Digital Converter Application Programming Interface Voltage supply for analog core = battery supply Ground HardWare Interrupt Service Routine Least Significant Bit Most Significant Bit Not Applicable Printed Circuit Board Special Function Register of a 8051 type micro controller Switched Mode Power Supply SoftWare 2 INTRODUCTION 2.1 Purpose The purpose of this application note is to describe the in the 500 Series Z-Wave Single Chip, how it works and how to use it in an application. 2.2 Audience and prerequisites The application note is written for developers working with the 500 Series Z-Wave Single Chip. A basic knowledge of the Z-Wave SW API is required. 2.3 Application overview This document contains the following sections: HW description of the 500 Series Z-Wave Single Chip : Description of the configuration and how it is implemented. configurations: Describes the different modes and selections that the offers. HW considerations: Describes which considerations one should take into account prior to designing the HW. silabs.com Building a more connected world. Page 1 of 12

5 3 HW DESCRIPTION OF THE 500 SERIES Z-WAVE SINGLE CHIP The Analog to Digital converter build into the 500 Series Z-Wave Single Chip is of the type hybrid charge-redistribution. In short, a charge-redistribution works by charging a binary scaled capacitor array with the voltage to be converted. This phase is called the sampling phase (or sampling period). After having sampled the input voltage, a search is performed starting with the largest capacitor. Each element of the capacitor array is switched to either the high or low reference voltage rail and the total voltage across the capacitor array is compared with a fixed voltage. The outcome of the comparator decides which side to leave the tested capacitor at, before the next capacitor is tested. When all capacitors have been switched, their final position gives the converted LSB result, which is read by a digital controller and presented to the application by calling the appropriated API function. The being a hybrid charge-redistribution refers to an extra search performed prior to the capacitor search in order to set the internal upper and lower reference voltages. This enhances the resolution of the. The hybrid search takes place right after the sampling period. The charge across the binary scaled capacitors is compared with a voltage generated by a resistor array. A resistor search is performed, and this search sets the upper and lower reference level used during the following capacitor search. Furthermore, the outcome of the resistor search is the MSB bits of the final conversion result. Please note, that the internal upper and lower reference voltages used during the conversion process are derived from the external upper and lower voltage references, and it is the user of the who sets the external voltage references. The final conversion result is thus a combination of the resistor search performed in order to set the reference levels and the following capacitor search. The diagram below shows the phases of a conversion cycle: One conversion cycle Sampling Resistor search Capacitor Search Time Start of conversion Figure 1, Hybrid charge-redistribution conversion cycle End of conversion During the sampling phase of a conversion cycle, the input of the is equivalent to a RC LP-filter: silabs.com Building a more connected world. Page 2 of 12

6 500 Series Z-Wave Single Chip R in, 7kOhm V in C array 29pF V Figure 2, equivalent circuit during sampling phase The capacitor array is charged through the input resistance of the plus the voltage source impedance. Because current is drawn in the input during the operation, the voltage source resistance should ideally be 0 Ohm to ensure V in = V. In reality, most voltage sources has a finite output resistance, which means, that V in > V, but the lower the output resistance, the more V will be equal to V in (please refer to the sections 4.3 and 4.4 for details). If the voltage source resistance is < 200 Ohm, the conversion error due to the input current at a supply of 3.3V will be 2 LSB.. A conversion consists as described of 3 phases. A sampling period, a resistor search and a capacitor search. The resistor search is performed among 16 different voltage-steps and the capacitor search is performed on 8 binary scaled capacitors. This means, that the resistor search adds the upper 4 MSB bits of the total result, whereas the capacitor search yield the 8 bit LSB bits, giving a total resolution of 12 bit. However, if the demands to the conversion resolution are lower than 12 bit, it is possible to skip the resistor search and only perform the capacitor search. This gives an 8 bit result and the conversion time is app. halved: One 12 bit conversion cycle Sampling Resistor search Capacitor Search Time Start of conversion End of conversion One 8 bit conversion cycle Sampling Capacitor Search Time Start of conversion End of conversion Figure 3, 12 bit conversion cycle and 8 bit conversion cycle, sampling period = 16uS The is enabled and started via the SW API. Once the has been started, sampling and conversion is done automatically. When a conversion has completed, the result is transferred to the 8051 SFR and a flag is set. This flag can be set to trigger an interrupt, or the application SW can poll the flag in order to be notified about the generated result. To reduce overall current consumption the can be powered completely down when not used. silabs.com Building a more connected world. Page 3 of 12

7 4 CONFIGURATIONS The following features can be configured through the SW API (please refer to [2] for further details): Resolution Voltage references Input sources Interrupt generation modes Battery supply monitoring The length of the sampling period can be set, but due to the input current problematic described in section 3 and 4.4, there is no value in using longer sampling periods, and it is thus advised to use the shortest possible sampling period. The following section describes each of the configurable parameters. 4.1 Setting the resolution The resolution can either be selected to 8 bit or 12 bit. This is set using the SW API functions [2]. 8 bit resolution gives the shortest possible conversion time. The conversion time of a 8 bit conversion is app. half the time of a 12 bit conversion. For both 8 bit and 12 bit conversion, two types of conversion can be performed, either single conversion or continuous conversions. If using single conversion mode, only one conversion is performed when the is started. The actual conversion starts right after having started the using the SW API. When the conversion has completed the is stopped, but not powered down. power down has to be done using the SW API. Single mode can be used if a voltage has to be converted occasionally. Continuous conversions means that the starts another conversion automatically when a conversion has ended. This gives the fastest possible sampling sequence obtainable, since the is controlled directly by the digital hardware controller. This mode can be used if a signal has to be monitored continuously. The conversion results can be read either by polling the or by using interrupts. If the result is not read within one sampling period, it will be overwritten by the result of the following conversion. The continuous conversion mode can be an advantage to use if interrupts and thresholds are used, please refer to section 4.5. Since the is constantly turned on during the continuous conversions mode, this mode is not recommended for use in battery powered applications How to calculate the result If the input voltage is known, it is possible to calculate the conversion result using the following equations depending on the resolution selected: silabs.com Building a more connected world. Page 4 of 12

8 result_8bit V upper_reference V in V lower_reference 2 8 Equation 1, 8 bit conversion equation result_12bit V upper_reference V in V lower_reference 2 12 Equation 2, 12 bit conversion equation V upper_reference and V lower_reference refer to the voltage references that the user of the can apply externally to the. Please refer to section Voltage references As seen in section 4.1.1, the input voltage is converted relative to the references applied to the. This means, that it is important to select the correct voltage references when designing a system with an. The input signal may never be larger than the upper reference voltage or lower than the lower reference voltage, since this will saturate the. But, selecting a too large reference span is of no good either. The reason for this is illustrated below: Upper reference voltage Upper reference voltage Reference span Dynamic range of input signal Reference span Dynamic range of input signal Lower reference voltage Figure 4, Reference span and input signal dynamic range Lower reference voltage If the reference span is large compared to the input dynamic range, the full dynamic range of the is not utilized, and the precision of the converted input signal is lower than it could be. If, however, the reference span is equal to or slightly larger than the dynamic range of the input signal, the full dynamic range of the is utilized, and the precision of the conversion is much larger. Consider the following example: V upper_reference = 3.0V, V lower_reference = 0.0V, V input_range = [0.0V; 1.1V], V in = 1.055V Using a 12 bit resolution, the conversion result can be calculated to: V upper_reference V in V lower_reference silabs.com Building a more connected world. Page 5 of 12

9 If the input voltage changes to 1.056V, this leads to an conversion result of: V upper_reference V in V lower_reference A change of 1mV gives a change in conversion result of 2 LSB. Now change the upper reference to e.g. V upper_reference = 1.2V and repeat the same calculations as above: V upper_reference = 1.2V, V lower_reference = 0.0V, V input_range = [0.0V; 1.1V], V in = 1.055V V in V upper_reference V lower_reference 3601 A 1mV input voltage change gives the following conversion result: 2 12 V in V upper_reference V lower_reference With the lower reference span, a change of 1mV gives a change in conversion result of 3 LSB. The example shows, that by having selected the reference levels properly according to the input signal range, it is possible to track smaller changes in the input signal. But, the absolute accuracy of the does not scale with the size of the LSB. If the offset error of the is 1 LSB using a 3V span as reference, it will be 2 if the reference span is set to 1.5V since the mechanisms causing the offset error is independent of the size of the reference span. It is possible to select among 3 different voltage sources for the upper reference and 2 different voltage sources for the lower reference: 500 Series Z-Wave Single Chip Internal Ref. VDD SFR P3.7 P3.6 P3.5 P3.4 GND V upper_ reference V lower_reference Vin Out Comparator Interrupt Internal Ref. The upper reference can be applied either as: Figure 5, Voltage reference sources silabs.com Building a more connected world. Page 6 of 12

10 A voltage applied on the IO pin P3.7 An internal reference voltage which is equal to typically 1.23V VDD, which is the supply voltage applied to A VDD_CO. The lower reference can be applied either as: A voltage applied on the IO pin P3.6 GND, which is the GND of the 500 Series Z-Wave Single Chip. 4.3 Input sources The has 4 multiplexed inputs, please refer to Figure 5. This means that one input can be sampled at the time. Each of the IO pins can be used as general digital IO s if they are not used as inputs. As the is supplied directly from the power supply pins of the 500 Series Z-Wave Single Chip with no voltage regulators in between, input rail-to-rail performance is possible if the supplies are selected as references. If the supply of the 500 Series Z-Wave Single Chip is 3.0V, the input voltage to the can vary from 0V 3.0V. If the supply is 2.4V, the input voltage to the can vary from 0V - 2.4V etc. 4.4 Input current All inputs (V IN, V REF+, V REF- ) must be driven by low impedance voltage sources, preferably not exceeding 200Ω, to suppress offsets caused by GPIO input leakage of up to 10µA. Usage of the internal buffer does not decrease the input current. 4.5 Interrupt modes The digital controller that controls the notifies the application of an end of conversion in two ways. The first is that a Done flag is set when the conversion result is ready to be read from the SFR registers. This flag can be polled by the application. The Done flag is set regardless of the conversion result and can be read using the appropriate API calls. The second method is to allow the controller to generate an interrupt upon end of conversion. The interrupt will break the application program execution and jump to the ISR. The time it takes the application before the interrupt is serviced depends on 1. The priority setting of the interrupt (configurable through the SW API) 2. Higher priority interrupts released while executing the interrupt. In the Z-Wave protocol, two types of interrupts have the highest possible interrupt priority by default. Any of these interrupts can interrupt the service of an interrupt, and thus prolong the handling of the interrupt. If the application code is not handling any interrupts, an interrupt will receive the fastest possible handling time according to the normal 8051 interrupt handling scheme. silabs.com Building a more connected world. Page 7 of 12

11 If the application code is handling an interrupt with higher priority than the, then the ISR will be executed once the code from the higher priority interrupt has finished execution. Interrupts can be setup to be generated whenever the converted result is larger than or equal to a threshold or lower than or equal to a threshold: Voltage Threshold conversion results Time interrupt Figure 6, Interrupt generated when above threshold Voltage Threshold conversion results Time interrupt Figure 7, Interrupt generated when below threshold The advantage of using thresholds is that it eliminates the need of complicated software comparisons. Setup the threshold, start the, and if the conversion result violates the threshold, the ISR will act on the situation. If the conversion result is within the limits, no action is taken. If the interrupt threshold mode is used in connection with 8 bit continuous conversion mode, the shorter sampling time of the 8 bit sampling insures the fastest possible response time. 4.6 Battery supply monitoring The can be configured in a way that enables it to perform a measurement of the power supply of the 500 Series Z-Wave Single Chip without the use of external components. Battery monitoring should be used in battery powered applications in order to prevent unexpected behavior of the application due to low battery voltage. How to use the of the 500 Series Z-Wave Single Chip as a battery monitor is described in detail in [1]. silabs.com Building a more connected world. Page 8 of 12

12 5 HW CONSIDERATIONS Some considerations have to be made regarding the HW surrounding an in order to obtain the expected precision of the. It is of no use to work with a 12-bit converter with a LSB of e.g 300uV if noise on the input line or power supplies is in the mv range. All the possible means to avoid excessive noise cannot be described here, since they vary from hardware platform to hardware platform, but this section describes some general precautions to take. 5.1 Input filters High frequency noise may, regardless of how high the noise frequencies are compared to the sampling period, always interfere with -measurements. Implementing a LP filter in front of the input of the can suppress such interference. Since the converter during the sampling period looks like a RC LP-filter, adding a series resistor in the input of the converter is equivalent to lowering the 3 db cut-off frequency of input filter. But, the series resistor may not be too large, since it may influence the precision of the converter (please refer to section 4.4) A normal passive RC filter is also a solution to consider, or an active filter, depending on the situation. Using an active filter may be feasible if the dynamic range of the signal is low, since it would be possible to both amplify and filter the input signal using the same circuit. For all filters, one has to think about the bandwidth of the signal to convert, the bandwidth of the converter and the bandwidth of the filter. The filter should prevent alias products of the signal in corrupting the measurements, filter out noise but not limit the signal nor decrease the precision of the converter. These factors are tradeoffs that need to be solved prior to a hardware design using an. 500 Series Z-Wave Single Chip 500 Series Z-Wave Single Chip 500 Series Z-Wave Single Chip R in R filter R in R in R filter C array C filter C array C array Filter resistor in signal path RC Filter in signal path Active filter in signal path Figure 8, Various input filter possibilities, Rin = 7kOhm, Carray = 29pF When using active filters, matters like inverting / non-inverting amplification, offset errors, power consumption etc. have to be considered when selecting the filter configuration. 5.2 Decoupling The RF-circuits of the 500 Series Z-Wave Single Chip have a large power-supply noise rejection ratio, since the voltage supplied to the 500 Series Z-Wave Single Chip is regulated internally on the chip for these circuits. This is not the case for the. The is connected directly to the A VDD_CO pin. All noise, ripple and spikes applied to A VDD_CO will thus influence the performance of the directly. Ensuring adequate decoupling close to the A VDD_CO pin when using the 12-bit for high precision is mandatory. silabs.com Building a more connected world. Page 9 of 12

13 Since the input pins of the shares functionality with the digital IO pins, heavy switching of the IO pins may introduce noise in form of spikes which can lead to noise on the pins used for AD conversions. Ample decoupling on the D VDD_IO and the D VDD pins is therefore recommended for achieving the best possible performance. As always valid when placing the decoupling capacitors, they should be placed as close as possible to the pin they are decoupling. Preferably on the same side of the PCB and with no via (alternately many via s) in any of the power connections: GND plane Via to GND Vias to GND C C C 500 Series Z-Wave Single Chip Power plane 500 Series Z-Wave Single Chip Via to power 500 Series Z-Wave Single Chip Vias to power Good solution Bad solution OK solution Figure 9, Decoupling capacitor placement and connection to power planes 5.3 Routing considerations Noise is not just a problem on the power supply connections; it can also be introduced to the signal path through inductive pickup and capacitive coupling. The routing of the signal path from the signal source to the should ideally be short and have no neighbor signals at all. This would both minimize the risk of inductive noise pickup and capacitive coupling. When connecting the to its signal source, one should take the following precautions: Avoid switching neighbor signals The sensitive trace (the PCB trace connecting the with its signal source) should not be routed along a data bus or other signals with rapid and sharp level changes, since this may introduce noise on the sensitive trace due to capacitive coupling. The distance between the sensitive trace and fast switching signals should always be as large as possible: 500 Series Z-Wave Single Chip IO1 IO2 GND plane 500 Series Z-Wave Single Chip IO1 IO2 Good routing practice Figure 10, How to minimize noise coupling Non optimal routing practice silabs.com Building a more connected world. Page 10 of 12

14 5.3.2 Avoid inductive pickup Switch mode power supplies, mains noise suppression coils or other sources of magnetic fields induces noise currents in neighboring wires, traces and circuits. Magnetic fields are impossible to suppress, but the effects of noise pickup can be minimized by placing the noisy circuits relatively as far away from the sensitive trace as possible: 500 Series Z-Wave Chip 500 Series Z-Wave Chip SMPS SMPS Preferable placement of SMPS circuit Non optimal placement of SMPS circuit Figure 11, trace routing to avoid inductive noise pickup Many applications are divided in two application PCBs assembled over or next to each other. In these cases, circuits radiating magnetic fields should be placed carefully with respect to the 500 Series Z-Wave Single Chip and its connections. Interfering circuits should be placed as far away from both the connections and the RF circuits as possible: Application PCB Series Z-Wave Chip SMPS Application PCB Series Z-Wave Chip Application PCB 2 Preferable placement of noisy circuit Magnetic field lines SMPS Application PCB 2 Non optimal placement of noisy circuit Magnetic field lines Figure 12, Placement of potentially noisy circuits on multiple application PCB's silabs.com Building a more connected world. Page 11 of 12

15 6 REFERENCES [1] Silicon Labs, APL12665, Application Note, Battery powered applications using the 500 Series Z- Wave Single Chip [2] Silicon Labs, INS12308, Instruction, Z-Wave 500 Series Appl. Prg. Guide v (Beta1) silabs.com Building a more connected world. Page 12 of 12

16 Smart. Connected. Energy-Friendly. Products Quality Support and Community community.silabs.com Disclaimer Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Trademark Information Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, Bluegiga, Bluegiga Logo, Clockbuilder, CMEMS, DSPLL, EFM, EFM32, EFR, Ember, Energy Micro, Energy Micro logo and combinations thereof, "the world s most energy friendly microcontrollers", Ember, EZLink, EZRadio, EZRadioPRO, Gecko, ISOmodem, Micrium, Precision32, ProSLIC, Simplicity Studio, SiPHY, Telegesis, the Telegesis Logo, USBXpress, Zentri, Z-Wave and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders. Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX USA

Table 1. TS1100 and MAX9634 Data Sheet Specifications. TS1100 ±30 (typ) ±100 (typ) Gain Error (%) ±0.1% ±0.1%

Table 1. TS1100 and MAX9634 Data Sheet Specifications. TS1100 ±30 (typ) ±100 (typ) Gain Error (%) ±0.1% ±0.1% Current Sense Amplifier Performance Comparison: TS1100 vs. Maxim MAX9634 1. Introduction Overall measurement accuracy in current-sense amplifiers is a function of both gain error and amplifier input offset

More information

Si21xxx-yyy-GM SMIC 55NLL New Raw Wafer Suppliers

Si21xxx-yyy-GM SMIC 55NLL New Raw Wafer Suppliers 180515299 Si21xxx-yyy-GM SMIC 55NLL New Raw Wafer Suppliers Issue Date: 5/15/2018 Effective Date: 5/15/2018 Description of Change Silicon Labs is pleased to announce that SMIC foundry supplier has qualified

More information

Figure 1. Low Voltage Current Sense Amplifier Utilizing Nanopower Op-Amp and Low-Threshold P-Channel MOSFET

Figure 1. Low Voltage Current Sense Amplifier Utilizing Nanopower Op-Amp and Low-Threshold P-Channel MOSFET SUB-1 V CURRENT SENSING WITH THE TS1001, A 0.8V, 0.6µA OP-AMP 1. Introduction AN833 Current-sense amplifiers can monitor battery or solar cell currents, and are useful to estimate power capacity and remaining

More information

TS1105/06/09 Current Sense Amplifier EVB User's Guide

TS1105/06/09 Current Sense Amplifier EVB User's Guide TS1105/06/09 Current Sense Amplifier EVB User's Guide The TS1105, TS1106, and TS1109 combine a high-side current sense amplifier (CSA) with a buffered output featuring an adjustable bias. The TS1109 bidirectional

More information

UG175: TS331x EVB User's Guide

UG175: TS331x EVB User's Guide UG175: TS331x EVB User's Guide The TS331x is a low power boost converter with an industry leading low quiescent current of 150 na, enabling ultra long battery life in systems running from a variety of

More information

AN1093: Achieving Low Jitter Using an Oscillator Reference with the Si Jitter Attenuators

AN1093: Achieving Low Jitter Using an Oscillator Reference with the Si Jitter Attenuators AN1093: Achieving Low Jitter Using an Oscillator Reference with the Si5342-47 Jitter Attenuators This applican note references the Si5342-7 jitter attenuator products that use an oscillator as the frequency

More information

AN862: Optimizing Jitter Performance in Next-Generation Internet Infrastructure Systems

AN862: Optimizing Jitter Performance in Next-Generation Internet Infrastructure Systems AN862: Optimizing Jitter Performance in Next-Generation Internet Infrastructure Systems To realize 100 fs jitter performance of the Si534x jitter attenuators and clock generators in real-world applications,

More information

TS3003 Demo Board FEATURES COMPONENT LIST ORDERING INFORMATION. TS3003 Demo Board TS3003DB

TS3003 Demo Board FEATURES COMPONENT LIST ORDERING INFORMATION. TS3003 Demo Board TS3003DB FEATURES 5V Supply Voltage FOUT/PWMOUT Output Period: 40µs(25kHz) o RSET = 4.32MΩ PWMOUT Output Duty Cycle: o 75% with CPWM = 100pF PWMOUT Duty Cycle Reduction o 1MΩ Potentiometer Fully Assembled and Tested

More information

TS3004 Demo Board FEATURES COMPONENT LIST ORDERING INFORMATION. TS3004 Demo Board TS3004DB. 5V Supply Voltage FOUT/PWMOUT Output Period Range:

TS3004 Demo Board FEATURES COMPONENT LIST ORDERING INFORMATION. TS3004 Demo Board TS3004DB. 5V Supply Voltage FOUT/PWMOUT Output Period Range: FEATURES 5V Supply Voltage FOUT/PWMOUT Output Period Range: o 40µs tfout 1.398min o RSET = 4.32MΩ PWMOUT Output Duty Cycle: o 75% for FDIV2:0 = 000 o CPWM = 100pF PWMOUT Duty Cycle Reduction o 1MΩ Potentiometer

More information

AN599. Si4010 ARIB STD T-93 TEST RESULTS (315 MHZ) 1. Introduction. 2. Relevant Measurements Limits DKPB434-BS Schematic and Layout

AN599. Si4010 ARIB STD T-93 TEST RESULTS (315 MHZ) 1. Introduction. 2. Relevant Measurements Limits DKPB434-BS Schematic and Layout Si4010 ARIB STD T-93 TEST RESULTS (315 MHZ) 1. Introduction This document provides Si4010 ARIB STD T-93 test results when operating in the 315 MHz frequency band. The results demonstrate full compliance

More information

AN985: BLE112, BLE113 AND BLE121LR RANGE ANALYSIS

AN985: BLE112, BLE113 AND BLE121LR RANGE ANALYSIS AN985: BLE112, BLE113 AND BLE121LR RANGE ANALYSIS APPLICATION NOTE Thursday, 15 May 2014 Version 1.1 VERSION HISTORY Version Comment 1.0 Release 1.1 BLE121LR updated, BLE112 carrier measurement added Silicon

More information

Change of Substrate Vendor from SEMCO to KCC

Change of Substrate Vendor from SEMCO to KCC 171220205 Change of Substrate Vendor from SEMCO to KCC PCN Issue Date: 12/20/2017 Effective Date: 3/23/2018 PCN Type: Assembly Description of Change Silicon Labs is pleased to announce a change of substrate

More information

AN0026.1: EFM32 and EFR32 Wireless SOC Series 1 Low Energy Timer

AN0026.1: EFM32 and EFR32 Wireless SOC Series 1 Low Energy Timer AN0026.1: EFM32 and EFR32 Wireless SOC Series 1 Low Energy Timer This application note gives an overview of the Low Energy Timer (LETIMER) and demonstrates how to use it on the EFM32 and EFR32 wireless

More information

AN0026.0: EFM32 and EZR32 Wireless MCU Series 0 Low Energy Timer

AN0026.0: EFM32 and EZR32 Wireless MCU Series 0 Low Energy Timer AN0026.0: EFM32 and EZR32 Wireless MCU Series 0 Low Energy Timer This application note gives an overview of the Low Energy Timer (LETIMER) and demonstrates how to use it on the EFM32 and EZR32 wireless

More information

WT11I DESIGN GUIDE. Monday, 28 November Version 1.1

WT11I DESIGN GUIDE. Monday, 28 November Version 1.1 WT11I DESIGN GUIDE Monday, 28 November 2011 Version 1.1 Contents: WT11i... 1 Design Guide... 1 1 INTRODUCTION... 5 2 TYPICAL EMC PROBLEMS WITH BLUETOOTH... 6 2.1 Radiated Emissions... 6 2.2 RF Noise in

More information

Optocoupler 8. Shield. Optical Receiver. Figure 1. Optocoupler Block Diagram

Optocoupler 8. Shield. Optical Receiver. Figure 1. Optocoupler Block Diagram USING THE Si87XX FAMILY OF DIGITAL ISOLATORS 1. Introduction Optocouplers provide both galvanic signal isolation and output level shifting in a single package but are notorious for their long propagation

More information

Assembly Site Addition (UTL3)

Assembly Site Addition (UTL3) Process Change Notice 171117179 Assembly Site Addition (UTL3) PCN Issue Date: 11/17/2017 Effective Date: 2/22/2018 PCN Type: Assembly Description of Change Silicon Labs is pleased to announce the successful

More information

AN933: EFR32 Minimal BOM

AN933: EFR32 Minimal BOM The purpose of this application note is to illustrate bill-of-material (BOM)-optimized solutions for sub-ghz and 2.4 GHz applications using the EFR32 Wireless Gecko Portfolio. Silicon Labs reference radio

More information

UG123: SiOCXO1-EVB Evaluation Board User's Guide

UG123: SiOCXO1-EVB Evaluation Board User's Guide UG123: SiOCXO1-EVB Evaluation Board User's Guide The Silicon Labs SiOCXO1-EVB (kit) is used to help evaluate Silicon Labs Jitter Attenuator and Network Synchronization products for Stratum 3/3E, IEEE 1588

More information

AN656. U SING NEC BJT(NESG AND NESG250134) POWER AMPLIFIER WITH Si446X. 1. Introduction. 2. BJT Power Amplifier (PA) and Match Circuit

AN656. U SING NEC BJT(NESG AND NESG250134) POWER AMPLIFIER WITH Si446X. 1. Introduction. 2. BJT Power Amplifier (PA) and Match Circuit U SING NEC BJT(NESG270034 AND NESG250134) POWER AMPLIFIER WITH Si446X 1. Introduction Silicon Laboratories' Si446x devices are high-performance, low-current transceivers covering the sub-ghz frequency

More information

Description. Benefits. Logic Control. Rev 2.1, May 2, 2008 Page 1 of 11

Description. Benefits. Logic Control. Rev 2.1, May 2, 2008 Page 1 of 11 Key Features DC to 220 MHz operating frequency range Low output clock skew: 60ps-typ Low part-to-part output skew: 80 ps-typ 3.3V to 2.5V operation supply voltage range Low power dissipation: - 10 ma-typ

More information

AN31. I NDUCTOR DESIGN FOR THE Si41XX SYNTHESIZER FAMILY. 1. Introduction. 2. Determining L EXT. 3. Implementing L EXT

AN31. I NDUCTOR DESIGN FOR THE Si41XX SYNTHESIZER FAMILY. 1. Introduction. 2. Determining L EXT. 3. Implementing L EXT I NDUCTOR DESIGN FOR THE Si4XX SYNTHESIZER FAMILY. Introduction Silicon Laboratories family of frequency synthesizers integrates VCOs, loop filters, reference and VCO dividers, and phase detectors in standard

More information

Normal Oscillator Behavior (Device A) Figure 1. Normal Oscillator Behavior (Device A) ft = f0 1 + TC1 T T0

Normal Oscillator Behavior (Device A) Figure 1. Normal Oscillator Behavior (Device A) ft = f0 1 + TC1 T T0 TEMPERATURE-COMPENSATED OSCILLATOR EXAMPLE 1. Introduction All Silicon Labs C8051F5xx MCU devices have an internal oscillator frequency tolerance of ±0.5%, which is rated at the oscillator s average frequency.

More information

Case study for Z-Wave usage in the presence of LTE. Date CET Initials Name Justification

Case study for Z-Wave usage in the presence of LTE. Date CET Initials Name Justification Instruction LTE Case Study Document No.: INS12840 Version: 2 Description: Case study for Z-Wave usage in the presence of LTE Written By: JPI;PNI;BBR Date: 2018-03-07 Reviewed By: Restrictions: NTJ;PNI;BBR

More information

Si4825-DEMO. Si4825 DEMO BOARD USER S GUIDE. 1. Features. Table 1. Si4825 Band Sequence Definition

Si4825-DEMO. Si4825 DEMO BOARD USER S GUIDE. 1. Features. Table 1. Si4825 Band Sequence Definition Si4825 DEMO BOARD USER S GUIDE 1. Features ATAD (analog tune and analog display) AM/FM/SW radio Worldwide FM band support 64 109 MHz with 18 bands, see the Table 1 Worldwide AM band support 504 1750 khz

More information

IN1/XA C PAR IN2/XB. Figure 1. Equivalent Crystal Circuit

IN1/XA C PAR IN2/XB. Figure 1. Equivalent Crystal Circuit CRYSTAL SELECTION GUIDE FOR Si533X AND Si5355/56 DEVICES 1. Introduction This application note provides general guidelines for the selection and use of crystals with the Si533x and Si5355/56 family of

More information

90 µa max supply current 9 µa shutdown current Operating Temperature Range: 40 to +85 C 5-pin SOT-23 package RoHS-compliant

90 µa max supply current 9 µa shutdown current Operating Temperature Range: 40 to +85 C 5-pin SOT-23 package RoHS-compliant HIGH-SIDE CURRENT SENSE AMPLIFIER Features Complete, unidirectional high-side current sense capability 0.2% full-scale accuracy +5 to +36 V supply operation 85 db power supply rejection 90 µa max supply

More information

Table MHz TCXO Sources. AVX/Kyocera KT7050B KW33T

Table MHz TCXO Sources. AVX/Kyocera KT7050B KW33T U SING THE Si5328 IN ITU G.8262-COMPLIANT SYNCHRONOUS E THERNET APPLICATIONS 1. Introduction The Si5328 and G.8262 The Si5328 is a Synchronous Ethernet (SyncE) PLL providing any-frequency translation and

More information

AN255. REPLACING 622 MHZ VCSO DEVICES WITH THE Si55X VCXO. 1. Introduction. 2. Modulation Bandwidth. 3. Phase Noise and Jitter

AN255. REPLACING 622 MHZ VCSO DEVICES WITH THE Si55X VCXO. 1. Introduction. 2. Modulation Bandwidth. 3. Phase Noise and Jitter REPLACING 622 MHZ VCSO DEVICES WITH THE Si55X VCXO 1. Introduction The Silicon Laboratories Si550 is a high-performance, voltage-controlled crystal oscillator (VCXO) device that is suitable for use in

More information

INPUT DIE V DDI V DD2 ISOLATION ISOLATION XMIT GND2. Si8710 Digital Isolator. Figure 1. Si8710 Digital Isolator Block Diagram

INPUT DIE V DDI V DD2 ISOLATION ISOLATION XMIT GND2. Si8710 Digital Isolator. Figure 1. Si8710 Digital Isolator Block Diagram ISOLATION ISOLATION AN729 REPLACING TRADITIONAL OPTOCOUPLERS WITH Si87XX DIGITAL ISOLATORS 1. Introduction Opto-couplers are a decades-old technology widely used for signal isolation, typically providing

More information

Figure 1. LDC Mode Operation Example

Figure 1. LDC Mode Operation Example EZRADIOPRO LOW DUTY CYCLE MODE OPERATION 1. Introduction Figure 1. LDC Mode Operation Example Low duty cycle (LDC) mode is designed to allow low average current polling operation of the Si443x RF receiver

More information

AN523. OVERLAY CONSIDERATIONS FOR THE Si114X SENSOR. 1. Introduction. 2. Typical Application

AN523. OVERLAY CONSIDERATIONS FOR THE Si114X SENSOR. 1. Introduction. 2. Typical Application OVERLAY CONSIDERATIONS FOR THE Si114X SENSOR 1. Introduction The Si1141/42/43 infrared proximity detector with integrated ambient light sensor (ALS) is a flexible, highperformance solution for proximity-detection

More information

Low Jitter and Skew 10 to 220 MHz Zero Delay Buffer (ZDB) Description. Benefits. Low Power and Low Jitter PLL. (Divider for -2 only) GND

Low Jitter and Skew 10 to 220 MHz Zero Delay Buffer (ZDB) Description. Benefits. Low Power and Low Jitter PLL. (Divider for -2 only) GND Key Features 10 to 220 MHz operating frequency range Low output clock skew: 60ps-typ Low output clock Jitter: Low part-to-part output skew: 150 ps-typ 3.3V to 2.5V power supply range Low power dissipation:

More information

profile for maximum EMI Si50122-A5 does not support Solid State Drives (SSD) Wireless Access Point Home Gateway Digital Video Cameras REFOUT DIFF1

profile for maximum EMI Si50122-A5 does not support Solid State Drives (SSD) Wireless Access Point Home Gateway Digital Video Cameras REFOUT DIFF1 CRYSTAL-LESS PCI-EXPRESS GEN 1, GEN 2, & GEN 3 DUAL OUTPUT CLOCK GENERATOR Features Crystal-less clock generator with Triangular spread spectrum integrated CMEMS profile for maximum EMI PCI-Express Gen

More information

AN959: DCO Applications with the Si5341/40

AN959: DCO Applications with the Si5341/40 AN959: DCO Applications with the Si5341/40 Generically speaking, a DCO is the same thing as a numerically controlled oscillator (NCO) or a direct digital synthesizer (DDS). All of these devices are oscillators

More information

AN905 EXTERNAL REFERENCES: OPTIMIZING PERFORMANCE. 1. Introduction. Figure 1. Si5342 Block Diagram. Devices include: Si534x Si5380 Si539x

AN905 EXTERNAL REFERENCES: OPTIMIZING PERFORMANCE. 1. Introduction. Figure 1. Si5342 Block Diagram. Devices include: Si534x Si5380 Si539x EXTERNAL REFERENCES: OPTIMIZING PERFORMANCE 1. Introduction Devices include: Si534x Si5380 Si539x The Si5341/2/4/5/6/7 and Si5380 each have XA/XB inputs, which are used to generate low-phase-noise references

More information

Si Data Short

Si Data Short High-Performance Automotive AM/FM Radio Receiver and HD Radio /DAB/DAB+/DMB/DRM Tuner The Si47961/62 integrates two global radio receivers. The analog AM/FM receivers and digital radio tuners set a new

More information

Si Data Short

Si Data Short High-Performance Automotive AM/FM Radio Receiver and HD Radio /DAB/DAB+/DMB/DRM Tuner with Audio System The Si47971/72 integrates two global radio receivers with audio processing. The analog AM/FM receivers

More information

AN1104: Making Accurate PCIe Gen 4.0 Clock Jitter Measurements

AN1104: Making Accurate PCIe Gen 4.0 Clock Jitter Measurements AN1104: Making Accurate PCIe Gen 4.0 Clock Jitter Measurements The Si522xx family of clock generators and Si532xx buffers were designed to meet and exceed the requirements detailed in PCIe Gen 4.0 standards.

More information

When paired with a compliant TCXO or OCXO, the Si5328 fully meets the requirements set forth in G.8262/Y ( SyncE ), as shown in Table 1.

When paired with a compliant TCXO or OCXO, the Si5328 fully meets the requirements set forth in G.8262/Y ( SyncE ), as shown in Table 1. Si5328: SYNCHRONOUS ETHERNET* COMPLIANCE TEST REPORT 1. Introduction Synchronous Ethernet (SyncE) is a key solution used to distribute Stratum 1 traceable frequency synchronization over packet networks,

More information

TS A 0.65V/1µA Nanopower Voltage Detector with Dual Outputs DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION CIRCUIT

TS A 0.65V/1µA Nanopower Voltage Detector with Dual Outputs DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION CIRCUIT FEATURES Nanopower Voltage Detector in Single 4 mm 2 Package Ultra Low Total Supply Current: 1µA (max) Supply Voltage Operation: 0.65V to 2.5V Preset 0.78V UVLO Trip Threshold Internal ±10mV Hysteresis

More information

TSM6025. A +2.5V, Low-Power/Low-Dropout Precision Voltage Reference FEATURES DESCRIPTION APPLICATIONS TYPICAL APPLICATION CIRCUIT

TSM6025. A +2.5V, Low-Power/Low-Dropout Precision Voltage Reference FEATURES DESCRIPTION APPLICATIONS TYPICAL APPLICATION CIRCUIT A +2.5V, Low-Power/Low-Dropout Precision Voltage Reference FEATURES Alternate Source for MAX6025 Initial Accuracy: 0.2% (max) TSM6025A 0.4% (max) TSM6025B Temperature Coefficient: 15ppm/ C (max) TSM6025A

More information

Low-Power Single/Dual-Supply Dual Comparator with Reference. A 5V, Low-Parts-Count, High-Accuracy Window Detector

Low-Power Single/Dual-Supply Dual Comparator with Reference. A 5V, Low-Parts-Count, High-Accuracy Window Detector Low-Power Single/Dual-Supply Dual Comparator with Reference FEATURES Ultra-Low Quiescent Current: 4μA (max), Both Comparators plus Reference Single or Dual Power Supplies: Single: +.5V to +11V Dual: ±1.5V

More information

AN1005: EZR32 Layout Design Guide

AN1005: EZR32 Layout Design Guide The purpose of this application note is to help users design PCBs for EZR32 Wireless MCUs using best design practices that result in excellent RF performance. EZR32 wireless MCUs are based on the Si4455/Si446x

More information

UG310: XBee3 Expansion Kit User's Guide

UG310: XBee3 Expansion Kit User's Guide UG310: XBee3 Expansion Kit User's Guide The XBee3 Expansion Kit is an excellent way to explore and evaluate the XBee3 LTE-M cellular module which allows you to add low-power long range wireless connectivity

More information

Figure 1. Typical System Block Diagram

Figure 1. Typical System Block Diagram Si5335 SOLVES TIMING CHALLENGES IN PCI EXPRESS, C OMPUTING, COMMUNICATIONS AND FPGA-BASED SYSTEMS 1. Introduction The Si5335 is ideally suited for PCI Express (PCIe) and FPGA-based embedded computing and

More information

BGM13P22 Module Radio Board BRD4306A Reference Manual

BGM13P22 Module Radio Board BRD4306A Reference Manual BGM13P22 Module Radio Board BRD4306A Reference Manual The BRD4306A Blue Gecko Radio Board contains a Blue Gecko BGM13P22 module which integrates Silicon Labs' EFR32BG13 Blue Gecko SoC into a small form

More information

TSM9634F. A 1µA, SOT23 Precision Current-Sense Amplifier DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION CIRCUIT

TSM9634F. A 1µA, SOT23 Precision Current-Sense Amplifier DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION CIRCUIT A 1µA, SOT23 Precision Current-Sense Amplifier FEATURES Second-source for MAX9634F Ultra-Low Supply Current: 1μA Wide Input Common Mode Range: +1.6V to +28V Low Input Offset Voltage: 25µV (max) Low Gain

More information

UG310: LTE-M Expansion Kit User's Guide

UG310: LTE-M Expansion Kit User's Guide The LTE-M Expansion Kit is an excellent way to explore and evaluate the Digi XBee3 LTE-M cellular module which allows you to add low-power long range wireless connectivity to your EFM32/EFR32 embedded

More information

AN614 A SIMPLE ALTERNATIVE TO ANALOG ISOLATION AMPLIFIERS. 1. Introduction. Input. Output. Input. Output Amp. Amp. Modulator or Driver

AN614 A SIMPLE ALTERNATIVE TO ANALOG ISOLATION AMPLIFIERS. 1. Introduction. Input. Output. Input. Output Amp. Amp. Modulator or Driver A SIMPLE ALTERNATIVE TO ANALOG ISOLATION AMPLIFIERS 1. Introduction Analog circuits sometimes require linear (analog) signal isolation for safety, signal level shifting, and/or ground loop elimination.

More information

Low-Power Single/Dual-Supply Quad Comparator with Reference FEATURES

Low-Power Single/Dual-Supply Quad Comparator with Reference FEATURES Low-Power Single/Dual-Supply Quad Comparator with Reference FEATURES Ultra-Low Quiescent Current: 5.μA (max), All comparators plus Reference Single or Dual Power Supplies: Single: +.5V to +V Dual: ±.5V

More information

AN427. EZRADIOPRO Si433X & Si443X RX LNA MATCHING. 1. Introduction. 2. Match Network Topology Three-Element Match Network

AN427. EZRADIOPRO Si433X & Si443X RX LNA MATCHING. 1. Introduction. 2. Match Network Topology Three-Element Match Network EZRADIOPRO Si433X & Si443X RX LNA MATCHING 1. Introduction The purpose of this application note is to provide a description of the impedance matching of the RX differential low noise amplifier (LNA) on

More information

AN114. Scope. Safety. Materials H AND SOLDERING TUTORIAL FOR FINE PITCH QFP DEVICES. Optional. Required. 5. Solder flux - liquid type in dispenser

AN114. Scope. Safety. Materials H AND SOLDERING TUTORIAL FOR FINE PITCH QFP DEVICES. Optional. Required. 5. Solder flux - liquid type in dispenser H AND SOLDERING TUTORIAL FOR FINE PITCH QFP DEVICES Scope This document is intended to help designers create their initial prototype systems using Silicon Lab's TQFP and LQFP devices where surface mount

More information

Date CET Initials Name Justification

Date CET Initials Name Justification Application Note Antennas for Short Range Devices Document No.: APL10045 Version: 5 Description: - Written By: TJO;MVO;SDH;NTJ;BBR Date: 2018-03-05 Reviewed By: Restrictions: MVITHANAGE;PNI None Approved

More information

Hardware Design Considerations

Hardware Design Considerations the world's most energy friendly microcontrollers Hardware Design Considerations AN0002 - Application Note Introduction This application note is intended for system designers who require an overview of

More information

TS1105/06 Data Sheet. TS1105 and TS1106 Unidirectional and Bidirectional Current- Sense Amplifiers + Buffered Unipolar Output with Adjustable Bias

TS1105/06 Data Sheet. TS1105 and TS1106 Unidirectional and Bidirectional Current- Sense Amplifiers + Buffered Unipolar Output with Adjustable Bias TS1105 and TS1106 Unidirectional and Bidirectional Current- Sense Amplifiers + Buffered Unipolar Output with Adjustable Bias The TS1105 and TS1106 combine the TS1100 or TS1101 current-sense amplifiers

More information

Description. Benefits. Low Jitter PLL With Modulation Control. Input Decoder SSEL0 SSEL1. Figure 1. Block Diagram

Description. Benefits. Low Jitter PLL With Modulation Control. Input Decoder SSEL0 SSEL1. Figure 1. Block Diagram Low Jitter and Power Clock Generator with SSCG Key Features Low power dissipation - 14.5mA-typ CL=15pF - 20.0mA-max CL=15pF 3.3V +/-10% power supply range 27.000MHz crystal or clock input 27.000MHz REFCLK

More information

Not Recommended for New Design. SL28PCIe16. EProClock PCI Express Gen 2 & Gen 3 Clock Generator. Features. Pin Configuration.

Not Recommended for New Design. SL28PCIe16. EProClock PCI Express Gen 2 & Gen 3 Clock Generator. Features. Pin Configuration. Features SL28PCIe16 EProClock PCI Express Gen 2 & Gen 3 Clock Generator Optimized 100 MHz Operating Frequencies to Meet the Next Generation PCI-Express Gen 2 & Gen 3 Low power push-pull type differential

More information

The Si86xxIsoLin reference design board contains three different analog isolation circuits with performance summarized in Table 1.

The Si86xxIsoLin reference design board contains three different analog isolation circuits with performance summarized in Table 1. Si86XX ISOLINEAR USER S GUIDE. Introduction The ISOlinear reference design modulates the incoming analog signal, transmits the resulting digital signal through the Si86xx digital isolator, and filters

More information

TS3300 FEATURES DESCRIPTION APPLICATIONS TYPICAL APPLICATION CIRCUIT VIN, VOUT, 3.5µA, High-Efficiency Boost + Output Load Switch

TS3300 FEATURES DESCRIPTION APPLICATIONS TYPICAL APPLICATION CIRCUIT VIN, VOUT, 3.5µA, High-Efficiency Boost + Output Load Switch FEATURES Combines Low-power Boost + Output Load Switch Boost Regulator Input Voltage: 0.6V- 3V Output Voltage: 1.8V- 3.6V Efficiency: Up to 84% No-load Input Current: 3.5µA Delivers >100mA at 1.8VBO from

More information

TS1109 Data Sheet. TS1109 Bidirectional Current-Sense Amplifier with Buffered Bipolar

TS1109 Data Sheet. TS1109 Bidirectional Current-Sense Amplifier with Buffered Bipolar TS1109 Bidirectional Current-Sense Amplifier with Buffered Bipolar Output The TS1109 incorporates a bidirectional current-sense amplifier plus a buffered bipolar output with an adjustable bias. The internal

More information

UG168: Si8284-EVB User's Guide

UG168: Si8284-EVB User's Guide This document describes the operation of the Si8284-EVB. The Si8284 Evaluation Kit contains the following items: Si8284-EVB Si8284CD-IS installed on the evaluation board. KEY POINTS Discusses hardware

More information

Description. Benefits. Low Jitter PLL With Modulation Control. Input Decoder SSEL0 SSEL1. Figure 1. Block Diagram. Rev 2.6, August 1, 2010 Page 1 of 9

Description. Benefits. Low Jitter PLL With Modulation Control. Input Decoder SSEL0 SSEL1. Figure 1. Block Diagram. Rev 2.6, August 1, 2010 Page 1 of 9 Key Features Low power dissipation - 13.5mA-typ CL=15pF - 18.0mA-max CL=15pF 3.3V +/-10% power supply range 27.000MHz crystal or clock input 27.000MHz REFCLK 100MHz SSCLK with SSEL0/1 spread options Low

More information

AN1057: Hitless Switching using Si534x/8x Devices

AN1057: Hitless Switching using Si534x/8x Devices AN1057: Hitless Switching using Si534x/8x Devices Hitless switching is a requirement found in many communications systems using phase and frequency synchronization. Hitless switching allows the input clocks

More information

Si52111-B3/B4 PCI-EXPRESS GEN 2 SINGLE OUTPUT CLOCK GENERATOR. Features. Applications. Description. compliant. 40 to 85 C

Si52111-B3/B4 PCI-EXPRESS GEN 2 SINGLE OUTPUT CLOCK GENERATOR. Features. Applications. Description. compliant. 40 to 85 C PCI-EXPRESS GEN 2 SINGLE OUTPUT CLOCK GENERATOR Features PCI-Express Gen 1 and Gen 2 Extended Temperature: compliant 40 to 85 C Low power HCSL differential 3.3 V Power supply output buffer Small package

More information

AN0002.0: EFM32 and EZR32 Wireless MCU Series 0 Hardware Design Considerations

AN0002.0: EFM32 and EZR32 Wireless MCU Series 0 Hardware Design Considerations AN0002.0: EFM32 and EZR32 Wireless MCU Series 0 Hardware Design Considerations This application note details hardware design considerations for EFM32 and EZR32 Wireless MCU Series 0 devices. For hardware

More information

package and pinout temperature range Test and measurement Storage FPGA/ASIC clock generation 17 k * 3

package and pinout temperature range Test and measurement Storage FPGA/ASIC clock generation 17 k * 3 1 ps MAX JITTER CRYSTAL OSCILLATOR (XO) (10 MHZ TO 810 MHZ) Features Available with any-frequency output Available CMOS, LVPECL, frequencies from 10 to 810 MHz LVDS, and CML outputs 3rd generation DSPLL

More information

TS1100. A 1µA, +2V to +27V SOT23 Precision Current-Sense Amplifier DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION CIRCUIT

TS1100. A 1µA, +2V to +27V SOT23 Precision Current-Sense Amplifier DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION CIRCUIT FEATURES Improved Electrical Performance over the MAX9938 and the MAX9634 Ultra-Low Supply Current: 1μA Wide Input Common Mode Range: +2V to +27V Low Input Offset Voltage: 1μV (max) Low Gain Error:

More information

Features + DATAIN + REFCLK RATESEL1 CLKOUT RESET/CAL. Si DATAOUT DATAIN LOS_LVL + RATESEL1 LOL LTR SLICE_LVL RESET/CAL

Features + DATAIN + REFCLK RATESEL1 CLKOUT RESET/CAL. Si DATAOUT DATAIN LOS_LVL + RATESEL1 LOL LTR SLICE_LVL RESET/CAL E VALUATION BOARD FOR Si5022 SiPHY MULTI-RATE SONET/SDH CLOCK AND DATA RECOVERY IC Description The Si5022 evaluation board provides a platform for testing and characterizing Silicon Laboratories Si5022

More information

Si8751/52 Data Sheet. Isolated FET Driver with Pin Control or Diode Emulator Inputs

Si8751/52 Data Sheet. Isolated FET Driver with Pin Control or Diode Emulator Inputs Isolated FET Driver with Pin Control or Diode Emulator Inputs The Si875x enables new pathways to creating custom solid state relay (SSR) configurations. Supporting customer-selected external FETs, the

More information

Si8751/52 Data Sheet. Isolated FET Driver with Pin Control or Diode Emulator Inputs

Si8751/52 Data Sheet. Isolated FET Driver with Pin Control or Diode Emulator Inputs Isolated FET Driver with Pin Control or Diode Emulator Inputs The Si875x enables new pathways to the creation of custom Solid State Relay (SSR) configurations. The Si875x integrates robust isolation technology

More information

Si720x Switch/Latch Hall Effect Magnetic Position Sensor Data Sheet

Si720x Switch/Latch Hall Effect Magnetic Position Sensor Data Sheet Si720x Switch/Latch Hall Effect Magnetic Position Sensor Data Sheet The Si7201/2/3/4/5/6 family of Hall effect magnetic sensors and latches from Silicon Labs combines a chopper-stabilized Hall element

More information

Si597 QUAD FREQUENCY VOLTAGE-CONTROLLED CRYSTAL OSCILLATOR (VCXO) 10 TO 810 MHZ. Features. Applications. Description. Functional Block Diagram.

Si597 QUAD FREQUENCY VOLTAGE-CONTROLLED CRYSTAL OSCILLATOR (VCXO) 10 TO 810 MHZ. Features. Applications. Description. Functional Block Diagram. QUAD FREQUENCY VOLTAGE-CONTROLLED CRYSTAL OSCILLATOR (VCXO) 10 TO 810 MHZ Features Available with any-frequency output from 10 to 810 MHz 4 selectable output frequencies 3rd generation DSPLL with superior

More information

1.6V Nanopower Comparators with/without Internal References

1.6V Nanopower Comparators with/without Internal References TSM9117-TSM912 1.6V Nanopower Comparators with/without Internal References FEATURES Second-source for MAX9117-MAX912 Guaranteed to Operate Down to +1.6V Ultra-Low Supply Current 35nA - TSM9119/TSM912 6nA

More information

Not Recommended for New Design. SL28PCIe25. EProClock PCI Express Gen 2 & Gen 3 Generator. Features. Block Diagram.

Not Recommended for New Design. SL28PCIe25. EProClock PCI Express Gen 2 & Gen 3 Generator. Features. Block Diagram. Features SL28PCIe25 EProClock PCI Express Gen 2 & Gen 3 Generator Optimized 100 MHz Operating Frequencies to Meet the Next Generation PCI-Express Gen 2 & Gen 3 Low power push-pull type differential output

More information

Low Energy Timer. AN Application Note. Introduction

Low Energy Timer. AN Application Note. Introduction ...the world's most energy friendly microcontrollers Low Energy Timer AN0026 - Application Note Introduction This application note gives an overview of the Low Energy Timer (LETIMER) and demonstrates how

More information

Table 1. Si443x vs. Si446x DC Characteristics. Specification Si443x Si446x. Ambient Temperature 40 to 85 C 40 to 85 C

Table 1. Si443x vs. Si446x DC Characteristics. Specification Si443x Si446x. Ambient Temperature 40 to 85 C 40 to 85 C TRANSITIONING FROM THE Si443X TO THE Si446X 1. Introduction This document provides assistance in transitioning from the Si443x to the Si446x EZRadioPRO transceivers. The Si446x radios represent the newest

More information

S R EVISION D VOLTAGE- C ONTROLLED C RYSTAL O SCILLATOR ( V C X O ) 1 0 M H Z TO 1. 4 G H Z

S R EVISION D VOLTAGE- C ONTROLLED C RYSTAL O SCILLATOR ( V C X O ) 1 0 M H Z TO 1. 4 G H Z VOLTAGE-CONTROLLED CRYSTAL OSCILLATOR (VCXO) 10 MHZ TO 1.4 GHZ Features Si550 R EVISION D Available with any frequency from 10 to 945 MHz and select frequencies to 1.4 GHz 3rd generation DSPLL with superior

More information

3.2x5 mm packages. temperature range. Test and measurement Storage FPGA/ASIC clock generation. 17 k * 3

3.2x5 mm packages. temperature range. Test and measurement Storage FPGA/ASIC clock generation. 17 k * 3 1 ps MAX JITTER CRYSTAL OSCILLATOR (XO) (10 MHZ TO 810 MHZ) Features Available with any-frequency output Available CMOS, LVPECL, frequencies from 10 to 810 MHz LVDS, and CML outputs 3rd generation DSPLL

More information

Si596 DUAL FREQUENCY VOLTAGE-CONTROLLED CRYSTAL OSCILLATOR (VCXO) 10 TO 810 MHZ. Features. Applications. Description. Functional Block Diagram.

Si596 DUAL FREQUENCY VOLTAGE-CONTROLLED CRYSTAL OSCILLATOR (VCXO) 10 TO 810 MHZ. Features. Applications. Description. Functional Block Diagram. DUAL FREQUENCY VOLTAGE-CONTROLLED CRYSTAL OSCILLATOR (VCXO) 10 TO 810 MHZ Features Available with any-rate output frequencies from 10 to 810 MHz Two selectable output frequencies 3 rd generation DSPLL

More information

Si3402B-EVB. N ON-ISOLATED EVALUATION BOARD FOR THE Si3402B. 1. Description. 2. Si3402B Board Interface

Si3402B-EVB. N ON-ISOLATED EVALUATION BOARD FOR THE Si3402B. 1. Description. 2. Si3402B Board Interface N ON-ISOLATED EVALUATION BOARD FOR THE Si3402B 1. Description The Si3402B non-isolated evaluation board (Si3402B-EVB Rev 2) is a reference design for a power supply in a Power over Ethernet (PoE) Powered

More information

TS V Nanopower Comparator with Internal Reference DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION CIRCUIT

TS V Nanopower Comparator with Internal Reference DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION CIRCUIT FEATURES Improved Electrical Performance over MAX9117-MAX9118 Guaranteed to Operate Down to +1.6V Ultra-Low Supply Current: 6nA Internal 1.252V ±1% Reference Input Voltage Range Extends 2mV Outsidethe-Rails

More information

Hardware Design Considerations

Hardware Design Considerations the world's most energy friendly microcontrollers Hardware Design Considerations AN0002 - Application Note Introduction This application note is intended for system designers who require an overview of

More information

Si595 R EVISION D VOLTAGE-CONTROLLED CRYSTAL OSCILLATOR (VCXO) 10 TO 810 MHZ. Features. Applications. Description. Functional Block Diagram.

Si595 R EVISION D VOLTAGE-CONTROLLED CRYSTAL OSCILLATOR (VCXO) 10 TO 810 MHZ. Features. Applications. Description. Functional Block Diagram. R EVISION D VOLTAGE-CONTROLLED CRYSTAL OSCILLATOR (VCXO) 10 TO 810 MHZ Features Available with any-rate output frequencies from 10 to 810 MHz 3rd generation DSPLL with superior jitter performance Internal

More information

Pin Assignments VDD CLK- CLK+ (Top View)

Pin Assignments VDD CLK- CLK+ (Top View) Ultra Low Jitter Any-Frequency XO (80 fs), 0.2 to 800 MHz The Si545 utilizes Silicon Laboratories advanced 4 th generation DSPLL technology to provide an ultra-low jitter, low phase noise clock at any

More information

2. Design Recommendations when Using EZRadioPRO RF ICs

2. Design Recommendations when Using EZRadioPRO RF ICs EZRADIOPRO LAYOUT DESIGN GUIDE 1. Introduction The purpose of this application note is to help users design EZRadioPRO PCBs using design practices that allow for good RF performance. This application note

More information

EFR32MG GHz 10 dbm Radio Board BRD4162A Reference Manual

EFR32MG GHz 10 dbm Radio Board BRD4162A Reference Manual EFR32MG12 2.4 GHz 10 dbm Radio Board BRD4162A Reference Manual The BRD4162A Mighty Gecko Radio Board enables developers to develop Zigbee, Thread, Bluetooth low energy and proprietary wireless wireless

More information

AN0016.1: Oscillator Design Considerations

AN0016.1: Oscillator Design Considerations AN0016.1: Oscillator Design Considerations This application note provides an introduction to the oscillators in MCU Series 1 or Wireless SoC Series 1 devices and provides guidelines in selecting correct

More information

Table 1. WMCU Replacement Types. Min VDD Flash Size Max TX Power

Table 1. WMCU Replacement Types. Min VDD Flash Size Max TX Power SI100X/101X TO SI106X/108X WIRELESS MCU TRANSITION GUIDE 1. Introduction This document provides transition assistance from the Si100x/101x wireless MCU family to the Si106x/108x wireless MCU family. The

More information

TSM1285. A 300ksps, Single-supply, Low-Power 12-Bit Serial-output ADC DESCRIPTION FEATURES APPLICATIONS FUNCTIONAL BLOCK DIAGRAM

TSM1285. A 300ksps, Single-supply, Low-Power 12-Bit Serial-output ADC DESCRIPTION FEATURES APPLICATIONS FUNCTIONAL BLOCK DIAGRAM FEATURES Alternate Source for MAX285 and higher-speed upgrade to MAX240 and MAX24 Single-Supply Operation: +2.7V to +3.6V DNL & INL: ±LSB (max) 300ksps Sampling Rate Low Conversion-Mode Supply Current:

More information

ATDD (analog tune and digital display) FM/AM/SW radio Worldwide FM band support from 64 to 109 MHz with 5 default sub-bands:

ATDD (analog tune and digital display) FM/AM/SW radio Worldwide FM band support from 64 to 109 MHz with 5 default sub-bands: Si48/6 DEMO BOARD USER S GUIDE 1. Features ATDD (analog tune and digital display) FM/AM/SW radio Worldwide FM band support from 64 to 109 MHz with 5 default sub-bands: FM1 87 108 MHz (Demo Board Default)

More information

EFR32MG 2.4 GHz 19.5 dbm Radio Board BRD4151A Reference Manual

EFR32MG 2.4 GHz 19.5 dbm Radio Board BRD4151A Reference Manual EFR32MG 2.4 GHz 19.5 dbm Radio Board BRD4151A Reference Manual The EFR32MG family of Wireless SoCs deliver a high performance, low energy wireless solution integrated into a small form factor package.

More information

AN973: Design Guide for Si8281/83 Isolated DC-DC with Internal Switch

AN973: Design Guide for Si8281/83 Isolated DC-DC with Internal Switch AN973: Design Guide for Si8281/83 Isolated DC-DC with Internal Switch The Si8281 and Si8283 products have an integrated isolated gate driver with an isolated dc-dc controller. The controller s internal

More information

Default high or low output Precise timing (typical)

Default high or low output Precise timing (typical) -1kV 1 KV THREE TO SIX-CHANNEL DIGITAL ISOLATORS Features High-speed operation DC to 10 Mbps No start-up initialization required Wide Operating Supply Voltage 3.15 5.5 V Up to 1000 V RMS isolation High

More information

AN BIT PWM USING AN ON-CHIP TIMER. Relevant Devices. Key Points. Introduction. Generating the PWM Input Waveform. Configuring Timer 0

AN BIT PWM USING AN ON-CHIP TIMER. Relevant Devices. Key Points. Introduction. Generating the PWM Input Waveform. Configuring Timer 0 16-BIT PWM USING AN ON-CHIP TIMER Relevant Devices This application note applies to the following devices: C8051F000, C8051F001, C8051F002, C8051F005, C8051F006, C8051F007, C8051F010, C8051F011, C8051F012,

More information

Ultra Series Crystal Oscillator Si540 Data Sheet

Ultra Series Crystal Oscillator Si540 Data Sheet Ultra Series Crystal Oscillator Si540 Data Sheet Ultra Low Jitter Any-Frequency XO (125 fs), 0.2 to 1500 MHz The Si540 Ultra Series oscillator utilizes Silicon Laboratories advanced 4 th generation DSPLL

More information

Isolated data acquisition Test and measurement equipment. VDE certification conformity VDE (basic/reinforced insulation)

Isolated data acquisition Test and measurement equipment. VDE certification conformity VDE (basic/reinforced insulation) Low Input Current LED Emulator, Logic Output Isolators The Si873x isolators are pin-compatible, single-channel, drop-in replacements for popular optocouplers with data rates up to 15 Mbps. These devices

More information

Si53360/61/62/65 Data Sheet

Si53360/61/62/65 Data Sheet Low-Jitter, LVCMOS Fanout Clock Buffers with up to 12 outputs and Frequency Range from dc to 200 MHz The Si53360/61/62/65 family of LVCMOS fanout buffers is ideal for clock/data distribution and redundant

More information

AN901: Design Guide for Isolated DC/DC using the Si884xx/886xx

AN901: Design Guide for Isolated DC/DC using the Si884xx/886xx AN901: Design Guide for Isolated DC/DC using the Si884xx/886xx The Si884xx/Si886xx product families integrate digital isolator channels with an isolated dc-dc controller. This application note provides

More information

TC7W04FU, TC7W04FK TC7W04FU/FK. 3 Inverters. Features. Marking TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC7W04FU, TC7W04FK TC7W04FU/FK. 3 Inverters. Features. Marking TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic TC7W04FU, TC7W04FK TC7W04FU/FK 3 Inverters The TC7W04 is a high speed C 2 MOS Buffer fabricated with silicon gate C 2 MOS technology. The internal

More information