Design of Mixed-Signal Microsystems in Nanometer CMOS

Size: px
Start display at page:

Download "Design of Mixed-Signal Microsystems in Nanometer CMOS"

Transcription

1 Design of Mixed-Signal Microsystems in Nanometer CMOS Carl Grace Lawrence Berkeley National Laboratory August 2, 2012 DOE BES Neutron and Photon Detector Workshop

2 Introduction Common themes in emerging detector requirements: Need to capture dynamic processes More channels, higher speed, lower power/channel, decreased system footprint, severe cost constraints Integrated mixed-signal readout a must Example: Fast soft X-ray cameras over last 10 years 1000X increase in readout channels (for Mpixel square sensor) Conventional CCD Today (FCCD) Tomorrow (cp-ccd) Integrated readout required to deal with huge amounts of data 2

3 Why nanometer CMOS? Increased transistor density Enables increased channel/pixel count and new functionality New, more SUBTITLE digital centric HERE IF approaches NECESSARY to design possible Vastly improved performance Lower power for a given level of functionality SMALLER, FASTER, CHEAPER Cheaper on a functionality basis Performance Figure of Merit g m /I * f t Nanometer CMOS is an enabling technology for future imaging and particle detection systems 3

4 Opportunities and Challenges K. Kundert Mentor Graphics Design Rules multiplying as processes shrink Current design techniques inappropriate for system-level mixed-signal ASICs 4

5 IC Development Infrastructure Software Infrastructure Design entry (schematic and physical layout design) Simulation (analog, digital, mixed -mode) Synthesis Automatic Place-and-Route DRC/LVS verification FPGA firmware development environment Board development suite Test framework, instrument control Design-space exploration (MATLAB or similar) Required Team Competencies Transistor-level analog and mixed -signal design Digital RTL development Physical Design and Verification System-level Validation Analog/Digital co-simulation Behavioral Modeling Project management Board-level circuit design FPGA firmware development Teststand software development Advanced test execution and debug Designing a nanometer mixed-signal ASIC requires a competent and experienced team The days of debugging a chip with an oscilloscope and a function generator are over 5

6 Platform-Based Design Most readout systems look broadly similar A platform can embody these commonalities Individual readout ICs are instances of the common platform Dramatic improvements in design productivity and tractability Enables small teams to complete projects that would be impossible using an ad-hoc approach Sow once Reap many times Each new chip is a platform instance instead of a scratch design A. Sangiovanni Vincentelli, UC Berkeley Leads directly to improved top-down design methodologies 6

7 Platform-Based Design Platform is an integrated system designed for modification and extensibility Choose flexible macros for reuse e.g. use Pipelined ADC over SAR Process, block interfaces, and characteristics standardized e.g. 65nm CMOS, pitch matching, electrical interfaces, biasing requirements Platform includes set of pin-accurate functional models in Verilog-AMS Models allow rapid development of platform instances Verilog Verilog-AMS Verilog-A Verilog-AMS allows full system simulation (analog + digital) Enables digital-centric design approach lower cost and higher performance 7

8 Analog Challenges in Nanometer CMOS Low supply voltage Low device gain Analog design is hard! But cheap and fast transistors B. Murmann, Stanford University Leverage cheap digital circuits to assist analog circuits 8

9 Logic Energy over Time 500nm 350nm 250nm 180nm ~1000x 130nm 90nm 65nm 32nm B. Murmann, Stanford University 9

10 ADCs versus Logic in 1997/1998 B. Murmann, Stanford University 10

11 ADCs versus Logic in 1997/1998 Digital assistance affordable only for high-resolution ΔΣ (decimation filtering) B. Murmann, Stanford University 11

12 ADCs versus Logic in 2012 ~100x ~1000x B. Murmann, Stanford University 12

13 ADCs versus Logic in 2012 ~100x ~1000x Today, it is feasible to use digital signal processing to assist moderate resolution ADCs B. Murmann, Stanford University 13

14 Digital-Centric System Design (optical comms) 155 Mb/s data rate 10 Gb/s data rate K. Kundert Challenging analog design requires large design team and multiple silicon spins Well-understood digital circuits can compensate for analog shortcomings Agazzi, et al ISSCC Digital-centric design has vastly improved system performance, functional on first silicon 50X performance improvement due to digital-centric design 14

15 HIPPO: High-Speed Image Pre-Processor with Oversampling 16-channel prototype fabricated in

16 HIPPO Platform in 65nm CMOS Front end specific to initial application: Column-Parallel CCD readout for soft X-rays Back end more general for signal acquisition and data conversion Functional blocks developed with standard interfaces and Verilog-AMS models to allow accelerated redeployment 16

17 Digital-Centric HIPPO Platform Payoff HIPPO ADC designed for good noise performance with relaxed linearity Result to be presented at NSS 2012 Low-accuracy analog system plus digital assistance = high-accuracy mixed-signal system 17

18 POM an instance of the HIPPO platform Mu2e: experiment to observe neutinoless muon decay Processor of Muon Decays Mu2e tracker - Fermilab 21,600 gas-filled straws. Each straw has dedicated channel of electronics. Example of BES-supported platform development enabling accelerated development of high-performance readout IC for HEP 18

19 Frequency POM Behavioral Simulation (enabled by Platform-Based Design methodology) TDC electron hits (midstraw) More Bin Frequency TDC electron hits (edge of longest straw) More Functional circuit blocks modeled with Verilog-AMS Input straw pulses provided by FNAL using GARFIELD System-level simulation conducted before detailed design THIS IS TOP-DOWN DESIGN Bin Spreading due to dispersion in straw model 19

20 POM Design Reuse BLOCK REUSE Block Development time reduction ADC Core structure adapted from silicon-proven HIPPO. 80% Modified to lower power and area. Shaper Silicon-proven op amp architecture ported from 50% HIPPO. S2DIFF S2DIFF architecture adapted from Multiplying DAC circuit used in HIPPO ADC. 80% LVDS Masterbias Silicon-proven LVDS driver and receiver from HIPPO reused in POM. Silicon-proven current bias generation and distribution block from HIPPO reused in POM. Silicon-proven, radiation-tolerant configuration register from HIPPO reused in POM. 100% 95% Configuration 95% Register Standard Cells Standard cell library used in HIPPO reused in POM. 100% Pads Pad library used in HIPPO reused in POM. 75% (estimate) Digital Backend Experience gained in HIPPO synthesis and place-androute cycle greatly reduced development time. 80% 20

21 Design Reuse example Pipelined ADC HIPPO ADC (2011): 12-bit, 80 MSPS, 50 mw POM ADC (2012): 8-bit, 65 MSPS, 3 mw 80% shorter development time due to HIPPO platform 21

22 The Virtuous Circle of Platform-Based Design Refinements made to POM ADC and improved digital expertise will be directly applied to HIPPO 2, a planned 128-channel readout IC to instrument cp-ccd image sensors. Platform-based design allows each project to be used as a springboard to improve the performance and lower the cost of the next project HIPPO POM HIPPO 2 22

23 Platform-Based Design as enabling technology Highly leveraged from HIPPO development POM would have required severe compromises in functionality or performance without Platform-Based Design 23

24 Conclusion Science requirements demand increases in detector channel count and performance To meet these needs we need readout ICs that are: Platform-Based Digital Centric Developed using a top-down methodology These are enabling technologies. They represent an industry-proven path to improve the productivity and reach of existing design teams Development costs can be spread across projects and application domains for maximum impact 24

Digital Systems Design

Digital Systems Design Digital Systems Design Digital Systems Design and Test Dr. D. J. Jackson Lecture 1-1 Introduction Traditional digital design Manual process of designing and capturing circuits Schematic entry System-level

More information

Mixed Signal Virtual Components COLINE, a case study

Mixed Signal Virtual Components COLINE, a case study Mixed Signal Virtual Components COLINE, a case study J.F. POLLET - DOLPHIN INTEGRATION Meylan - FRANCE http://www.dolphin.fr Overview of the presentation Introduction COLINE, an example of Mixed Signal

More information

Putting It All Together: Computer Architecture and the Digital Camera

Putting It All Together: Computer Architecture and the Digital Camera 461 Putting It All Together: Computer Architecture and the Digital Camera This book covers many topics in circuit analysis and design, so it is only natural to wonder how they all fit together and how

More information

Course Outcome of M.Tech (VLSI Design)

Course Outcome of M.Tech (VLSI Design) Course Outcome of M.Tech (VLSI Design) PVL108: Device Physics and Technology The students are able to: 1. Understand the basic physics of semiconductor devices and the basics theory of PN junction. 2.

More information

Integrated Circuit Readout for the Silicon Sensor Test Station

Integrated Circuit Readout for the Silicon Sensor Test Station Integrated Circuit Readout for the Silicon Sensor Test Station E. Atkin, A. Silaev, A. Kluev MEPhi, Moscow A. Voronin, M. Merkin, D. Karmanov, A. Fedenko SINP MSU, Moscow Various chips for the silicon

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION 1.1 Historical Background Recent advances in Very Large Scale Integration (VLSI) technologies have made possible the realization of complete systems on a single chip. Since complete

More information

A Top-Down Microsystems Design Methodology and Associated Challenges

A Top-Down Microsystems Design Methodology and Associated Challenges A Top-Down Microsystems Design Methodology and Associated Challenges Michael S. McCorquodale, Fadi H. Gebara, Keith L. Kraver, Eric D. Marsman, Robert M. Senger, and Richard B. Brown Department of Electrical

More information

5G R&D at Huawei: An Insider Look

5G R&D at Huawei: An Insider Look 5G R&D at Huawei: An Insider Look Accelerating the move from theory to engineering practice with MATLAB and Simulink Huawei is the largest networking and telecommunications equipment and services corporation

More information

The Architecture of the BTeV Pixel Readout Chip

The Architecture of the BTeV Pixel Readout Chip The Architecture of the BTeV Pixel Readout Chip D.C. Christian, dcc@fnal.gov Fermilab, POBox 500 Batavia, IL 60510, USA 1 Introduction The most striking feature of BTeV, a dedicated b physics experiment

More information

Overview 256 channel Silicon Photomultiplier large area using matrix readout system The SensL Matrix detector () is the largest area, highest channel

Overview 256 channel Silicon Photomultiplier large area using matrix readout system The SensL Matrix detector () is the largest area, highest channel 技股份有限公司 wwwrteo 公司 wwwrteo.com Page 1 Overview 256 channel Silicon Photomultiplier large area using matrix readout system The SensL Matrix detector () is the largest area, highest channel count, Silicon

More information

STM RH-ASIC capability

STM RH-ASIC capability STM RH-ASIC capability JAXA 24 th MicroElectronic Workshop 13 th 14 th October 2011 Prepared by STM Crolles and AeroSpace Unit Deep Sub Micron (DSM) is strategic for Europe Strategic importance of European

More information

Lecture 1. Tinoosh Mohsenin

Lecture 1. Tinoosh Mohsenin Lecture 1 Tinoosh Mohsenin Today Administrative items Syllabus and course overview Digital systems and optimization overview 2 Course Communication Email Urgent announcements Web page http://www.csee.umbc.edu/~tinoosh/cmpe650/

More information

The Medipix3 Prototype, a Pixel Readout Chip Working in Single Photon Counting Mode with Improved Spectrometric Performance

The Medipix3 Prototype, a Pixel Readout Chip Working in Single Photon Counting Mode with Improved Spectrometric Performance 26 IEEE Nuclear Science Symposium Conference Record NM1-6 The Medipix3 Prototype, a Pixel Readout Chip Working in Single Photon Counting Mode with Improved Spectrometric Performance R. Ballabriga, M. Campbell,

More information

A monolithic pixel sensor with fine space-time resolution based on silicon-on-insulator technology for the ILC vertex detector

A monolithic pixel sensor with fine space-time resolution based on silicon-on-insulator technology for the ILC vertex detector A monolithic pixel sensor with fine space-time resolution based on silicon-on-insulator technology for the ILC vertex detector, Miho Yamada, Toru Tsuboyama, Yasuo Arai, Ikuo Kurachi High Energy Accelerator

More information

Computer Aided Design of Electronics

Computer Aided Design of Electronics Computer Aided Design of Electronics [Datorstödd Elektronikkonstruktion] Zebo Peng, Petru Eles, and Nima Aghaee Embedded Systems Laboratory IDA, Linköping University www.ida.liu.se/~tdts01 Electronic Systems

More information

Semiconductor Detector Systems

Semiconductor Detector Systems Semiconductor Detector Systems Helmuth Spieler Physics Division, Lawrence Berkeley National Laboratory OXFORD UNIVERSITY PRESS ix CONTENTS 1 Detector systems overview 1 1.1 Sensor 2 1.2 Preamplifier 3

More information

10 Gb/s Radiation-Hard VCSEL Array Driver

10 Gb/s Radiation-Hard VCSEL Array Driver 10 Gb/s Radiation-Hard VCSEL Array Driver K.K. Gan 1, H.P. Kagan, R.D. Kass, J.R. Moore, D.S. Smith Department of Physics The Ohio State University Columbus, OH 43210, USA E-mail: gan@mps.ohio-state.edu

More information

The Concept of LumiCal Readout Electronics

The Concept of LumiCal Readout Electronics EUDET The Concept of LumiCal Readout Electronics M. Idzik, K. Swientek, Sz. Kulis, W. Dabrowski, L. Suszycki, B. Pawlik, W. Wierba, L. Zawiejski on behalf of the FCAL collaboration July 4, 7 Abstract The

More information

Chapter 4 Vertex. Qun Ouyang. Nov.10 th, 2017Beijing. CEPC detector CDR mini-review

Chapter 4 Vertex. Qun Ouyang. Nov.10 th, 2017Beijing. CEPC detector CDR mini-review Chapter 4 Vertex Qun Ouyang Nov.10 th, 2017Beijing Nov.10 h, 2017 CEPC detector CDR mini-review CEPC detector CDR mini-review Contents: 4 Vertex Detector 4.1 Performance Requirements and Detector Challenges

More information

Towards an ADC for the Liquid Argon Electronics Upgrade

Towards an ADC for the Liquid Argon Electronics Upgrade 1 Towards an ADC for the Liquid Argon Electronics Upgrade Gustaaf Brooijmans Upgrade Workshop, November 10, 2009 2 Current LAr FEB Existing FEB (radiation tolerant for LHC, but slhc?) Limits L1 latency

More information

Policy-Based RTL Design

Policy-Based RTL Design Policy-Based RTL Design Bhanu Kapoor and Bernard Murphy bkapoor@atrenta.com Atrenta, Inc., 2001 Gateway Pl. 440W San Jose, CA 95110 Abstract achieving the desired goals. We present a new methodology to

More information

Getting to Work with OpenPiton. Princeton University. OpenPit

Getting to Work with OpenPiton. Princeton University.   OpenPit Getting to Work with OpenPiton Princeton University http://openpiton.org OpenPit ASIC SYNTHESIS AND BACKEND 2 Whats in the Box? Synthesis Synopsys Design Compiler Static timing analysis (STA) Synopsys

More information

CMOS VLSI IC Design. A decent understanding of all tasks required to design and fabricate a chip takes years of experience

CMOS VLSI IC Design. A decent understanding of all tasks required to design and fabricate a chip takes years of experience CMOS VLSI IC Design A decent understanding of all tasks required to design and fabricate a chip takes years of experience 1 Commonly used keywords INTEGRATED CIRCUIT (IC) many transistors on one chip VERY

More information

A 4b/cycle Flash-assisted SAR ADC with Comparator Speed-boosting Technique

A 4b/cycle Flash-assisted SAR ADC with Comparator Speed-boosting Technique JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.18, NO.2, APRIL, 2018 ISSN(Print) 1598-1657 https://doi.org/10.5573/jsts.2018.18.2.281 ISSN(Online) 2233-4866 A 4b/cycle Flash-assisted SAR ADC with

More information

A 1Mjot 1040fps 0.22e-rms Stacked BSI Quanta Image Sensor with Cluster-Parallel Readout

A 1Mjot 1040fps 0.22e-rms Stacked BSI Quanta Image Sensor with Cluster-Parallel Readout A 1Mjot 1040fps 0.22e-rms Stacked BSI Quanta Image Sensor with Cluster-Parallel Readout IISW 2017 Hiroshima, Japan Saleh Masoodian, Jiaju Ma, Dakota Starkey, Yuichiro Yamashita, Eric R. Fossum May 2017

More information

Next Mask Set Reticle Design

Next Mask Set Reticle Design Next Mask Set Reticle Design 4.9mm 1.6mm 4.9mm Will have three Chip sizes. Slices go through completely the re;cle. 1 1mm x 1mm die per reticle 8 1mm x 4.9mm die per reticle 16 4.9mm x 4.9mm die per reticle

More information

Muon detection in security applications and monolithic active pixel sensors

Muon detection in security applications and monolithic active pixel sensors Muon detection in security applications and monolithic active pixel sensors Tracking in particle physics Gaseous detectors Silicon strips Silicon pixels Monolithic active pixel sensors Cosmic Muon tomography

More information

Noise Characteristics Of The KPiX ASIC Readout Chip

Noise Characteristics Of The KPiX ASIC Readout Chip Noise Characteristics Of The KPiX ASIC Readout Chip Cabrillo College Stanford Linear Accelerator Center What Is The ILC The International Linear Collider is an e- e+ collider Will operate at 500GeV with

More information

Data Acquisition System for the Angra Project

Data Acquisition System for the Angra Project Angra Neutrino Project AngraNote 012-2009 (Draft) Data Acquisition System for the Angra Project H. P. Lima Jr, A. F. Barbosa, R. G. Gama Centro Brasileiro de Pesquisas Físicas - CBPF L. F. G. Gonzalez

More information

Datorstödd Elektronikkonstruktion

Datorstödd Elektronikkonstruktion Datorstödd Elektronikkonstruktion [Computer Aided Design of Electronics] Zebo Peng, Petru Eles and Gert Jervan Embedded Systems Laboratory IDA, Linköping University http://www.ida.liu.se/~tdts80/~tdts80

More information

Technology Timeline. Transistors ICs (General) SRAMs & DRAMs Microprocessors SPLDs CPLDs ASICs. FPGAs. The Design Warrior s Guide to.

Technology Timeline. Transistors ICs (General) SRAMs & DRAMs Microprocessors SPLDs CPLDs ASICs. FPGAs. The Design Warrior s Guide to. FPGAs 1 CMPE 415 Technology Timeline 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 Transistors ICs (General) SRAMs & DRAMs Microprocessors SPLDs CPLDs ASICs FPGAs The Design Warrior s Guide

More information

Electronic Readout System for Belle II Imaging Time of Propagation Detector

Electronic Readout System for Belle II Imaging Time of Propagation Detector Electronic Readout System for Belle II Imaging Time of Propagation Detector Dmitri Kotchetkov University of Hawaii at Manoa for Belle II itop Detector Group March 3, 2017 Barrel Particle Identification

More information

An ASIC dedicated to the RPCs front-end. of the dimuon arm trigger in the ALICE experiment.

An ASIC dedicated to the RPCs front-end. of the dimuon arm trigger in the ALICE experiment. An ASIC dedicated to the RPCs front-end of the dimuon arm trigger in the ALICE experiment. L. Royer, G. Bohner, J. Lecoq for the ALICE collaboration Laboratoire de Physique Corpusculaire de Clermont-Ferrand

More information

Simulation of High Resistivity (CMOS) Pixels

Simulation of High Resistivity (CMOS) Pixels Simulation of High Resistivity (CMOS) Pixels Stefan Lauxtermann, Kadri Vural Sensor Creations Inc. AIDA-2020 CMOS Simulation Workshop May 13 th 2016 OUTLINE 1. Definition of High Resistivity Pixel Also

More information

Si Photonics Technology Platform for High Speed Optical Interconnect. Peter De Dobbelaere 9/17/2012

Si Photonics Technology Platform for High Speed Optical Interconnect. Peter De Dobbelaere 9/17/2012 Si Photonics Technology Platform for High Speed Optical Interconnect Peter De Dobbelaere 9/17/2012 ECOC 2012 - Luxtera Proprietary www.luxtera.com Overview Luxtera: Introduction Silicon Photonics: Introduction

More information

Low Power Design Methods: Design Flows and Kits

Low Power Design Methods: Design Flows and Kits JOINT ADVANCED STUDENT SCHOOL 2011, Moscow Low Power Design Methods: Design Flows and Kits Reported by Shushanik Karapetyan Synopsys Armenia Educational Department State Engineering University of Armenia

More information

UT90nHBD Hardened-by-Design (HBD) Standard Cell Data Sheet February

UT90nHBD Hardened-by-Design (HBD) Standard Cell Data Sheet February Semicustom Products UT90nHBD Hardened-by-Design (HBD) Standard Cell Data Sheet February 2018 www.cobham.com/hirel The most important thing we build is trust FEATURES Up to 50,000,000 2-input NAND equivalent

More information

Low Power Radiation Tolerant CMOS Design using Commercial Fabrication Processes

Low Power Radiation Tolerant CMOS Design using Commercial Fabrication Processes Low Power Radiation Tolerant CMOS Design using Commercial Fabrication Processes Amir Hasanbegovic (amirh@ifi.uio.no) Nanoelectronics Group, Dept. of Informatics, University of Oslo November 5, 2010 Overview

More information

EECS240 Spring Advanced Analog Integrated Circuits Lecture 1: Introduction. Elad Alon Dept. of EECS

EECS240 Spring Advanced Analog Integrated Circuits Lecture 1: Introduction. Elad Alon Dept. of EECS EECS240 Spring 2009 Advanced Analog Integrated Circuits Lecture 1: Introduction Elad Alon Dept. of EECS Course Focus Focus is on analog design Typically: Specs circuit topology layout Will learn spec-driven

More information

Front-End and Readout Electronics for Silicon Trackers at the ILC

Front-End and Readout Electronics for Silicon Trackers at the ILC 2005 International Linear Collider Workshop - Stanford, U.S.A. Front-End and Readout Electronics for Silicon Trackers at the ILC M. Dhellot, J-F. Genat, H. Lebbolo, T-H. Pham, and A. Savoy Navarro LPNHE

More information

Changing the Approach to High Mask Costs

Changing the Approach to High Mask Costs Changing the Approach to High Mask Costs The ever-rising cost of semiconductor masks is making low-volume production of systems-on-chip (SoCs) economically infeasible. This economic reality limits the

More information

A new Readout Chip for LHCb. Beetle Daniel Baumeister, Werner Hofmann, Karl-Tasso Knöpfle, Sven Löchner, Michael Schmelling, Edgar Sexauer

A new Readout Chip for LHCb. Beetle Daniel Baumeister, Werner Hofmann, Karl-Tasso Knöpfle, Sven Löchner, Michael Schmelling, Edgar Sexauer ASIC-Labor Heidelberg ASIC-Labor Heidelberg Beetle 1.0 - A new Readout Chip for LHCb Daniel Baumeister, Werner Hofmann, Karl-Tasso Knöpfle, Sven Löchner, Michael Schmelling, Max-Planck-Institute for Nuclear

More information

Beam Condition Monitors and a Luminometer Based on Diamond Sensors

Beam Condition Monitors and a Luminometer Based on Diamond Sensors Beam Condition Monitors and a Luminometer Based on Diamond Sensors Wolfgang Lange, DESY Zeuthen and CMS BRIL group Beam Condition Monitors and a Luminometer Based on Diamond Sensors INSTR14 in Novosibirsk,

More information

STRS COMPLIANT FPGA WAVEFORM DEVELOPMENT

STRS COMPLIANT FPGA WAVEFORM DEVELOPMENT STRS COMPLIANT FPGA WAVEFORM DEVELOPMENT Jennifer Nappier (Jennifer.M.Nappier@nasa.gov); Joseph Downey (Joseph.A.Downey@nasa.gov); NASA Glenn Research Center, Cleveland, Ohio, United States Dale Mortensen

More information

EECS150 - Digital Design Lecture 28 Course Wrap Up. Recap 1

EECS150 - Digital Design Lecture 28 Course Wrap Up. Recap 1 EECS150 - Digital Design Lecture 28 Course Wrap Up Dec. 5, 2013 Prof. Ronald Fearing Electrical Engineering and Computer Sciences University of California, Berkeley (slides courtesy of Prof. John Wawrzynek)

More information

Development of a 20 GS/s Sampling Chip in 130nm CMOS Technology

Development of a 20 GS/s Sampling Chip in 130nm CMOS Technology Development of a 20 GS/s Sampling Chip in 130nm CMOS Technology 2009 IEEE Nuclear Science Symposium, Orlando, Florida, October 28 th 2009 Jean-Francois Genat On behalf of Mircea Bogdan 1, Henry J. Frisch

More information

Feature-level Compensation & Control

Feature-level Compensation & Control Feature-level Compensation & Control 2 Sensors and Control Nathan Cheung, Kameshwar Poolla, Costas Spanos Workshop 11/19/2003 3 Metrology, Control, and Integration Nathan Cheung, UCB SOI Wafers Multi wavelength

More information

A 130nm CMOS Evaluation Digitizer Chip for Silicon Strips readout at the ILC

A 130nm CMOS Evaluation Digitizer Chip for Silicon Strips readout at the ILC A 130nm CMOS Evaluation Digitizer Chip for Silicon Strips readout at the ILC Jean-Francois Genat Thanh Hung Pham on behalf of W. Da Silva 1, J. David 1, M. Dhellot 1, D. Fougeron 2, R. Hermel 2, J-F. Huppert

More information

Advanced FPGA Design. Tinoosh Mohsenin CMPE 491/691 Spring 2012

Advanced FPGA Design. Tinoosh Mohsenin CMPE 491/691 Spring 2012 Advanced FPGA Design Tinoosh Mohsenin CMPE 491/691 Spring 2012 Today Administrative items Syllabus and course overview Digital signal processing overview 2 Course Communication Email Urgent announcements

More information

Lecture 2. Part 2 (Semiconductor detectors =sensors + electronics) Segmented detectors with pn-junction. Strip/pixel detectors

Lecture 2. Part 2 (Semiconductor detectors =sensors + electronics) Segmented detectors with pn-junction. Strip/pixel detectors Lecture 2 Part 1 (Electronics) Signal formation Readout electronics Noise Part 2 (Semiconductor detectors =sensors + electronics) Segmented detectors with pn-junction Strip/pixel detectors Drift detectors

More information

Lecture 6: Electronics Beyond the Logic Switches Xufeng Kou School of Information Science and Technology ShanghaiTech University

Lecture 6: Electronics Beyond the Logic Switches Xufeng Kou School of Information Science and Technology ShanghaiTech University Lecture 6: Electronics Beyond the Logic Switches Xufeng Kou School of Information Science and Technology ShanghaiTech University EE 224 Solid State Electronics II Lecture 3: Lattice and symmetry 1 Outline

More information

Monolithic Pixel Sensors in SOI technology R&D activities at LBNL

Monolithic Pixel Sensors in SOI technology R&D activities at LBNL Monolithic Pixel Sensors in SOI technology R&D activities at LBNL Lawrence Berkeley National Laboratory M. Battaglia, L. Glesener (UC Berkeley & LBNL), D. Bisello, P. Giubilato (LBNL & INFN Padova), P.

More information

High-level synthesis of analog sensor interface front-ends

High-level synthesis of analog sensor interface front-ends High-level synthesis of analog sensor interface front-ends S. Donnay,G.Gielen y,w.sansen W.Kruiskamp,D.Leenaerts,W.vanBokhoven Katholieke niversiteit Leuven Eindhoven niversity of Technology Dep. Elektrotechniek,

More information

DAV Institute of Engineering & Technology Department of ECE. Course Outcomes

DAV Institute of Engineering & Technology Department of ECE. Course Outcomes DAV Institute of Engineering & Technology Department of ECE Course Outcomes Upon successful completion of this course, the student will intend to apply the various outcome as:: BTEC-301, Analog Devices

More information

Lecture 3, Handouts Page 1. Introduction. EECE 353: Digital Systems Design Lecture 3: Digital Design Flows, Simulation Techniques.

Lecture 3, Handouts Page 1. Introduction. EECE 353: Digital Systems Design Lecture 3: Digital Design Flows, Simulation Techniques. Introduction EECE 353: Digital Systems Design Lecture 3: Digital Design Flows, Techniques Cristian Grecu grecuc@ece.ubc.ca Course web site: http://courses.ece.ubc.ca/353/ What have you learned so far?

More information

Performance of the MCP-PMTs of the TOP counter in the first beam operation of the Belle II experiment

Performance of the MCP-PMTs of the TOP counter in the first beam operation of the Belle II experiment Performance of the MCP-PMTs of the TOP counter in the first beam operation of the Belle II experiment K. Matsuoka (KMI, Nagoya Univ.) on behalf of the Belle II TOP group 5th International Workshop on New

More information

A SPAD-Based, Direct Time-of-Flight, 64 Zone, 15fps, Parallel Ranging Device Based on 40nm CMOS SPAD Technology

A SPAD-Based, Direct Time-of-Flight, 64 Zone, 15fps, Parallel Ranging Device Based on 40nm CMOS SPAD Technology A SPAD-Based, Direct Time-of-Flight, 64 Zone, 15fps, Parallel Ranging Device Based on 40nm CMOS SPAD Technology Pascal Mellot / Bruce Rae 27 th February 2018 Summary 2 Introduction to ranging device Summary

More information

A 3MPixel Multi-Aperture Image Sensor with 0.7µm Pixels in 0.11µm CMOS

A 3MPixel Multi-Aperture Image Sensor with 0.7µm Pixels in 0.11µm CMOS A 3MPixel Multi-Aperture Image Sensor with 0.7µm Pixels in 0.11µm CMOS Keith Fife, Abbas El Gamal, H.-S. Philip Wong Stanford University, Stanford, CA Outline Introduction Chip Architecture Detailed Operation

More information

http://clicdp.cern.ch Hybrid Pixel Detectors with Active-Edge Sensors for the CLIC Vertex Detector Simon Spannagel on behalf of the CLICdp Collaboration Experimental Conditions at CLIC CLIC beam structure

More information

A Self-Contained Large-Scale FPAA Development Platform

A Self-Contained Large-Scale FPAA Development Platform A SelfContained LargeScale FPAA Development Platform Christopher M. Twigg, Paul E. Hasler, Faik Baskaya School of Electrical and Computer Engineering Georgia Institute of Technology, Atlanta, Georgia 303320250

More information

Teaching Staff. EECS240 Spring Course Focus. Administrative. Course Goal. Lecture Notes. Elad s office hours

Teaching Staff. EECS240 Spring Course Focus. Administrative. Course Goal. Lecture Notes. Elad s office hours EECS240 Spring 2012 Advanced Analog Integrated Circuits Lecture 1: Introduction Teaching Staff Elad s office hours 519 Cory Hall Tues. and Thurs. 11am-12pm (right after class) GSI: Pierluigi Nuzzo Weekly

More information

EE247 Lecture 23. Advanced calibration techniques. Compensating inter-stage amplifier non-linearity Calibration via parallel & slow ADC

EE247 Lecture 23. Advanced calibration techniques. Compensating inter-stage amplifier non-linearity Calibration via parallel & slow ADC EE247 Lecture 23 Pipelined ADCs Combining the bits Stage implementation Circuits Noise budgeting Advanced calibration techniques Compensating inter-stage amplifier non-linearity Calibration via parallel

More information

CMOS Detectors Ingeniously Simple!

CMOS Detectors Ingeniously Simple! CMOS Detectors Ingeniously Simple! A.Schöning University Heidelberg B-Workshop Neckarzimmern 18.-20.2.2015 1 Detector System on Chip? 2 ATLAS Pixel Module 3 ATLAS Pixel Module MCC sensor FE-Chip FE-Chip

More information

PoS(TWEPP-17)025. ASICs and Readout System for a multi Mpixel single photon UV imaging detector capable of space applications

PoS(TWEPP-17)025. ASICs and Readout System for a multi Mpixel single photon UV imaging detector capable of space applications ASICs and Readout System for a multi Mpixel single photon UV imaging detector capable of space applications Andrej Seljak a, Gary S. Varner a, John Vallerga b, Rick Raffanti c, Vihtori Virta a, Camden

More information

High-Speed/Radiation-Hard Optical Links

High-Speed/Radiation-Hard Optical Links High-Speed/Radiation-Hard Optical Links K.K. Gan, H. Kagan, R. Kass, J. Moore, D.S. Smith The Ohio State University P. Buchholz, S. Heidbrink, M. Vogt, M. Ziolkowski Universität Siegen September 8, 2016

More information

Status of TPC-electronics with Time-to-Digit Converters

Status of TPC-electronics with Time-to-Digit Converters EUDET Status of TPC-electronics with Time-to-Digit Converters A. Kaukher, O. Schäfer, H. Schröder, R. Wurth Institut für Physik, Universität Rostock, Germany 31 December 2009 Abstract Two components of

More information

Final Project: FEDX X-ray Radiation Detector

Final Project: FEDX X-ray Radiation Detector Final Project: FEDX X-ray Radiation Detector Keita Todoroki Keita Fukushima December 12, 2011 Introduction The application of radiation detectors has played an important role in physical science, especially

More information

MS Project :Trading Accuracy for Power with an Under-designed Multiplier Architecture Parag Kulkarni Adviser : Prof. Puneet Gupta Electrical Eng.

MS Project :Trading Accuracy for Power with an Under-designed Multiplier Architecture Parag Kulkarni Adviser : Prof. Puneet Gupta Electrical Eng. MS Project :Trading Accuracy for Power with an Under-designed Multiplier Architecture Parag Kulkarni Adviser : Prof. Puneet Gupta Electrical Eng., UCLA - http://nanocad.ee.ucla.edu/ 1 Outline Introduction

More information

Overview of Design Methodology. A Few Points Before We Start 11/4/2012. All About Handling The Complexity. Lecture 1. Put things into perspective

Overview of Design Methodology. A Few Points Before We Start 11/4/2012. All About Handling The Complexity. Lecture 1. Put things into perspective Overview of Design Methodology Lecture 1 Put things into perspective ECE 156A 1 A Few Points Before We Start ECE 156A 2 All About Handling The Complexity Design and manufacturing of semiconductor products

More information

EVALUATION OF RADIATION HARDNESS DESIGN TECHNIQUES TO IMPROVE RADIATION TOLERANCE FOR CMOS IMAGE SENSORS DEDICATED TO SPACE APPLICATIONS

EVALUATION OF RADIATION HARDNESS DESIGN TECHNIQUES TO IMPROVE RADIATION TOLERANCE FOR CMOS IMAGE SENSORS DEDICATED TO SPACE APPLICATIONS EVALUATION OF RADIATION HARDNESS DESIGN TECHNIQUES TO IMPROVE RADIATION TOLERANCE FOR CMOS IMAGE SENSORS DEDICATED TO SPACE APPLICATIONS P. MARTIN-GONTHIER, F. CORBIERE, N. HUGER, M. ESTRIBEAU, C. ENGEL,

More information

Delivering VLSI chips to HEP experiments. A. Marchioro / CERN-EP Amsterdam - September 29, 2003

Delivering VLSI chips to HEP experiments. A. Marchioro / CERN-EP Amsterdam - September 29, 2003 Delivering VLSI chips to HEP experiments A. Marchioro / CERN-EP Amsterdam - September 29, 2003 Some undisputable statements 1. LHC experiments would just not be possible without ASICs 2. and this is true

More information

NGP-N ASIC. Microelectronics Presentation Days March 2010

NGP-N ASIC. Microelectronics Presentation Days March 2010 NGP-N ASIC Microelectronics Presentation Days 2010 ESA contract: Next Generation Processor - Phase 2 (18428/06/N1/US) - Started: Dec 2006 ESA Technical officer: Simon Weinberg Mark Childerhouse Processor

More information

ISSN:

ISSN: 1391 DESIGN OF 9 BIT SAR ADC USING HIGH SPEED AND HIGH RESOLUTION OPEN LOOP CMOS COMPARATOR IN 180NM TECHNOLOGY WITH R-2R DAC TOPOLOGY AKHIL A 1, SUNIL JACOB 2 1 M.Tech Student, 2 Associate Professor,

More information

Lies, Damned Lies and Hardware Verification. Mike Bartley, Test and Verification Solutions

Lies, Damned Lies and Hardware Verification. Mike Bartley, Test and Verification Solutions Lies, Damned Lies and Hardware Verification Mike Bartley, Test and Verification Solutions mike@tandvsolns.co.uk Myth 1: Half of all chip developments require a re-spin, three quarters due to functional

More information

PE713 FPGA Based System Design

PE713 FPGA Based System Design PE713 FPGA Based System Design Why VLSI? Dept. of EEE, Amrita School of Engineering Why ICs? Dept. of EEE, Amrita School of Engineering IC Classification ANALOG (OR LINEAR) ICs produce, amplify, or respond

More information

Leakage Power Minimization in Deep-Submicron CMOS circuits

Leakage Power Minimization in Deep-Submicron CMOS circuits Outline Leakage Power Minimization in Deep-Submicron circuits Politecnico di Torino Dip. di Automatica e Informatica 1019 Torino, Italy enrico.macii@polito.it Introduction. Design for low leakage: Basics.

More information

The High-Voltage Monolithic Active Pixel Sensor for the Mu3e Experiment

The High-Voltage Monolithic Active Pixel Sensor for the Mu3e Experiment The High-Voltage Monolithic Active Pixel Sensor for the Mu3e Experiment Shruti Shrestha On Behalf of the Mu3e Collaboration International Conference on Technology and Instrumentation in Particle Physics

More information

Kaben Wireless Silicon and Triad Semiconductor Partnership. Wireless & RF ASICs for Everyone!

Kaben Wireless Silicon and Triad Semiconductor Partnership. Wireless & RF ASICs for Everyone! Kaben Wireless Silicon and Triad Semiconductor Partnership Wireless & RF ASICs for Everyone! Kaben Wireless Silicon & Triad Semiconductor Pursue a Comprehensive Partnership Triad Semiconductor Via Configurable

More information

Development of Telescope Readout System based on FELIX for Testbeam Experiments

Development of Telescope Readout System based on FELIX for Testbeam Experiments Development of Telescope Readout System based on FELIX for Testbeam Experiments, Hucheng Chen, Kai Chen, Francessco Lanni, Hongbin Liu, Lailin Xu Brookhaven National Laboratory E-mail: weihaowu@bnl.gov,

More information

IRIS3 Visual Monitoring Camera on a chip

IRIS3 Visual Monitoring Camera on a chip IRIS3 Visual Monitoring Camera on a chip ESTEC contract 13716/99/NL/FM(SC) G.Meynants, J.Bogaerts, W.Ogiers FillFactory, Mechelen (B) T.Cronje, T.Torfs, C.Van Hoof IMEC, Leuven (B) Microelectronics Presentation

More information

DHCAL Prototype Construction José Repond Argonne National Laboratory

DHCAL Prototype Construction José Repond Argonne National Laboratory DHCAL Prototype Construction José Repond Argonne National Laboratory Linear Collider Workshop Stanford University March 18 22, 2005 Digital Hadron Calorimeter Fact Particle Flow Algorithms improve energy

More information

The first uncooled (no thermal) MWIR FPA monolithically integrated with a Si-CMOS ROIC: a 80x80 VPD PbSe FPA

The first uncooled (no thermal) MWIR FPA monolithically integrated with a Si-CMOS ROIC: a 80x80 VPD PbSe FPA DOI 10.516/irs013/i4.1 The first uncooled (no thermal) MWIR FPA monolithically integrated with a Si-CMOS ROIC: a 80x80 VPD PbSe FPA G. Vergara, R. Linares-Herrero, R. Gutiérrez-Álvarez, C. Fernández-Montojo,

More information

Introduction to CMC 3D Test Chip Project

Introduction to CMC 3D Test Chip Project Introduction to CMC 3D Test Chip Project Robert Mallard CMC Microsystems Apr 20, 2011 1 Overview of today s presentation Introduction to the project objectives CMC Why 3D chip stacking? The key to More

More information

A radiation tolerant, low-power cryogenic capable CCD readout system:

A radiation tolerant, low-power cryogenic capable CCD readout system: A radiation tolerant, low-power cryogenic capable CCD readout system: Enabling focal-plane mounted CCD read-out for ground or space applications with a pair of ASICs. Overview What do we want to read out

More information

THE LHCb experiment [1], currently under construction

THE LHCb experiment [1], currently under construction The DIALOG Chip in the Front-End Electronics of the LHCb Muon Detector Sandro Cadeddu, Caterina Deplano and Adriano Lai, Member, IEEE Abstract We present a custom integrated circuit, named DI- ALOG, which

More information

18nm FinFET. Lecture 30. Perspectives. Administrivia. Power Density. Power will be a problem. Transistor Count

18nm FinFET. Lecture 30. Perspectives. Administrivia. Power Density. Power will be a problem. Transistor Count 18nm FinFET Double-gate structure + raised source/drain Lecture 30 Perspectives Gate Silicon Fin Source BOX Gate X. Huang, et al, 1999 IEDM, p.67~70 Drain Si fin - Body! I d [ua/um] 400-1.50 V 350 300-1.25

More information

EC 1354-Principles of VLSI Design

EC 1354-Principles of VLSI Design EC 1354-Principles of VLSI Design UNIT I MOS TRANSISTOR THEORY AND PROCESS TECHNOLOGY PART-A 1. What are the four generations of integrated circuits? 2. Give the advantages of IC. 3. Give the variety of

More information

Multi-Channel Charge Pulse Amplification, Digitization and Processing ASIC for Detector Applications

Multi-Channel Charge Pulse Amplification, Digitization and Processing ASIC for Detector Applications 1.0 Multi-Channel Charge Pulse Amplification, Digitization and Processing ASIC for Detector Applications Peter Fischer for Tim Armbruster, Michael Krieger and Ivan Peric Heidelberg University Motivation

More information

Power and Area Efficient Column-Parallel ADC Architectures for CMOS Image Sensors

Power and Area Efficient Column-Parallel ADC Architectures for CMOS Image Sensors Power and Area Efficient Column-Parallel ADC Architectures for CMOS Image Sensors Martijn Snoeij 1,*, Albert Theuwissen 1,2, Johan Huijsing 1 and Kofi Makinwa 1 1 Delft University of Technology, The Netherlands

More information

Lecture Perspectives. Administrivia

Lecture Perspectives. Administrivia Lecture 29-30 Perspectives Administrivia Final on Friday May 18 12:30-3:30 pm» Location: 251 Hearst Gym Topics all what was covered in class. Review Session Time and Location TBA Lab and hw scores to be

More information

Ultra fast single photon counting chip

Ultra fast single photon counting chip Ultra fast single photon counting chip P. Grybos, P. Kmon, P. Maj, R. Szczygiel Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering AGH University of Science and

More information

Implementing a 5-bit Folding and Interpolating Analog to Digital Converter

Implementing a 5-bit Folding and Interpolating Analog to Digital Converter Implementing a 5-bit Folding and Interpolating Analog to Digital Converter Zachary A Pfeffer (pfefferz@colorado.edu) Department of Electrical and Computer Engineering University of Colorado, Boulder CO

More information

Analog front-end electronics in beam instrumentation

Analog front-end electronics in beam instrumentation Analog front-end electronics in beam instrumentation Basic instrumentation structure Silicon state of art Sampling state of art Instrumentation trend Comments and example on BPM Future Beam Position Instrumentation

More information

EE 434 Lecture 2. Basic Concepts

EE 434 Lecture 2. Basic Concepts EE 434 Lecture 2 Basic Concepts Review from Last Time Semiconductor Industry is One of the Largest Sectors in the World Economy and Growing All Initiatives Driven by Economic Opportunities and Limitations

More information

KLauS4: A Multi-Channel SiPM Charge Readout ASIC in 0.18 µm UMC CMOS Technology

KLauS4: A Multi-Channel SiPM Charge Readout ASIC in 0.18 µm UMC CMOS Technology 1 KLauS: A Multi-Channel SiPM Charge Readout ASIC in 0.18 µm UMC CMOS Technology Z. Yuan, K. Briggl, H. Chen, Y. Munwes, W. Shen, V. Stankova, and H.-C. Schultz-Coulon Kirchhoff Institut für Physik, Heidelberg

More information

Lecture 1, Introduction and Background

Lecture 1, Introduction and Background EE 338L CMOS Analog Integrated Circuit Design Lecture 1, Introduction and Background With the advances of VLSI (very large scale integration) technology, digital signal processing is proliferating and

More information

More Moore: Does It Mean Mixed-Signal Integration or Dis-Integration?

More Moore: Does It Mean Mixed-Signal Integration or Dis-Integration? More Moore: Does It Mean Mixed-Signal Integration or Dis-Integration? Ravi Subramanian, Ph.D. Berkeley Design Automation, Inc. 2013 Berkeley Design Automation, Inc. 1 Outline Introduction Structural Shift

More information

SAR Control Logic. GADCout <9:0> Figure 1. GADC diagram architecture.

SAR Control Logic. GADCout <9:0> Figure 1. GADC diagram architecture. GADC bloc: The bloc GADC (General Analog to Digital Converter) is a general purpose 10 bit ADC used to digitize different analog voltages of the FEI4 chip. As depicted on the Figure 1 below, the GADC contains

More information

Qpix v.1: A High Speed 400-pixels Readout LSI with 10-bit 10MSps Pixel ADCs

Qpix v.1: A High Speed 400-pixels Readout LSI with 10-bit 10MSps Pixel ADCs Qpix v.1: A High Speed 400-pixels Readout LSI with 10-bit 10MSps Pixel ADCs Fei Li, Vu Minh Khoa, Masaya Miyahara and Akira Tokyo Institute of Technology, Japan on behalf of the QPIX Collaboration PIXEL2010

More information

10.01: Development of Radiation Hard Pixel Detectors for the CMS Tracker Upgrade for the SLHC

10.01: Development of Radiation Hard Pixel Detectors for the CMS Tracker Upgrade for the SLHC CMS Upgrade MB Response to SLHC Document: 10.01: Development of Radiation Hard Pixel Detectors for the CMS Tracker Upgrade for the SLHC (Contact Person: Simon Kwan, Fermilab) It is our intent to recommend

More information