Image Processing. What is an image? קורס גרפיקה ממוחשבת 2008 סמסטר ב' Converting to digital form. Sampling and Reconstruction.

Size: px
Start display at page:

Download "Image Processing. What is an image? קורס גרפיקה ממוחשבת 2008 סמסטר ב' Converting to digital form. Sampling and Reconstruction."

Transcription

1 Amplitude 5/1/008 What is an image? An image is a discrete array of samples representing a continuous D function קורס גרפיקה ממוחשבת 008 סמסטר ב' Continuous function Discrete samples 1 חלק מהשקפים מעובדים משקפים של פרדו דוראנד, טומס פנקהאוסר ודניאל כהן-אור Sampling and ion Converting to digital form Convert continuous sensed data into digital form Sampling ion Quantization Sampling 3 Sampling Theory Sampling and ion How many samples are required to represent a given signal without loss of information? What signals can be reconstructed without loss for a given sampling rate? Figure 19.9 FvDFH 1

2 5/1/008 Spectral Analysis So our image (function f(x,y)) describes how the signal changes over time (x and y axes) Aliasing occurs when we use too few samples (what is enough?) What happens when we use too few samples? Aliasing Aliasing The more an image changes, the more we need to sample it. How do we measure how fast a signal changes? Frequencies 8 Figure FvDFH Fourier Joseph Fourier discovered in 18 that Any periodic function can be expressed as the sum of sines and/or cosines if different frequencies (Fourier Series) Even functions that are not periodic can be expressed as the integral of sines and/or cosines (Fourier ) Initial application was in heat diffusion Spatial domain: Function: f(x) ing: convolution Spectral Analysis Frequency domain: Function: F(u) ing: multiplication Any signal can be written as a sum of periodic functions. 10 Fourier transform: F( u) Fourier (1D) f ( x) e Inverse Fourier transform: ixu dx Fourier (1D) f ( x) F( u) e iux du Figure.6 Wolberg

3 5/1/008 Pixel operations Add random noise Add luminance Add contrast Add saturation ing Blur Detect edges Sharpen Emboss Median Quantization Uniform Quantization Floyd-Steinberg dither Warping Scale Rotate Warps Combining Composite Morph Sampling Theorem A signal can be reconstructed from its samples, if the original signal has no frequencies above 1/ the sampling frequency - Shannon The minimum sampling rate for bandlimited function is called Nyquist rate A signal is bandlimited if its highest frequency is bounded. The frequency is called the bandwidth. Adjusting Contrast Adjusting Brightness Compute mean luminance L for all pixels luminance = 0.30*r *g *b Scale deviation from L for each pixel component Must clamp to range (e.g., 0 to 1) Simply scale pixel components Must clamp to range (e.g., 0 to 1) L More Contrast Brighter Linear ing (Spatial Domain) Convolution Each output pixel is a linear combination of input pixels in neighborhood with weights prescribed by a filter = Pixel operations Add random noise Add luminance Add contrast Add saturation ing Blur Detect edges Sharpen Emboss Median Quantization Uniform Quantization Floyd-Steinberg dither Warping Scale Rotate Warps Combining Composite Morph 18 3

4 5/1/008 More on blur (lowpass filters) We can either take a uniform kernel (mean filter) Adjust Blurriness Convolve with a filter whose entries sum to one Each pixel becomes a weighted average of its neighbors Or a Gaussian kernel A Gaussian kernel tends to provide gentler smoothing and preserve edges better What do you think happens in the frequency domain? Blur 1 16 = Sharpen Sum detected edges with original image Edge Detection Convolve with a filter that finds differences between neighbor pixels Sharpened Detect edges = = Non-linear filtering Any operation on a neighborhood around each pixel For example: Selecting the median value of the neighborhood 3x3 5x5 Emboss Convolve with a filter that highlights gradients in particular directions 7x7 11x11 15x15 4 Embossed =

5 5/1/008 Quantization Reduce intensity resolution Frame buffers have limited number of bits per pixel Physical devices have limited dynamic range n=0.5 Pixel operations Add random noise Add luminance Add contrast Add saturation ing Blur Detect edges Sharpen Emboss Median Quantization Uniform Quantization Floyd-Steinberg dither Warping Scale Rotate Warps Combining Composite Morph 6 Uniform Quantization Images with decreasing bits per pixel: P(x,y) = round(i(x,y)) Uniform Quantization I(x,y) 8 bits 4 bits bits 1 bit 8 P(x,y) bits per pixel 7 Distribute errors among pixels Exploit spatial integration in our eye greater range of perceptible intensities Dithering Reducing effects of Quantization Dithering Random dither Ordered dither Error diffusion dither Halftoning Classical halftoning (8 bits) Uniform Quantization Floyd-Steinberg Dither 9 5

6 P(x,y) P(x,y) 5/1/008 Random Dither Randomize quantization errors Errors appear as noise Random Dither (8 bits) Uniform Quantization Random Dither I(x,y) I(x,y) P(x, y) = trunc(i(x, y) + noise(x,y) + 0.5) 1 bit D Bayer s ordered dither matrices 4Dn D (1,1) U Dn 4Dn D (,1) U n n D Ordered Dither 4D 4D n n D (1,) U D (,) U n n For each pixel (x,y) oldpixel = I(x,y) +D(x mod n,y mod n) P(x,y)= find_closest_color(oldpixel) Ordered Dither Pseudo-random quantization errors Matrix stores pattern of threshholds 3 1 D 0 Basic idea: organize successive integers such that the average distance between two successive numbers in the map is as large as possible Ordered Dither Ordered Dither An example Palette consists of 8 red tones, 8 green tones and their combinations (64 colors) image had colors (8 bits) Random Dither Ordered Dither Undithered Dithered 35 6

7 5/1/008 Floyd-Steinberg Algorithm for (x = 0; x < width; x++) { for (y = 0; y < height; y++) { P(x,y) = trunc(i(x,y) + 0.5) e = I(x,y) - P(x,y) I(x,y+1) += a*e; I(x+1,y-1) += b*e; I(x+1,y) += g*e; I(x+1,y+1) += d *e; } } Error Diffusion Dither Spread quantization error over neighbor pixels Error dispersed to pixels right and below b g a b g d 1.0 a d Figure 14.4 from H&B More examples Threshold Random Bayer Error Diffusion Dither Floyd-Steinberg Jarvice, Judice & Ninke Stucki Burkes (8 bits) Random Dither Ordered Dither Floyd-Steinberg Dither 40 Classical Halftoning Use dots of varying size to represent intensities Area of dots proportional to intensity in image Reducing effects of Quantization Dithering Random dither Ordered dither Error diffusion dither Halftoning Classical halftoning I(x,y) P(x,y) 41 7

8 5/1/008 Halftone patterns Classical Halftoning Use cluster of pixels to represent intensity Trade spatial resolution for intensity resolution Newspaper Image Figure from H&B From New York Times, 9/1/99 Pixel operations Add random noise Add luminance Add contrast Add saturation ing Blur Detect edges Sharpen Emboss Median Quantization Uniform Quantization Floyd-Steinberg dither Warping Scale Rotate Warps Combining Composite Morph Halftone patterns How many intensities in a n x n cluster? Figure from H&B Image Warping Image Warping Issues How do we specify where every pixel goes? (mapping) How do we compute colors at destination pixels? (resampling) Move pixels of image Warp Warp Source image Destination image Source image Destination image 8

9 5/1/008 Image Warping Example Image warping requires resampling of image Image Scaling (x,y ) = (sx*x, sy*y); I(x,y ) =? Resampling Aliasing (again) In general: Artifacts due to under-sampling or poor reconstruction Specifically, in graphics: Spatial aliasing Temporal aliasing BACK TO SAMPLING Under-sampling Figure FvDFH 51 Spatial Aliasing Spatial Aliasing Artifacts due to limited spatial resolution Artifacts due to limited spatial resolution Jaggies 9

10 5/1/008 Temporal Aliasing Artifacts due to limited temporal resolution Strobing Flickering Temporal Aliasing Artifacts due to limited temporal resolution Strobing Flickering Temporal Aliasing Artifacts due to limited temporal resolution Strobing Flickering Temporal Aliasing Artifacts due to limited temporal resolution Strobing Flickering ed function Antialiasing at higher rate Not always possible Doesn t always solve problem Pre-filter to form bandlimited signal Form bandlimited function (low-pass filter) Trades aliasing for blurring 10

11 5/1/008 ed function ed function Discrete s Continuous Function ed function ed function ed Function ed Function ed function ed function Discrete samples Bandlimited Function 11

12 Convolution 5/1/008 Frequency domain Spatial domain Ideal Bandlimiting sin x Sinc( x) x Figure 4.5 Wolberg ed function Triangle Convolution with triangle filter Input Output Figure.4 Wolberg Finite low-pass filters Point sampling (bad) Triangle filter Gaussian filter Practical ed function Gaussian Convolution with Gaussian filter AND BACK TO WARPING Input Output 7 Figure.4 Wolberg 1

13 5/1/008 Image Resampling Compute weighted sum of pixel neighborhood Output is weighted average Image Resampling What if we are resampling a D image? dst(u,v)=0; for(ix=u-w;ix<=u+w;ix++) for(iy=v-w;iy<=v+w;iy++) d=dist between (ix,iy) and (u,v) dst(u,v) += k(ix,iy) * src(ix,iy) (u,v) W (u,v) d (ix,iy) Image Resampling For isotropic Triangle and Gaussian filters, k(ix,iy) is a function of d and w Image Resampling For isotropic Triangle and Gaussian filters, k(ix,iy) is a function of d and w (u,v) W (u,v) W d d (ix,iy) (ix,iy) Gaussian ing Triangle ing (width <= 1) Kernel is a Guassian function (u,v) d w 3 Bilinearly interpolate four closest pixels a = linear interpolation of src(u 1,v ) and src(u,v ) b = linear interpolation of src(u 1,v 1 ) and src(u,v 1 ) dst(x,y) = linear interpolation of a and b a (u 1,v ) (u,v ) (u,v) (ix,iy) (u 1,v 1 ) b (u,v 1 ) 13

14 5/1/008 Point sampling Simple but causes aliasing How do we resample? Triangle and Gaussian Algorithm as we saw earlier Float resample(src,u,v,w) { int iu = round(u); int iv = round(v); return src(iu,iv); } 80 Scale (src, dst, sx, sy): w max(1/sx,1/sy); for (int ix = 0; ix < xmax; ix++) { for (int iy = 0; iy < ymax; iy++) { float u = ix / sx; float v = iy / sy; dst(ix,iy) = resample(src,u,v,k,w); } } v (u,v) y u Scale 0.5 Image Scale (x,y) x Image Warping (in General) Alternative (forward) Image Warping (in General) Reverse Mapping 8 81 That s it for today Next time? Finishing corners on image processing ations and Projections Rendering 83 14

קורס גרפיקה ממוחשבת 2008 סמסטר ב' Image Processing 1 חלק מהשקפים מעובדים משקפים של פרדו דוראנד, טומס פנקהאוסר ודניאל כהן-אור

קורס גרפיקה ממוחשבת 2008 סמסטר ב' Image Processing 1 חלק מהשקפים מעובדים משקפים של פרדו דוראנד, טומס פנקהאוסר ודניאל כהן-אור קורס גרפיקה ממוחשבת 2008 סמסטר ב' Image Processing 1 חלק מהשקפים מעובדים משקפים של פרדו דוראנד, טומס פנקהאוסר ודניאל כהן-אור What is an image? An image is a discrete array of samples representing a continuous

More information

Image Processing. Image Processing. What is an Image? Image Resolution. Overview. Sources of Error. Filtering Blur Detect edges

Image Processing. Image Processing. What is an Image? Image Resolution. Overview. Sources of Error. Filtering Blur Detect edges Thomas Funkhouser Princeton University COS 46, Spring 004 Quantization Random dither Ordered dither Floyd-Steinberg dither Pixel operations Add random noise Add luminance Add contrast Add saturation ing

More information

Image Processing COS 426

Image Processing COS 426 Image Processing COS 426 What is a Digital Image? A digital image is a discrete array of samples representing a continuous 2D function Continuous function Discrete samples Limitations on Digital Images

More information

Image Processing. Adam Finkelstein Princeton University COS 426, Spring 2019

Image Processing. Adam Finkelstein Princeton University COS 426, Spring 2019 Image Processing Adam Finkelstein Princeton University COS 426, Spring 2019 Image Processing Operations Luminance Brightness Contrast Gamma Histogram equalization Color Grayscale Saturation White balance

More information

Prof. Feng Liu. Fall /04/2018

Prof. Feng Liu. Fall /04/2018 Prof. Feng Liu Fall 2018 http://www.cs.pdx.edu/~fliu/courses/cs447/ 10/04/2018 1 Last Time Image file formats Color quantization 2 Today Dithering Signal Processing Homework 1 due today in class Homework

More information

Image Processing. Michael Kazhdan ( /657) HB Ch FvDFH Ch. 13.1

Image Processing. Michael Kazhdan ( /657) HB Ch FvDFH Ch. 13.1 Image Processing Michael Kazhdan (600.457/657) HB Ch. 14.4 FvDFH Ch. 13.1 Outline Human Vision Image Representation Reducing Color Quantization Artifacts Basic Image Processing Human Vision Model of Human

More information

Computer Graphics (Fall 2011) Outline. CS 184 Guest Lecture: Sampling and Reconstruction Ravi Ramamoorthi

Computer Graphics (Fall 2011) Outline. CS 184 Guest Lecture: Sampling and Reconstruction Ravi Ramamoorthi Computer Graphics (Fall 2011) CS 184 Guest Lecture: Sampling and Reconstruction Ravi Ramamoorthi Some slides courtesy Thomas Funkhouser and Pat Hanrahan Adapted version of CS 283 lecture http://inst.eecs.berkeley.edu/~cs283/fa10

More information

Human Vision, Color and Basic Image Processing

Human Vision, Color and Basic Image Processing Human Vision, Color and Basic Image Processing Connelly Barnes CS4810 University of Virginia Acknowledgement: slides by Jason Lawrence, Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and

More information

Raster Graphics. Overview קורס גרפיקה ממוחשבת 2008 סמסטר ב' What is an image? What is an image? Image Acquisition. Image display 5/19/2008.

Raster Graphics. Overview קורס גרפיקה ממוחשבת 2008 סמסטר ב' What is an image? What is an image? Image Acquisition. Image display 5/19/2008. Overview Images What is an image? How are images displayed? Color models How do we perceive colors? How can we describe and represent colors? קורס גרפיקה ממוחשבת 2008 סמסטר ב' Raster Graphics 1 חלק מהשקפים

More information

קורס גרפיקה ממוחשבת 2008 סמסטר ב' Raster Graphics 1 חלק מהשקפים מעובדים משקפים של פרדו דוראנד, טומס פנקהאוסר ודניאל כהן-אור

קורס גרפיקה ממוחשבת 2008 סמסטר ב' Raster Graphics 1 חלק מהשקפים מעובדים משקפים של פרדו דוראנד, טומס פנקהאוסר ודניאל כהן-אור קורס גרפיקה ממוחשבת 2008 סמסטר ב' Raster Graphics 1 חלק מהשקפים מעובדים משקפים של פרדו דוראנד, טומס פנקהאוסר ודניאל כהן-אור Images What is an image? How are images displayed? Color models Overview How

More information

Image Filtering. Median Filtering

Image Filtering. Median Filtering Image Filtering Image filtering is used to: Remove noise Sharpen contrast Highlight contours Detect edges Other uses? Image filters can be classified as linear or nonlinear. Linear filters are also know

More information

Sampling and Reconstruction

Sampling and Reconstruction Sampling and reconstruction COMP 575/COMP 770 Fall 2010 Stephen J. Guy 1 Review What is Computer Graphics? Computer graphics: The study of creating, manipulating, and using visual images in the computer.

More information

Aliasing and Antialiasing. What is Aliasing? What is Aliasing? What is Aliasing?

Aliasing and Antialiasing. What is Aliasing? What is Aliasing? What is Aliasing? What is Aliasing? Errors and Artifacts arising during rendering, due to the conversion from a continuously defined illumination field to a discrete raster grid of pixels 1 2 What is Aliasing? What is Aliasing?

More information

Graphics and Image Processing Basics

Graphics and Image Processing Basics EST 323 / CSE 524: CG-HCI Graphics and Image Processing Basics Klaus Mueller Computer Science Department Stony Brook University Julian Beever Optical Illusion: Sidewalk Art Julian Beever Optical Illusion:

More information

IMAGE PROCESSING: AREA OPERATIONS (FILTERING)

IMAGE PROCESSING: AREA OPERATIONS (FILTERING) IMAGE PROCESSING: AREA OPERATIONS (FILTERING) N. C. State University CSC557 Multimedia Computing and Networking Fall 2001 Lecture # 13 IMAGE PROCESSING: AREA OPERATIONS (FILTERING) N. C. State University

More information

Sampling and reconstruction

Sampling and reconstruction Sampling and reconstruction Week 10 Acknowledgement: The course slides are adapted from the slides prepared by Steve Marschner of Cornell University 1 Sampled representations How to store and compute with

More information

CS534 Introduction to Computer Vision. Linear Filters. Ahmed Elgammal Dept. of Computer Science Rutgers University

CS534 Introduction to Computer Vision. Linear Filters. Ahmed Elgammal Dept. of Computer Science Rutgers University CS534 Introduction to Computer Vision Linear Filters Ahmed Elgammal Dept. of Computer Science Rutgers University Outlines What are Filters Linear Filters Convolution operation Properties of Linear Filters

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Part 2: Image Enhancement Digital Image Processing Course Introduction in the Spatial Domain Lecture AASS Learning Systems Lab, Teknik Room T26 achim.lilienthal@tech.oru.se Course

More information

Sampling and reconstruction

Sampling and reconstruction Sampling and reconstruction CS 5625 Lecture 6 Lecture 6 1 Sampled representations How to store and compute with continuous functions? Common scheme for representation: samples write down the function s

More information

Sampling and pixels. CS 178, Spring Marc Levoy Computer Science Department Stanford University. Begun 4/23, finished 4/25.

Sampling and pixels. CS 178, Spring Marc Levoy Computer Science Department Stanford University. Begun 4/23, finished 4/25. Sampling and pixels CS 178, Spring 2013 Begun 4/23, finished 4/25. Marc Levoy Computer Science Department Stanford University Why study sampling theory? Why do I sometimes get moiré artifacts in my images?

More information

Sampling and reconstruction. CS 4620 Lecture 13

Sampling and reconstruction. CS 4620 Lecture 13 Sampling and reconstruction CS 4620 Lecture 13 Lecture 13 1 Outline Review signal processing Sampling Reconstruction Filtering Convolution Closely related to computer graphics topics such as Image processing

More information

CoE4TN4 Image Processing. Chapter 4 Filtering in the Frequency Domain

CoE4TN4 Image Processing. Chapter 4 Filtering in the Frequency Domain CoE4TN4 Image Processing Chapter 4 Filtering in the Frequency Domain Fourier Transform Sections 4.1 to 4.5 will be done on the board 2 2D Fourier Transform 3 2D Sampling and Aliasing 4 2D Sampling and

More information

Fourier Transform. Any signal can be expressed as a linear combination of a bunch of sine gratings of different frequency Amplitude Phase

Fourier Transform. Any signal can be expressed as a linear combination of a bunch of sine gratings of different frequency Amplitude Phase Fourier Transform Fourier Transform Any signal can be expressed as a linear combination of a bunch of sine gratings of different frequency Amplitude Phase 2 1 3 3 3 1 sin 3 3 1 3 sin 3 1 sin 5 5 1 3 sin

More information

Sampling Theory. CS5625 Lecture Steve Marschner. Cornell CS5625 Spring 2016 Lecture 7

Sampling Theory. CS5625 Lecture Steve Marschner. Cornell CS5625 Spring 2016 Lecture 7 Sampling Theory CS5625 Lecture 7 Sampling example (reminder) When we sample a high-frequency signal we don t get what we expect result looks like a lower frequency not possible to distinguish between this

More information

Image Enhancement. DD2423 Image Analysis and Computer Vision. Computational Vision and Active Perception School of Computer Science and Communication

Image Enhancement. DD2423 Image Analysis and Computer Vision. Computational Vision and Active Perception School of Computer Science and Communication Image Enhancement DD2423 Image Analysis and Computer Vision Mårten Björkman Computational Vision and Active Perception School of Computer Science and Communication November 15, 2013 Mårten Björkman (CVAP)

More information

Filters. Materials from Prof. Klaus Mueller

Filters. Materials from Prof. Klaus Mueller Filters Materials from Prof. Klaus Mueller Think More about Pixels What exactly a pixel is in an image or on the screen? Solid square? This cannot be implemented A dot? Yes, but size matters Pixel Dots

More information

!"!#"#$% Lecture 2: Media Creation. Some materials taken from Prof. Yao Wang s slides RECAP

!!##$% Lecture 2: Media Creation. Some materials taken from Prof. Yao Wang s slides RECAP Lecture 2: Media Creation Some materials taken from Prof. Yao Wang s slides RECAP #% A Big Umbrella Content Creation: produce the media, compress it to a format that is portable/ deliverable Distribution:

More information

Antialiasing and Related Issues

Antialiasing and Related Issues Antialiasing and Related Issues OUTLINE: Antialiasing Prefiltering, Supersampling, Stochastic Sampling Rastering and Reconstruction Gamma Correction Antialiasing Methods To reduce aliasing, either: 1.

More information

Lecture 2: Digital Image Fundamentals -- Sampling & Quantization

Lecture 2: Digital Image Fundamentals -- Sampling & Quantization I2200: Digital Image processing Lecture 2: Digital Image Fundamentals -- Sampling & Quantization Prof. YingLi Tian Sept. 6, 2017 Department of Electrical Engineering The City College of New York The City

More information

Matlab (see Homework 1: Intro to Matlab) Linear Filters (Reading: 7.1, ) Correlation. Convolution. Linear Filtering (warm-up slide) R ij

Matlab (see Homework 1: Intro to Matlab) Linear Filters (Reading: 7.1, ) Correlation. Convolution. Linear Filtering (warm-up slide) R ij Matlab (see Homework : Intro to Matlab) Starting Matlab from Unix: matlab & OR matlab nodisplay Image representations in Matlab: Unsigned 8bit values (when first read) Values in range [, 255], = black,

More information

06: Thinking in Frequencies. CS 5840: Computer Vision Instructor: Jonathan Ventura

06: Thinking in Frequencies. CS 5840: Computer Vision Instructor: Jonathan Ventura 06: Thinking in Frequencies CS 5840: Computer Vision Instructor: Jonathan Ventura Decomposition of Functions Taylor series: Sum of polynomials f(x) =f(a)+f 0 (a)(x a)+ f 00 (a) 2! (x a) 2 + f 000 (a) (x

More information

Last Lecture. photomatix.com

Last Lecture. photomatix.com Last Lecture photomatix.com Today Image Processing: from basic concepts to latest techniques Filtering Edge detection Re-sampling and aliasing Image Pyramids (Gaussian and Laplacian) Removing handshake

More information

Digital Image Processing. Digital Image Fundamentals II 12 th June, 2017

Digital Image Processing. Digital Image Fundamentals II 12 th June, 2017 Digital Image Processing Digital Image Fundamentals II 12 th June, 2017 Image Enhancement Image Enhancement Types of Image Enhancement Operations Neighborhood Operations on Images Spatial Filtering Filtering

More information

Image Processing for feature extraction

Image Processing for feature extraction Image Processing for feature extraction 1 Outline Rationale for image pre-processing Gray-scale transformations Geometric transformations Local preprocessing Reading: Sonka et al 5.1, 5.2, 5.3 2 Image

More information

Image Processing. Adrien Treuille

Image Processing. Adrien Treuille Image Processing http://croftonacupuncture.com/db5/00415/croftonacupuncture.com/_uimages/bigstockphoto_three_girl_friends_celebrating_212140.jpg Adrien Treuille Overview Image Types Pixel Filters Neighborhood

More information

Image Processing Computer Graphics I Lecture 20. Display Color Models Filters Dithering Image Compression

Image Processing Computer Graphics I Lecture 20. Display Color Models Filters Dithering Image Compression 15-462 Computer Graphics I Lecture 2 Image Processing April 18, 22 Frank Pfenning Carnegie Mellon University http://www.cs.cmu.edu/~fp/courses/graphics/ Display Color Models Filters Dithering Image Compression

More information

Last Lecture. photomatix.com

Last Lecture. photomatix.com Last Lecture photomatix.com HDR Video Assorted pixel (Single Exposure HDR) Assorted pixel Assorted pixel Pixel with Adaptive Exposure Control light attenuator element detector element T t+1 I t controller

More information

Announcements. Image Processing. What s an image? Images as functions. Image processing. What s a digital image?

Announcements. Image Processing. What s an image? Images as functions. Image processing. What s a digital image? Image Processing Images by Pawan Sinha Today s readings Forsyth & Ponce, chapters 8.-8. http://www.cs.washington.edu/education/courses/49cv/wi/readings/book-7-revised-a-indx.pdf For Monday Watt,.3-.4 (handout)

More information

Evaluation of Visual Cryptography Halftoning Algorithms

Evaluation of Visual Cryptography Halftoning Algorithms Evaluation of Visual Cryptography Halftoning Algorithms Shital B Patel 1, Dr. Vinod L Desai 2 1 Research Scholar, RK University, Kasturbadham, Rajkot, India. 2 Assistant Professor, Department of Computer

More information

image Scanner, digital camera, media, brushes,

image Scanner, digital camera, media, brushes, 118 Also known as rasterr graphics Record a value for every pixel in the image Often created from an external source Scanner, digital camera, Painting P i programs allow direct creation of images with

More information

1.Discuss the frequency domain techniques of image enhancement in detail.

1.Discuss the frequency domain techniques of image enhancement in detail. 1.Discuss the frequency domain techniques of image enhancement in detail. Enhancement In Frequency Domain: The frequency domain methods of image enhancement are based on convolution theorem. This is represented

More information

Image and Video Processing

Image and Video Processing Image and Video Processing () Image Representation Dr. Miles Hansard miles.hansard@qmul.ac.uk Segmentation 2 Today s agenda Digital image representation Sampling Quantization Sub-sampling Pixel interpolation

More information

Computer Vision, Lecture 3

Computer Vision, Lecture 3 Computer Vision, Lecture 3 Professor Hager http://www.cs.jhu.edu/~hager /4/200 CS 46, Copyright G.D. Hager Outline for Today Image noise Filtering by Convolution Properties of Convolution /4/200 CS 46,

More information

Sampling and Reconstruction. Today: Color Theory. Color Theory COMP575

Sampling and Reconstruction. Today: Color Theory. Color Theory COMP575 and COMP575 Today: Finish up Color Color Theory CIE XYZ color space 3 color matching functions: X, Y, Z Y is luminance X and Z are color values WP user acdx Color Theory xyy color space Since Y is luminance,

More information

Transforms and Frequency Filtering

Transforms and Frequency Filtering Transforms and Frequency Filtering Khalid Niazi Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University 2 Reading Instructions Chapter 4: Image Enhancement in the Frequency

More information

CoE4TN4 Image Processing. Chapter 3: Intensity Transformation and Spatial Filtering

CoE4TN4 Image Processing. Chapter 3: Intensity Transformation and Spatial Filtering CoE4TN4 Image Processing Chapter 3: Intensity Transformation and Spatial Filtering Image Enhancement Enhancement techniques: to process an image so that the result is more suitable than the original image

More information

C. A. Bouman: Digital Image Processing - January 9, Digital Halftoning

C. A. Bouman: Digital Image Processing - January 9, Digital Halftoning C. A. Bouman: Digital Image Processing - January 9, 2017 1 Digital Halftoning Many image rendering technologies only have binary output. For example, printers can either fire a dot or not. Halftoning is

More information

Midterm Review. Image Processing CSE 166 Lecture 10

Midterm Review. Image Processing CSE 166 Lecture 10 Midterm Review Image Processing CSE 166 Lecture 10 Topics covered Image acquisition, geometric transformations, and image interpolation Intensity transformations Spatial filtering Fourier transform and

More information

Fig 1: Error Diffusion halftoning method

Fig 1: Error Diffusion halftoning method Volume 3, Issue 6, June 013 ISSN: 77 18X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com An Approach to Digital

More information

Table of contents. Vision industrielle 2002/2003. Local and semi-local smoothing. Linear noise filtering: example. Convolution: introduction

Table of contents. Vision industrielle 2002/2003. Local and semi-local smoothing. Linear noise filtering: example. Convolution: introduction Table of contents Vision industrielle 2002/2003 Session - Image Processing Département Génie Productique INSA de Lyon Christian Wolf wolf@rfv.insa-lyon.fr Introduction Motivation, human vision, history,

More information

Non Linear Image Enhancement

Non Linear Image Enhancement Non Linear Image Enhancement SAIYAM TAKKAR Jaypee University of information technology, 2013 SIMANDEEP SINGH Jaypee University of information technology, 2013 Abstract An image enhancement algorithm based

More information

On Filter Techniques for Generating Blue Noise Mask

On Filter Techniques for Generating Blue Noise Mask On Filter Techniques for Generating Blue Noise Mask Kevin J. Parker and Qing Yu Dept. of Electrical Engineering, University of Rochester, Rochester, New York Meng Yao, Color Print and Image Division Tektronix

More information

Error Diffusion and Delta-Sigma Modulation for Digital Image Halftoning

Error Diffusion and Delta-Sigma Modulation for Digital Image Halftoning Error Diffusion and Delta-Sigma Modulation for Digital Image Halftoning Thomas D. Kite, Brian L. Evans, and Alan C. Bovik Department of Electrical and Computer Engineering The University of Texas at Austin

More information

On Filter Techniques for Generating Blue Noise Mask

On Filter Techniques for Generating Blue Noise Mask On Filter Techniques for Generating Blue Noise Mask Kevin J. Parker and Qing Yu Dept. of Electrical Engineering, University of Rochester, New York Meng Yao, Color Print and Image Division Tektronix Inc.,

More information

CSC 320 H1S CSC320 Exam Study Guide (Last updated: April 2, 2015) Winter 2015

CSC 320 H1S CSC320 Exam Study Guide (Last updated: April 2, 2015) Winter 2015 Question 1. Suppose you have an image I that contains an image of a left eye (the image is detailed enough that it makes a difference that it s the left eye). Write pseudocode to find other left eyes in

More information

Frequency Domain Enhancement

Frequency Domain Enhancement Tutorial Report Frequency Domain Enhancement Page 1 of 21 Frequency Domain Enhancement ESE 558 - DIGITAL IMAGE PROCESSING Tutorial Report Instructor: Murali Subbarao Written by: Tutorial Report Frequency

More information

Sampling and Reconstruction

Sampling and Reconstruction Sampling and Reconstruction Peter Rautek, Eduard Gröller, Thomas Theußl Institute of Computer Graphics and Algorithms Vienna University of Technology Motivation Theory and practice of sampling and reconstruction

More information

Practical Image and Video Processing Using MATLAB

Practical Image and Video Processing Using MATLAB Practical Image and Video Processing Using MATLAB Chapter 10 Neighborhood processing What will we learn? What is neighborhood processing and how does it differ from point processing? What is convolution

More information

IMAGE ENHANCEMENT IN SPATIAL DOMAIN

IMAGE ENHANCEMENT IN SPATIAL DOMAIN A First Course in Machine Vision IMAGE ENHANCEMENT IN SPATIAL DOMAIN By: Ehsan Khoramshahi Definitions The principal objective of enhancement is to process an image so that the result is more suitable

More information

Image Manipulation: Filters and Convolutions

Image Manipulation: Filters and Convolutions Dr. Sarah Abraham University of Texas at Austin Computer Science Department Image Manipulation: Filters and Convolutions Elements of Graphics CS324e Fall 2017 Student Presentation Per-Pixel Manipulation

More information

Image Processing (EA C443)

Image Processing (EA C443) Image Processing (EA C443) OBJECTIVES: To study components of the Image (Digital Image) To Know how the image quality can be improved How efficiently the image data can be stored and transmitted How the

More information

Subband coring for image noise reduction. Edward H. Adelson Internal Report, RCA David Sarnoff Research Center, Nov

Subband coring for image noise reduction. Edward H. Adelson Internal Report, RCA David Sarnoff Research Center, Nov Subband coring for image noise reduction. dward H. Adelson Internal Report, RCA David Sarnoff Research Center, Nov. 26 1986. Let an image consisting of the array of pixels, (x,y), be denoted (the boldface

More information

Computer Graphics. Si Lu. Fall er_graphics.htm 10/02/2015

Computer Graphics. Si Lu. Fall er_graphics.htm 10/02/2015 Computer Graphics Si Lu Fall 2017 http://www.cs.pdx.edu/~lusi/cs447/cs447_547_comput er_graphics.htm 10/02/2015 1 Announcements Free Textbook: Linear Algebra By Jim Hefferon http://joshua.smcvt.edu/linalg.html/

More information

Image acquisition. Midterm Review. Digitization, line of image. Digitization, whole image. Geometric transformations. Interpolation 10/26/2016

Image acquisition. Midterm Review. Digitization, line of image. Digitization, whole image. Geometric transformations. Interpolation 10/26/2016 Image acquisition Midterm Review Image Processing CSE 166 Lecture 10 2 Digitization, line of image Digitization, whole image 3 4 Geometric transformations Interpolation CSE 166 Transpose these matrices

More information

Image analysis. CS/CME/BIOPHYS/BMI 279 Fall 2015 Ron Dror

Image analysis. CS/CME/BIOPHYS/BMI 279 Fall 2015 Ron Dror Image analysis CS/CME/BIOPHYS/BMI 279 Fall 2015 Ron Dror A two- dimensional image can be described as a function of two variables f(x,y). For a grayscale image, the value of f(x,y) specifies the brightness

More information

An Improved Fast Color Halftone Image Data Compression Algorithm

An Improved Fast Color Halftone Image Data Compression Algorithm International Journal of Engineering Science Invention (IJESI) ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 www.ijesi.org PP. 65-69 An Improved Fast Color Halftone Image Data Compression Algorithm

More information

CSE 564: Scientific Visualization

CSE 564: Scientific Visualization CSE 564: Scientific Visualization Lecture 5: Image Processing Klaus Mueller Stony Brook University Computer Science Department Klaus Mueller, Stony Brook 2003 Image Processing Definitions Purpose: - enhance

More information

Achim J. Lilienthal Mobile Robotics and Olfaction Lab, AASS, Örebro University

Achim J. Lilienthal Mobile Robotics and Olfaction Lab, AASS, Örebro University Achim J. Lilienthal Mobile Robotics and Olfaction Lab, Room T29, Mo, -2 o'clock AASS, Örebro University (please drop me an email in advance) achim.lilienthal@oru.se 4.!!!!!!!!! Pre-Class Reading!!!!!!!!!

More information

SAMPLING THEORY. Representing continuous signals with discrete numbers

SAMPLING THEORY. Representing continuous signals with discrete numbers SAMPLING THEORY Representing continuous signals with discrete numbers Roger B. Dannenberg Professor of Computer Science, Art, and Music Carnegie Mellon University ICM Week 3 Copyright 2002-2013 by Roger

More information

Image Filtering and Gaussian Pyramids

Image Filtering and Gaussian Pyramids Image Filtering and Gaussian Pyramids CS94: Image Manipulation & Computational Photography Alexei Efros, UC Berkeley, Fall 27 Limitations of Point Processing Q: What happens if I reshuffle all pixels within

More information

IMAGES AND COLOR. N. C. State University. CSC557 Multimedia Computing and Networking. Fall Lecture # 10

IMAGES AND COLOR. N. C. State University. CSC557 Multimedia Computing and Networking. Fall Lecture # 10 IMAGES AND COLOR N. C. State University CSC557 Multimedia Computing and Networking Fall 2001 Lecture # 10 IMAGES AND COLOR N. C. State University CSC557 Multimedia Computing and Networking Fall 2001 Lecture

More information

MULTIMEDIA SYSTEMS

MULTIMEDIA SYSTEMS 1 Department of Computer Engineering, Faculty of Engineering King Mongkut s Institute of Technology Ladkrabang 01076531 MULTIMEDIA SYSTEMS Pk Pakorn Watanachaturaporn, Wt ht Ph.D. PhD pakorn@live.kmitl.ac.th,

More information

Lecture Schedule: Week Date Lecture Title

Lecture Schedule: Week Date Lecture Title http://elec3004.org Sampling & More 2014 School of Information Technology and Electrical Engineering at The University of Queensland Lecture Schedule: Week Date Lecture Title 1 2-Mar Introduction 3-Mar

More information

Filtering. Image Enhancement Spatial and Frequency Based

Filtering. Image Enhancement Spatial and Frequency Based Filtering Image Enhancement Spatial and Frequency Based Brent M. Dingle, Ph.D. 2015 Game Design and Development Program Mathematics, Statistics and Computer Science University of Wisconsin - Stout Lecture

More information

Multimedia Systems Giorgio Leonardi A.A Lectures 14-16: Raster images processing and filters

Multimedia Systems Giorgio Leonardi A.A Lectures 14-16: Raster images processing and filters Multimedia Systems Giorgio Leonardi A.A.2014-2015 Lectures 14-16: Raster images processing and filters Outline (of the following lectures) Light and color processing/correction Convolution filters: blurring,

More information

A.V.C. COLLEGE OF ENGINEERING DEPARTEMENT OF CSE CP7004- IMAGE PROCESSING AND ANALYSIS UNIT 1- QUESTION BANK

A.V.C. COLLEGE OF ENGINEERING DEPARTEMENT OF CSE CP7004- IMAGE PROCESSING AND ANALYSIS UNIT 1- QUESTION BANK A.V.C. COLLEGE OF ENGINEERING DEPARTEMENT OF CSE CP7004- IMAGE PROCESSING AND ANALYSIS UNIT 1- QUESTION BANK STAFF NAME: TAMILSELVAN K UNIT I SPATIAL DOMAIN PROCESSING Introduction to image processing

More information

Monochrome Image Reproduction

Monochrome Image Reproduction Monochrome Image Reproduction 1995-2016 Josef Pelikán & Alexander Wilkie CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 27 Preception of Grey Grey has a single attribute intensity

More information

Vision Review: Image Processing. Course web page:

Vision Review: Image Processing. Course web page: Vision Review: Image Processing Course web page: www.cis.udel.edu/~cer/arv September 7, Announcements Homework and paper presentation guidelines are up on web page Readings for next Tuesday: Chapters 6,.,

More information

Understanding Digital Signal Processing

Understanding Digital Signal Processing Understanding Digital Signal Processing Richard G. Lyons PRENTICE HALL PTR PRENTICE HALL Professional Technical Reference Upper Saddle River, New Jersey 07458 www.photr,com Contents Preface xi 1 DISCRETE

More information

CS6670: Computer Vision Noah Snavely. Administrivia. Administrivia. Reading. Last time: Convolution. Last time: Cross correlation 9/8/2009

CS6670: Computer Vision Noah Snavely. Administrivia. Administrivia. Reading. Last time: Convolution. Last time: Cross correlation 9/8/2009 CS667: Computer Vision Noah Snavely Administrivia New room starting Thursday: HLS B Lecture 2: Edge detection and resampling From Sandlot Science Administrivia Assignment (feature detection and matching)

More information

Midterm Examination CS 534: Computational Photography

Midterm Examination CS 534: Computational Photography Midterm Examination CS 534: Computational Photography November 3, 2015 NAME: SOLUTIONS Problem Score Max Score 1 8 2 8 3 9 4 4 5 3 6 4 7 6 8 13 9 7 10 4 11 7 12 10 13 9 14 8 Total 100 1 1. [8] What are

More information

Images and Filters. EE/CSE 576 Linda Shapiro

Images and Filters. EE/CSE 576 Linda Shapiro Images and Filters EE/CSE 576 Linda Shapiro What is an image? 2 3 . We sample the image to get a discrete set of pixels with quantized values. 2. For a gray tone image there is one band F(r,c), with values

More information

CSCI 1290: Comp Photo

CSCI 1290: Comp Photo CSCI 29: Comp Photo Fall 28 @ Brown University James Tompkin Many slides thanks to James Hays old CS 29 course, along with all of its acknowledgements. Things I forgot on Thursday Grads are not required

More information

Methods for Generating Blue-Noise Dither Matrices for Digital Halftoning

Methods for Generating Blue-Noise Dither Matrices for Digital Halftoning Methods for Generating Blue-Noise Dither Matrices for Digital Halftoning Kevin E. Spaulding, Rodney L. Miller and Jay Schildkraut Eastman Kodak Company Imaging Research and Advanced Development, Rochester,

More information

Sampling and Pyramids

Sampling and Pyramids Sampling and Pyramids 15-463: Rendering and Image Processing Alexei Efros with lots of slides from Steve Seitz Today Sampling Nyquist Rate Antialiasing Gaussian and Laplacian Pyramids 1 Fourier transform

More information

Fourier Transforms in Radio Astronomy

Fourier Transforms in Radio Astronomy Fourier Transforms in Radio Astronomy Kavilan Moodley, UKZN Slides taken from N Gupta s lectures: SKA School 2013 van-cittert Zernike theorem Extended, quasi-monochromatic, incoherent source X (l,m) Y

More information

LAB MANUAL SUBJECT: IMAGE PROCESSING BE (COMPUTER) SEM VII

LAB MANUAL SUBJECT: IMAGE PROCESSING BE (COMPUTER) SEM VII LAB MANUAL SUBJECT: IMAGE PROCESSING BE (COMPUTER) SEM VII IMAGE PROCESSING INDEX CLASS: B.E(COMPUTER) SR. NO SEMESTER:VII TITLE OF THE EXPERIMENT. 1 Point processing in spatial domain a. Negation of an

More information

Image Enhancement in the Spatial Domain

Image Enhancement in the Spatial Domain Image Enhancement in the Spatial Domain Algorithms for improving the visual appearance of images Gamma correction Contrast improvements Histogram equalization Noise reduction Image sharpening Optimality

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:30-15:45 CBC C222 Lecture 15 Image Processing 14/04/15 http://www.ee.unlv.edu/~b1morris/ee482/

More information

Digital Image Fundamentals and Image Enhancement in the Spatial Domain

Digital Image Fundamentals and Image Enhancement in the Spatial Domain Digital Image Fundamentals and Image Enhancement in the Spatial Domain Mohamed N. Ahmed, Ph.D. Introduction An image may be defined as 2D function f(x,y), where x and y are spatial coordinates. The amplitude

More information

Error Diffusion without Contouring Effect

Error Diffusion without Contouring Effect Error Diffusion without Contouring Effect Wei-Yu Han and Ja-Chen Lin National Chiao Tung University, Department of Computer and Information Science Hsinchu, Taiwan 3000 Abstract A modified error-diffusion

More information

Image Enhancement using Histogram Equalization and Spatial Filtering

Image Enhancement using Histogram Equalization and Spatial Filtering Image Enhancement using Histogram Equalization and Spatial Filtering Fari Muhammad Abubakar 1 1 Department of Electronics Engineering Tianjin University of Technology and Education (TUTE) Tianjin, P.R.

More information

Virtual Restoration of old photographic prints. Prof. Filippo Stanco

Virtual Restoration of old photographic prints. Prof. Filippo Stanco Virtual Restoration of old photographic prints Prof. Filippo Stanco Many photographic prints of commercial / historical value are being converted into digital form. This allows: Easy ubiquitous fruition:

More information

Image processing for gesture recognition: from theory to practice. Michela Goffredo University Roma TRE

Image processing for gesture recognition: from theory to practice. Michela Goffredo University Roma TRE Image processing for gesture recognition: from theory to practice 2 Michela Goffredo University Roma TRE goffredo@uniroma3.it Image processing At this point we have all of the basics at our disposal. We

More information

Appendix B. Design Implementation Description For The Digital Frequency Demodulator

Appendix B. Design Implementation Description For The Digital Frequency Demodulator Appendix B Design Implementation Description For The Digital Frequency Demodulator The DFD design implementation is divided into four sections: 1. Analog front end to signal condition and digitize the

More information

A New Metric for Color Halftone Visibility

A New Metric for Color Halftone Visibility A New Metric for Color Halftone Visibility Qing Yu and Kevin J. Parker, Robert Buckley* and Victor Klassen* Dept. of Electrical Engineering, University of Rochester, Rochester, NY *Corporate Research &

More information

Digital Halftoning. Sasan Gooran. PhD Course May 2013

Digital Halftoning. Sasan Gooran. PhD Course May 2013 Digital Halftoning Sasan Gooran PhD Course May 2013 DIGITAL IMAGES (pixel based) Scanning Photo Digital image ppi (pixels per inch): Number of samples per inch ppi (pixels per inch) ppi (scanning resolution):

More information

DIGITAL IMAGE PROCESSING (COM-3371) Week 2 - January 14, 2002

DIGITAL IMAGE PROCESSING (COM-3371) Week 2 - January 14, 2002 DIGITAL IMAGE PROCESSING (COM-3371) Week 2 - January 14, 22 Topics: Human eye Visual phenomena Simple image model Image enhancement Point processes Histogram Lookup tables Contrast compression and stretching

More information

Study guide for Graduate Computer Vision

Study guide for Graduate Computer Vision Study guide for Graduate Computer Vision Erik G. Learned-Miller Department of Computer Science University of Massachusetts, Amherst Amherst, MA 01003 November 23, 2011 Abstract 1 1. Know Bayes rule. What

More information

MULTIMEDIA SYSTEMS

MULTIMEDIA SYSTEMS 1 Department of Computer Engineering, g, Faculty of Engineering King Mongkut s Institute of Technology Ladkrabang 01076531 MULTIMEDIA SYSTEMS Pakorn Watanachaturaporn, Ph.D. pakorn@live.kmitl.ac.th, pwatanac@gmail.com

More information