Geometric Analysis of DMC II 140

Size: px
Start display at page:

Download "Geometric Analysis of DMC II 140"

Transcription

1 Geometric Analysis of DMC II 14 Karsten Jacobsen Leibniz Universität Hannover

2 DMC II 14 Geometry determined by panchromatic camera Panchromatic camera: focal length: mm Image format: in flight direction 112 pixel * 7.2µm = 8.64mm across flight direction 1296 pixel * 7.2µm = 87.91mm r max = mm - for 1µm accuracy in position at image corner flatness (or knowledge about height variation) of 1.6µm required field of view in flight direction: across flight direction: 5.66 image base (p=6%) = mm height to base relation (p=6%): 1:.356 = one homogenous CCD-array no problems by stitching

3 flight over test field Aalen, Germany 5.7cm GSD end lap 65%, side lap 65% + crossing flight with same overlap 9.5cm GSD end lap 62%, side lap 62% + crossing flight with same overlap Test field Aalen 71 targeted GCPs SX=SY=SZ= 2cm - 3cm h=74m 2.2cm GSD end lap 8%, side lap 83% + crossing flight with same overlap

4 Test flight 5.7cm GSD hg=728m footprint 64m x 691m Overlay of all image points to one image Overlap of images 144 images 96 up to 328 points/image, in average 232 points/image In average 7.6 images / object point Images/point , 3, 5, 7, 9, 11, 13, 15, 17, 18, 21, 23,

5 Self calibration by additional parameters Hannover program system BLUH: additional parameters with physical justification 12 basic additional parameters for all types of images + camera specific parameters for stitched images Additional parameters for determination and correction of corner effects often seen at mid-format CCD-cameras parameter 81 radial parameter 88 tangential Only use of required additional parameters Typical systematic image errors of mid-format CCD-camera (not Intergraph) maximal: 11µm

6 Bundle block adjustment of whole block 5.7cm GSD Overlay and local averaging of all residuals with self calibration RMS =.14µm, max=.62µm remaining systematic image errors negligible Overlay and local averaging of all residuals without self calibration RMS =.14µm, max=.62µm Indicating very small size of systematic image errors µm µm add. parameter, GCP, 48 check points at check points: σo.98µm.97µm.97µm RMSX 2.9cm 2.9cm 2.9cm.13pixel.51GSD RMSY 2.6cm 2.6cm 2.6cm RMSZ 4.6cm 2.2cm 2.1cm.46GSD.37GSD SX, SY < SZ Accuracy limited by check point accuracy

7 Systematic image errors - block 5.7cm GSD Systematic image errors minus radial symmetric distortion RMS =.1µm maximal:.31µm Systematic image errors RMS =.27µm maximal: 1.3µm Systematic image errors extremely small Radial symmetric distortion up to 1.µm

8 flight 5.7cm GSD p=q=65% (double blocks) Only East-West flight lines, p=q=65% 72 images, in average 4.8 images/object point Only North- South flight lines, p=q=65% 72 images, in average 4.5 images/object point additional parameter,81-88 additional parameter, GCP, 48 check points at check points: σo.89µm.89µm.89µm σo.88µm.88µm.88µm RMSX 3.cm 2.9cm 2.9cm RMSX 3.3cm 3.1cm 3.2cm RMSY 3.2cm 3.1cm 3.1cm RMSY 2.6cm 2.6cm 2.6cm RMSZ 4.9cm 2.4cm 2.4cm.12pixel.51GSD.54GSD.42GSD 8 GCP, 48 check points at check points: RMSZ 3.9cm 3.6cm 3.8cm.12pixel.56GSD.46GSD.67GSD

9 flight 5.7cm GSD p=65% q=37% 36 images (single blocks) 6 6 Only North- South flight lines, every 2 nd line, p=65%, q=37% 36 images, in average 2.8 images/object point Only North- South flight lines, every 2 nd line, p=65%, q=37% 36 images, in average 2.8 images/object point additional parameter, GCP, 37 check points at check points: additional parameter σo RMSX RMSY RMSZ, GCP, 45 check points at check points: σo.82µm.82µm.82µm.87µm.86µm.86µm RMSX 2.9cm 2.7cm 2.7cm.11pixel.47GSD 3.2cm 3.1cm 3.2cm.12pixel.56GSD RMSY 2.8cm 2.8cm 2.9cm 2.6cm 2.6cm 2.7cm RMSZ 3.9cm 2.5cm 3.cm.51GSD.53GSD 4.1cm 4.2cm 3.7cm.47GSD.65GSD3 Even with single coverage at check points in sub-pixel accuracy

10 4-times coverage double coverage 5.7cm GSD overview [GSD] single coverage GSD.9.8 RMSZ at check points p=q=65% EW NS NS p=64% p=q=65% q=37% Left columns = without self calibration Center columns = additional parameters Right columns = additional parameters, RMSX, RMSY ~.5 GSD (=2.8cm) independent upon coverage and self calibration = limited by check points RMSZ with self calibration.4 up to.7 GSD = excellent

11 Test flight 9.5cm GSD hg=123m footprint 16m x 1145m Overlap of images 68 images 91 up to 329 points/image, in average 232 points/image In average 6.6 images / object point base = 421m corresponding t=7sec for speed 12 knots cm GSD end lap 62%, side lap 62% + crossing flight with same overlap

12 Systematic image errors - block 9.5cm GSD Systematic image errors minus radial symmetric distortion RMS =.1µm maximal:.53µm Systematic image errors RMS =.2µm maximal: 1.5µm Systematic image errors extremely small Radial symmetric distortion up to.6µm

13 Bundle block adjustment of whole block 9.5cm GSD end lap 62%, side lap 62% + crossing flight with same overlap 6 GCP, 28 check points at check points: add. parameter,81-88 σo RMSX RMSY RMSZ.91µm 3.5cm 3.cm 6.9cm.9µm 3.5cm 3.1cm 4.6cm.9µm 3.5cm 3.1cm 4.6cm.12pixel.37GSD.33GSD.48GSD Influence of self calibration limited to Z-component 9.5cm GSD end lap 62%, side lap 62% + crossing flight with same overlap

14 flight 9.5cm GSD p=q=62% (double block) Only East-West flight lines, p=q=62% 36 images, in average 3.5 images/object point additional parameter, GCP, 26 check points at check points: σo.93µm.91µm.91µm RMSX 4.cm 4.5cm 4.4cm RMSY 2.7cm 4.4cm 4.4cm RMSZ 6.9cm 4.9cm 4.6cm.13pixel.46GSD.46GSD.48GSD flight lines + GCP

15 flight 9.5cm GSD p=62% q=24% 18 images (single blocks) 7 GCP, 2 check points 1 st sub-block at check points: Only East-West flight lines, every 2 nd line, p=62%, q=24% 18 images, in average 2.5 images/object point 6 additional parameter,81-88 σo.9µm.89µm.89µm RMSX 4.2cm 4.3cm 4.3cm.12pixel.45GSD RMSY 2.6cm 3.8cm 3.7cm RMSZ 1.1cm 5.7cm 5.7cm.39GSD.6GSD 7 GCP, 21 check points 2 nd sub-block at check points: additional parameter,81-88 σo.93µm.91µm.91µm RMSX 4.8cm 5.7cm 5.8cm.13pixel.61GSD RMSY 3.2cm 3.4cm 3.3cm RMSZ 8.2cm 7.cm 6.9cm.35GSD.73GSD

16 9.5cm GSD overview [GSD] 4-times coverage double coverage single coverage RMSX, RMSY ~ GSD slightly depending upon coverage and self calibration = limited by check points RMSZ with self calibration.4 up to.7 GSD = excellent Left columns = without self calibration Center columns = additional parameters Right columns = additional parameters, 81-88

17 Test flight 2.2 cm GSD hg=2585m footprint 2266m x 2447m 36 images 169 up to 367 points/image, in average 273 points/image In average 8. images / object point Overlap of images 32 end lap 8%, side lap 83% + crossing flight with same overlap

18 Systematic image errors - block 2.2cm GSD Systematic image errors minus radial symmetric distortion RMS =.2µm maximal:.85µm Systematic image errors RMS =.62µm maximal: 1.5µm Systematic image errors extremely small Radial symmetric distortion up to 2.µm

19 Bundle block adjustment of whole block 2.2cm GSD 6 GCP, 22 check points at check points: add. parameter,81-88 σo RMSX RMSY RMSZ 1.68µm 6.6cm 14.4cm 17.9cm 1.68µm 6.7cm 14.4cm 16.6cm 1.68µm 6.7cm 14.3cm 16.6cm.23pixel.33GSD.71GSD.82GSD No improvement by self calibration Larger σo-value as other flying heights -Problems with identification of targeted control and check points 2cm GSD too large for test field Aalen

20 flight 2.2cm GSD only East-West flight lines 6 GCP, 22 check points at check points: additional parameter σo RMSX RMSY RMSZ 1.4µm 8.1cm 13.3cm 12.cm 1.39µm 8.3cm 14.9cm 13.7cm, µm 8.3cm 14.9cm 13.9cm 16 images, p=68%,q=83%.19pixel.41gsd.74gsd.69gsd 6 GCP, 19 check points at check points: additional parameter σo RMSX RMSY RMSZ 1.52µm 8.5cm 13.7cm 13.9cm 1.51µm 9.cm 15.cm 14.7cm, µm 9.cm 15.cm 14.7cm 8 images, p=6%,q=83%.21pixel.45gsd.74gsd.73gsd

21 8-times coverage 2.2cm GSD overview [GSD] 4-times coverage double coverage RMSX, RMSY ~ GSD slightly depending upon coverage and self calibration = limited by check point identification RMSZ with self calibration.6 up to.8 GSD Influence of too small size of control and check points, nevertheless good result Left columns = without self calibration Center columns = additional parameters Right columns = additional parameters, 81-88

22 Overview all ground resolutions [GSD] RMSZ=.37GSD 5.7cm GSD: RMSX, RMSY limited by accuracy of control and check points 9.5cm GSD: real accuracy achievable by DMC II cm GSD: not optimal block configuration, limited by identification of targets in images

23 Conclusion Unusual small size of systematic image errors of DMC II 14 images, typical corner effects of large size CCD-arrays not significant, special additional parameters for compensating corner effects not required Small radial symmetric image errors, slightly depending upon flying height (<1.µm for 5.7cm GSD, <.6µm for 9.5cm GSD, < 2.µm for 2.2cm GSD) Systematic image errors without radial symmetric effects: 5.7cm GSD: RMS=.1µm, maximal.31µm 9.5cm GSD: RMS=.1µm, maximal.53µm 2.2cm GSD: RMS=.2µm, maximal.85µm Reached accuracy at independent check points: for 5.7cm GSD and 9.5cm GSD RMSX, RMSY:.3.5 GSD RMSZ: depending upon multiple coverage.4.66 GSD Relation vertical to horizontal accuracy better as height/base ratio of 2.85 ( accuracy of check and control points cannot be neglected) Excellent image geometry and excellent object point accuracy by DMC II 14 -images

PROPERTY OF THE LARGE FORMAT DIGITAL AERIAL CAMERA DMC II

PROPERTY OF THE LARGE FORMAT DIGITAL AERIAL CAMERA DMC II PROPERTY OF THE LARGE FORMAT DIGITAL AERIAL CAMERA II K. Jacobsen a, K. Neumann b a Institute of Photogrammetry and GeoInformation, Leibniz University Hannover, Germany jacobsen@ipi.uni-hannover.de b Z/I

More information

Geometric Property of Large Format Digital Camera DMC II 140

Geometric Property of Large Format Digital Camera DMC II 140 PFG 2011 / 2, 071 079, March 2011 Geometric Property of Large Format Digital Camera DMC II 140 KARSTEN JACOBSEN, Hannover Keywords: Digital camera, geometry, large format CCD, systematic image errors Summary:

More information

TELLS THE NUMBER OF PIXELS THE TRUTH? EFFECTIVE RESOLUTION OF LARGE SIZE DIGITAL FRAME CAMERAS

TELLS THE NUMBER OF PIXELS THE TRUTH? EFFECTIVE RESOLUTION OF LARGE SIZE DIGITAL FRAME CAMERAS TELLS THE NUMBER OF PIXELS THE TRUTH? EFFECTIVE RESOLUTION OF LARGE SIZE DIGITAL FRAME CAMERAS Karsten Jacobsen Leibniz University Hannover Nienburger Str. 1 D-30167 Hannover, Germany jacobsen@ipi.uni-hannover.de

More information

POTENTIAL OF LARGE FORMAT DIGITAL AERIAL CAMERAS. Dr. Karsten Jacobsen Leibniz University Hannover, Germany

POTENTIAL OF LARGE FORMAT DIGITAL AERIAL CAMERAS. Dr. Karsten Jacobsen Leibniz University Hannover, Germany POTENTIAL OF LARGE FORMAT DIGITAL AERIAL CAMERAS Dr. Karsten Jacobsen Leibniz University Hannover, Germany jacobsen@ipi.uni-hannover.de Introduction: Digital aerial cameras are replacing traditional analogue

More information

DEM GENERATION WITH WORLDVIEW-2 IMAGES

DEM GENERATION WITH WORLDVIEW-2 IMAGES DEM GENERATION WITH WORLDVIEW-2 IMAGES G. Büyüksalih a, I. Baz a, M. Alkan b, K. Jacobsen c a BIMTAS, Istanbul, Turkey - (gbuyuksalih, ibaz-imp)@yahoo.com b Zonguldak Karaelmas University, Zonguldak, Turkey

More information

Camera Calibration Certificate No: DMC II

Camera Calibration Certificate No: DMC II Calibration DMC II 230 015 Camera Calibration Certificate No: DMC II 230 015 For Air Photographics, Inc. 2115 Kelly Island Road MARTINSBURG WV 25405 USA Calib_DMCII230-015_2014.docx Document Version 3.0

More information

Camera Calibration Certificate No: DMC II

Camera Calibration Certificate No: DMC II Calibration DMC II 230 027 Camera Calibration Certificate No: DMC II 230 027 For Peregrine Aerial Surveys, Inc. 103-20200 56 th Ave Langley, BC V3A 8S1 Canada Calib_DMCII230-027.docx Document Version 3.0

More information

Camera Calibration Certificate No: DMC IIe

Camera Calibration Certificate No: DMC IIe Calibration DMC IIe 230 23522 Camera Calibration Certificate No: DMC IIe 230 23522 For Richard Crouse & Associates 467 Aviation Way Frederick, MD 21701 USA Calib_DMCIIe230-23522.docx Document Version 3.0

More information

Camera Calibration Certificate No: DMC II

Camera Calibration Certificate No: DMC II Calibration DMC II 230 020 Camera Calibration Certificate No: DMC II 230 020 For MGGP Aero Sp. z o.o. ul. Słowackiego 33-37 33-100 Tarnów Poland Calib_DMCII230-020.docx Document Version 3.0 page 1 of 40

More information

Camera Calibration Certificate No: DMC II Aero Photo Europe Investigation

Camera Calibration Certificate No: DMC II Aero Photo Europe Investigation Calibration DMC II 250 030 Camera Calibration Certificate No: DMC II 250 030 For Aero Photo Europe Investigation Aerodrome de Moulins Montbeugny Yzeure Cedex 03401 France Calib_DMCII250-030.docx Document

More information

CALIBRATION OF OPTICAL SATELLITE SENSORS

CALIBRATION OF OPTICAL SATELLITE SENSORS CALIBRATION OF OPTICAL SATELLITE SENSORS KARSTEN JACOBSEN University of Hannover Institute of Photogrammetry and Geoinformation Nienburger Str. 1, D-30167 Hannover, Germany jacobsen@ipi.uni-hannover.de

More information

Camera Calibration Certificate No: DMC III 27542

Camera Calibration Certificate No: DMC III 27542 Calibration DMC III Camera Calibration Certificate No: DMC III 27542 For Peregrine Aerial Surveys, Inc. #201 1255 Townline Road Abbotsford, B.C. V2T 6E1 Canada Calib_DMCIII_27542.docx Document Version

More information

HIGH RESOLUTION IMAGERY FOR MAPPING AND LANDSCAPE MONITORING

HIGH RESOLUTION IMAGERY FOR MAPPING AND LANDSCAPE MONITORING HIGH RESOLUTION IMAGERY FOR MAPPING AND LANDSCAPE MONITORING Karsten Jacobsen Leibniz University Hannover, Institute of Photogrammetry and Geoinformation Nienburger Str. 1, 30165 Hannover, Germany, jacobsen@ipi.uni-hannover.de

More information

** KEYSTONE AERIAL SURVEYS R. David Day, Wesley Weaver **

** KEYSTONE AERIAL SURVEYS R. David Day, Wesley Weaver ** AN ACCURACY ANALYSIS OF LARGE RESOLUTION IMAGES CAPTURED WITH THE NIKON D810 DIGITAL CAMERA SYSTEM Ricardo M. Passini * * ricardopassini2012@outlook.com ** KEYSTONE AERIAL SURVEYS R. David Day, Wesley

More information

CALIBRATION OF IMAGING SATELLITE SENSORS

CALIBRATION OF IMAGING SATELLITE SENSORS CALIBRATION OF IMAGING SATELLITE SENSORS Jacobsen, K. Institute of Photogrammetry and GeoInformation, University of Hannover jacobsen@ipi.uni-hannover.de KEY WORDS: imaging satellites, geometry, calibration

More information

Camera Calibration Certificate No: DMC II

Camera Calibration Certificate No: DMC II Calibration DMC II 140-036 Camera Calibration Certificate No: DMC II 140-036 For Midwest Aerial Photography 7535 West Broad St, Galloway, OH 43119 USA Calib_DMCII140-036.docx Document Version 3.0 page

More information

Camera Calibration Certificate No: DMC II

Camera Calibration Certificate No: DMC II Calibration DMC II 140-005 Camera Calibration Certificate No: DMC II 140-005 For Midwest Aerial Photography 7535 West Broad St, Galloway, OH 43119 USA Calib_DMCII140-005.docx Document Version 3.0 page

More information

Calibration Report. Short version. UltraCam X, S/N UCX-SX Microsoft Photogrammetry, A-8010 Graz, Austria. ( 1 of 13 )

Calibration Report. Short version. UltraCam X, S/N UCX-SX Microsoft Photogrammetry, A-8010 Graz, Austria. ( 1 of 13 ) Calibration Report Short version Camera: Manufacturer: UltraCam X, S/N UCX-SX-1-30518177 Microsoft Photogrammetry, A-8010 Graz, Austria Date of Calibration: May-24-2007 Date of Report: Jun-21-2007 Camera

More information

RADIOMETRIC AND GEOMETRIC CHARACTERISTICS OF PLEIADES IMAGES

RADIOMETRIC AND GEOMETRIC CHARACTERISTICS OF PLEIADES IMAGES RADIOMETRIC AND GEOMETRIC CHARACTERISTICS OF PLEIADES IMAGES K. Jacobsen a, H. Topan b, A.Cam b, M. Özendi b, M. Oruc b a Leibniz University Hannover, Institute of Photogrammetry and Geoinformation, Germany;

More information

Calibration Report. Short Version. UltraCam L, S/N UC-L Vexcel Imaging GmbH, A-8010 Graz, Austria

Calibration Report. Short Version. UltraCam L, S/N UC-L Vexcel Imaging GmbH, A-8010 Graz, Austria Calibration Report Short Version Camera: Manufacturer: UltraCam L, S/N UC-L-1-00612089 Vexcel Imaging GmbH, A-8010 Graz, Austria Date of Calibration: Mar-23-2010 Date of Report: May-17-2010 Camera Revision:

More information

Calibration Certificate

Calibration Certificate Calibration Certificate Digital Mapping Camera (DMC) DMC Serial Number: DMC01-0053 CBU Serial Number: 0100053 For MPPG AERO Sp. z. o. o., ul. Kaczkowskiego 6 33-100 Tarnow Poland System Overview Flight

More information

Calibration Report. Short version. UltraCam Xp, S/N UC-SXp Vexcel Imaging GmbH, A-8010 Graz, Austria

Calibration Report. Short version. UltraCam Xp, S/N UC-SXp Vexcel Imaging GmbH, A-8010 Graz, Austria Calibration Report Short version Camera: Manufacturer: UltraCam Xp, S/N UC-SXp-1-61212452 Vexcel Imaging GmbH, A-8010 Graz, Austria Date of Calibration: Mar-05-2009 Date of Report: Mar-13-2009 Camera Revision:

More information

Calibration Report. Short Version. Vexcel Imaging GmbH, A-8010 Graz, Austria

Calibration Report. Short Version. Vexcel Imaging GmbH, A-8010 Graz, Austria Calibration Report Short Version Camera: Manufacturer: UltraCam D, S/N UCD-SU-2-0039 Vexcel Imaging GmbH, A-8010 Graz, Austria Date of Calibration: Mar-14-2011 Date of Report: Mar-17-2011 Camera Revision:

More information

Calibration Report. Short Version. UltraCam Eagle, S/N UC-E f210. Vexcel Imaging GmbH, A-8010 Graz, Austria

Calibration Report. Short Version. UltraCam Eagle, S/N UC-E f210. Vexcel Imaging GmbH, A-8010 Graz, Austria Calibration Report Short Version Camera: Manufacturer: Date of Calibration: Date of Report: Revision of Camera: Version of Report: UltraCam Eagle, S/N UC-E-1-00518105-f210 Vexcel Imaging GmbH, A-8010 Graz,

More information

Calibration Report. UC-SXp Version of Report:

Calibration Report. UC-SXp Version of Report: Calibration Report Camera: Serial: UltraCam Xp UC-SXp-1-40719017 Calibration Date: Date of Report: Camera Revision: Version of Report: Feb-28-2018 Mar-05-2018 Rev13.00 V01 www.vexcel-imaging.com Copyright

More information

Airborne or Spaceborne Images for Topographic Mapping?

Airborne or Spaceborne Images for Topographic Mapping? Advances in Geosciences Konstantinos Perakis, Editor EARSeL, 2012 Airborne or Spaceborne Images for Topographic Mapping? Karsten Jacobsen Leibniz University Hannover, Institute of Photogrammetry and Geoinformation,

More information

Geometric potential of Pleiades models with small base length

Geometric potential of Pleiades models with small base length European Remote Sensing: Progress, Challenges and Opportunities EARSeL, 2015 Geometric potential of Pleiades models with small base length Karsten Jacobsen Leibniz University Hannover, Institute of Photogrammetry

More information

Calibration Report. Vexcel Imaging GmbH, A-8010 Graz, Austria

Calibration Report. Vexcel Imaging GmbH, A-8010 Graz, Austria Calibration Report Camera: Manufacturer: UltraCam D, S/N UCD-SU-1-0031 Vexcel Imaging GmbH, A-8010 Graz, Austria Date of Calibration: Apr-10-2009 Date of Report: Feb-15-2010 Camera Revision: 4.0 Revision

More information

Calibration Report. UltraCam Eagle, S/N UC-Eagle f80. Vexcel Imaging GmbH, A-8010 Graz, Austria

Calibration Report. UltraCam Eagle, S/N UC-Eagle f80. Vexcel Imaging GmbH, A-8010 Graz, Austria Calibration Report Camera: Manufacturer: UltraCam Eagle, S/N UC-Eagle-1-60411397-f80 Vexcel Imaging GmbH, A-8010 Graz, Austria Date of Calibration: Jul-23-2013 Date of Report: Aug-06-2013 Camera Revision:

More information

RECENT DEVELOPMENTS OF DIGITAL CAMERAS AND SPACE IMAGERY. Karsten JACOBSEN

RECENT DEVELOPMENTS OF DIGITAL CAMERAS AND SPACE IMAGERY. Karsten JACOBSEN RECENT DEVELOPMENTS OF DIGITAL CAMERAS AND SPACE IMAGERY Abstract Karsten JACOBSEN Leibniz University Hannover, Institute of Photogrammetry and Geoinformation, Nienburger Str. 1, D-30167 Hannover, Germany

More information

Phase One ixu-rs1000 Accuracy Assessment Report Yu. Raizman, PhaseOne.Industrial, Israel

Phase One ixu-rs1000 Accuracy Assessment Report Yu. Raizman, PhaseOne.Industrial, Israel 17 th International Scientific and Technical Conference FROM IMAGERY TO DIGITAL REALITY: ERS & Photogrammetry Phase One ixu-rs1000 Accuracy Assessment Report Yu. Raizman, PhaseOne.Industrial, Israel 1.

More information

EXAMPLES OF TOPOGRAPHIC MAPS PRODUCED FROM SPACE AND ACHIEVED ACCURACY CARAVAN Workshop on Mapping from Space, Phnom Penh, June 2000

EXAMPLES OF TOPOGRAPHIC MAPS PRODUCED FROM SPACE AND ACHIEVED ACCURACY CARAVAN Workshop on Mapping from Space, Phnom Penh, June 2000 EXAMPLES OF TOPOGRAPHIC MAPS PRODUCED FROM SPACE AND ACHIEVED ACCURACY CARAVAN Workshop on Mapping from Space, Phnom Penh, June 2000 Jacobsen, Karsten University of Hannover Email: karsten@ipi.uni-hannover.de

More information

Leica ADS80 - Digital Airborne Imaging Solution NAIP, Salt Lake City 4 December 2008

Leica ADS80 - Digital Airborne Imaging Solution NAIP, Salt Lake City 4 December 2008 Luzern, Switzerland, acquired at 5 cm GSD, 2008. Leica ADS80 - Digital Airborne Imaging Solution NAIP, Salt Lake City 4 December 2008 Shawn Slade, Doug Flint and Ruedi Wagner Leica Geosystems AG, Airborne

More information

UltraCam Eagle Prime Aerial Sensor Calibration and Validation

UltraCam Eagle Prime Aerial Sensor Calibration and Validation UltraCam Eagle Prime Aerial Sensor Calibration and Validation Michael Gruber, Marc Muick Vexcel Imaging GmbH Anzengrubergasse 8/4, 8010 Graz / Austria {michael.gruber, marc.muick}@vexcel-imaging.com Key

More information

High Resolution Sensor Test Comparison with SPOT, KFA1000, KVR1000, IRS-1C and DPA in Lower Saxony

High Resolution Sensor Test Comparison with SPOT, KFA1000, KVR1000, IRS-1C and DPA in Lower Saxony High Resolution Sensor Test Comparison with SPOT, KFA1000, KVR1000, IRS-1C and DPA in Lower Saxony K. Jacobsen, G. Konecny, H. Wegmann Abstract The Institute for Photogrammetry and Engineering Surveys

More information

DMC PRACTICAL EXPERIENCE AND ACCURACY ASSESSMENT

DMC PRACTICAL EXPERIENCE AND ACCURACY ASSESSMENT DMC PRACTICAL EXPERIENCE AND ACCURACY ASSESSMENT M. Madani 1, C. Dörstel 2, C. Heipke 3, K. Jacobsen 3 1 Z/I Imaging Corporation, Alabama, USA 2 Z/I Imaging GmbH, Aalen, Germany 3 Hanover University E-mail:

More information

DEMS BASED ON SPACE IMAGES VERSUS SRTM HEIGHT MODELS. Karsten Jacobsen. University of Hannover, Germany

DEMS BASED ON SPACE IMAGES VERSUS SRTM HEIGHT MODELS. Karsten Jacobsen. University of Hannover, Germany DEMS BASED ON SPACE IMAGES VERSUS SRTM HEIGHT MODELS Karsten Jacobsen University of Hannover, Germany jacobsen@ipi.uni-hannover.de Key words: DEM, space images, SRTM InSAR, quality assessment ABSTRACT

More information

INCREASING GEOMETRIC ACCURACY OF DMC S VIRTUAL IMAGES

INCREASING GEOMETRIC ACCURACY OF DMC S VIRTUAL IMAGES INCREASING GEOMETRIC ACCURACY OF DMC S VIRTUAL IMAGES M. Madani, I. Shkolnikov Intergraph Corporation, Alabama, USA (mostafa.madani@intergraph.com) Commission I, WG I/1 KEY WORDS: Digital Aerial Cameras,

More information

The EuroSDR network on Digital Camera Calibration and Validation

The EuroSDR network on Digital Camera Calibration and Validation Institut für Photogrammetrie The EuroSDR network on Digital Camera Calibration and Validation Michael Cramer michael.cramer@.uni-stuttgart.de 109th EuroSDR Meetings Lisboa, October 25-27, 06 Phase II Active

More information

Digital airborne cameras Status & future

Digital airborne cameras Status & future Institut für Photogrammetrie ifp Digital airborne cameras Status & future Michael Cramer Institute for Photogrammetry, Univ. of Stuttgart Geschwister-Scholl-Str.24, D-70174 Stuttgart Tel: + 49 711 121

More information

CALIBRATING THE NEW ULTRACAM OSPREY OBLIQUE AERIAL SENSOR Michael Gruber, Wolfgang Walcher

CALIBRATING THE NEW ULTRACAM OSPREY OBLIQUE AERIAL SENSOR Michael Gruber, Wolfgang Walcher CALIBRATING THE NEW ULTRACAM OSPREY OBLIQUE AERIAL SENSOR Michael Gruber, Wolfgang Walcher Microsoft UltraCam Business Unit Anzengrubergasse 8/4, 8010 Graz / Austria {michgrub, wwalcher}@microsoft.com

More information

Geometry of Aerial Photographs

Geometry of Aerial Photographs Geometry of Aerial Photographs Aerial Cameras Aerial cameras must be (details in lectures): Geometrically stable Have fast and efficient shutters Have high geometric and optical quality lenses They can

More information

ANALYSIS OF SRTM HEIGHT MODELS

ANALYSIS OF SRTM HEIGHT MODELS ANALYSIS OF SRTM HEIGHT MODELS Sefercik, U. *, Jacobsen, K.** * Karaelmas University, Zonguldak, Turkey, ugsefercik@hotmail.com **Institute of Photogrammetry and GeoInformation, University of Hannover,

More information

Phase One 190MP Aerial System

Phase One 190MP Aerial System White Paper Phase One 190MP Aerial System Introduction Phase One Industrial s 100MP medium format aerial camera systems have earned a worldwide reputation for its high performance. They are commonly used

More information

Vexcel Imaging GmbH Innovating in Photogrammetry: UltraCamXp, UltraCamLp and UltraMap

Vexcel Imaging GmbH Innovating in Photogrammetry: UltraCamXp, UltraCamLp and UltraMap Photogrammetric Week '09 Dieter Fritsch (Ed.) Wichmann Verlag, Heidelberg, 2009 Wiechert, Gruber 27 Vexcel Imaging GmbH Innovating in Photogrammetry: UltraCamXp, UltraCamLp and UltraMap ALEXANDER WIECHERT,

More information

Jens Kremer ISPRS Hannover Workshop 2017,

Jens Kremer ISPRS Hannover Workshop 2017, Jens Kremer ISPRS Hannover Workshop 2017, 8.06.2017 Modular aerial camera-systems The IGI UrbanMapper 2-in1 concept System Layout The DigiCAM-100 module The IGI UrbanMapper Sensor geometry & stitching

More information

CHARACTERISTICS OF VERY HIGH RESOLUTION OPTICAL SATELLITES FOR TOPOGRAPHIC MAPPING

CHARACTERISTICS OF VERY HIGH RESOLUTION OPTICAL SATELLITES FOR TOPOGRAPHIC MAPPING CHARACTERISTICS OF VERY HIGH RESOLUTION OPTICAL SATELLITES FOR TOPOGRAPHIC MAPPING K. Jacobsen Leibniz University Hannover, Institute of Photogrammetry and Geoinformation jacobsen@ipi.uni-hannover.de Commission

More information

Planet Labs Inc 2017 Page 2

Planet Labs Inc 2017 Page 2 SKYSAT IMAGERY PRODUCT SPECIFICATION: ORTHO SCENE LAST UPDATED JUNE 2017 SALES@PLANET.COM PLANET.COM Disclaimer This document is designed as a general guideline for customers interested in acquiring Planet

More information

Figure 1 - The Main Screen of the e-foto Photogrammetric Project Creation and Management

Figure 1 - The Main Screen of the e-foto Photogrammetric Project Creation and Management Introduction The Rio de Janeiro State University - UERJ After executing the integrated version of the e-foto, you will see the opening screen of the software, as shown in Figure 1 below. The main menu

More information

VisionMap A3 Edge A Single Camera for Multiple Solutions

VisionMap A3 Edge A Single Camera for Multiple Solutions Photogrammetric Week '15 Dieter Fritsch (Ed.) Wichmann/VDE Verlag, Belin & Offenbach, 2015 Raizman, Gozes 57 VisionMap A3 Edge A Single Camera for Multiple Solutions Yuri Raizman, Adi Gozes, Tel-Aviv ABSTRACT

More information

NEWS FROM THE ULTRACAM CAMERA LINE-UP INTRODUCTION

NEWS FROM THE ULTRACAM CAMERA LINE-UP INTRODUCTION NEWS FROM THE ULTRACAM CAMERA LINE-UP Alexander Wiechert, Michael Gruber Vexcel Imaging Austria / Microsoft Photogrammetry Anzengrubergasse 8/4, 8010 Graz / Austria {alwieche, michgrub}@microsoft.com ABSTRACT

More information

UltraCam and UltraMap Towards All in One Solution by Photogrammetry

UltraCam and UltraMap Towards All in One Solution by Photogrammetry Photogrammetric Week '11 Dieter Fritsch (Ed.) Wichmann/VDE Verlag, Belin & Offenbach, 2011 Wiechert, Gruber 33 UltraCam and UltraMap Towards All in One Solution by Photogrammetry ALEXANDER WIECHERT, MICHAEL

More information

UltraCam and UltraMap An Update

UltraCam and UltraMap An Update Photogrammetric Week '15 Dieter Fritsch (Ed.) Wichmann/VDE Verlag, Belin & Offenbach, 2015 Wiechert, Gruber 45 UltraCam and UltraMap An Update Alexander Wiechert, Michael Gruber, Graz ABSTRACT When UltraCam

More information

Tutorial 10 Information extraction from high resolution optical satellite sensors

Tutorial 10 Information extraction from high resolution optical satellite sensors Tutorial 10 Information extraction from high resolution optical satellite sensors Karsten Jacobsen 1, Emmanuel Baltsavias 2, David Holland 3 1 University of, ienburger Strasse 1, D-30167, Germany, jacobsen@ipi.uni-hannover.de

More information

Hyper-spectral, UHD imaging NANO-SAT formations or HAPS to detect, identify, geolocate and track; CBRN gases, fuel vapors and other substances

Hyper-spectral, UHD imaging NANO-SAT formations or HAPS to detect, identify, geolocate and track; CBRN gases, fuel vapors and other substances Hyper-spectral, UHD imaging NANO-SAT formations or HAPS to detect, identify, geolocate and track; CBRN gases, fuel vapors and other substances Arnold Kravitz 8/3/2018 Patent Pending US/62544811 1 HSI and

More information

VERIFICATION OF POTENCY OF AERIAL DIGITAL OBLIQUE CAMERAS FOR AERIAL PHOTOGRAMMETRY IN JAPAN

VERIFICATION OF POTENCY OF AERIAL DIGITAL OBLIQUE CAMERAS FOR AERIAL PHOTOGRAMMETRY IN JAPAN VERIFICATION OF POTENCY OF AERIAL DIGITAL OBLIQUE CAMERAS FOR AERIAL PHOTOGRAMMETRY IN JAPAN Ryuji. Nakada a, *, Masanori. Takigawa a, Tomowo. Ohga a, Noritsuna. Fujii a a Asia Air Survey Co. Ltd., Kawasaki

More information

CALIBRATION REPORT SUMMARY

CALIBRATION REPORT SUMMARY CALIBRATION REPORT SUMMARY Material Description Assembly 2PADI080 1027 0997 A / 09A Camera Module 1 CCD KODAK KAF 39Mp Full Frame Color Image Sensor SN CQ011027 Lens Schneider Apo Digitar 4.0/80 N SN 15006871

More information

The Airphoto Ortho Suite is an add-on to Geomatica. It requires Geomatica Core or Geomatica Prime as a pre-requisite.

The Airphoto Ortho Suite is an add-on to Geomatica. It requires Geomatica Core or Geomatica Prime as a pre-requisite. Airphoto Ortho Suite The Airphoto Ortho Suite includes rigorous models used to correct the geometry of analogue and digital/video cameras and to produce orthorectified air photos. These models compensate

More information

Leica RCD30 Calibration Certificate

Leica RCD30 Calibration Certificate Leica RCD30 Calibration Certificate Camera Head Serial Number Lens Serial Number This certificate is valid for CH62 62001 NAG-D 3.5/50 50002 Inspector Calibration certificate issued on 23 June 2011 Udo

More information

CALIBRATING DIGITAL PHOTOGRAMMETRIC AIRBORNE IMAGING SYSTEMS IN A TEST FIELD

CALIBRATING DIGITAL PHOTOGRAMMETRIC AIRBORNE IMAGING SYSTEMS IN A TEST FIELD CALIBRATING DIGITAL PHOTOGRAMMETRIC AIRBORNE IMAGING SYSTEMS IN A TEST FIELD Eija Honkavaara, Lauri Markelin, Eero Ahokas, Risto Kuittinen, Jouni Peltoniemi Finnish Geodetic Institute, Geodeetinrinne 2,

More information

Aerial photography: Principles. Frame capture sensors: Analog film and digital cameras

Aerial photography: Principles. Frame capture sensors: Analog film and digital cameras Aerial photography: Principles Frame capture sensors: Analog film and digital cameras Overview Introduction Frame vs scanning sensors Cameras (film and digital) Photogrammetry Orthophotos Air photos are

More information

Introduction to Photogrammetry

Introduction to Photogrammetry Introduction to Photogrammetry Presented By: Sasanka Madawalagama Geoinformatics Center Asian Institute of Technology Thailand www.geoinfo.ait.asia Content Introduction to photogrammetry 2D to 3D Drones

More information

SCIENCE & TECHNOLOGY

SCIENCE & TECHNOLOGY Pertanika J. Sci. & Technol. 21 (2): 387-396 (2013) SCIENCE & TECHNOLOGY Journal homepage: http://www.pertanika.upm.edu.my/ Production of Orthophoto and Volume Determination Using Low-Cost Digital Cameras

More information

1 st IFAC Conference on Mechatronic Systems - Mechatronics 2000, September 18-20, 2000, Darmstadt, Germany

1 st IFAC Conference on Mechatronic Systems - Mechatronics 2000, September 18-20, 2000, Darmstadt, Germany 1 st IFAC Conference on Mechatronic Systems - Mechatronics 2000, September 18-20, 2000, Darmstadt, Germany SPACE APPLICATION OF A SELF-CALIBRATING OPTICAL PROCESSOR FOR HARSH MECHANICAL ENVIRONMENT V.

More information

DMC The Digital Sensor Technology of Z/I-Imaging

DMC The Digital Sensor Technology of Z/I-Imaging Hinz 93 DMC The Digital Sensor Technology of Z/I-Imaging ALEXANDER HINZ, CHRISTOPH DÖRSTEL, HELMUT HEIER, Oberkochen ABSTRACT Aerial cameras manufactured by Carl Zeiss have been successfully used around

More information

Digital Aerial Photography UNBC March 22, Presented by: Dick Mynen TDB Consultants Inc.

Digital Aerial Photography UNBC March 22, Presented by: Dick Mynen TDB Consultants Inc. Digital Aerial Photography UNBC March 22, 2011 Presented by: Dick Mynen TDB Consultants Inc. Airborne Large Scale Digital Photography Who is using the technology in today s environment Options available

More information

HIGH RESOLUTION COLOR IMAGERY FOR ORTHOMAPS AND REMOTE SENSING. Author: Peter Fricker Director Product Management Image Sensors

HIGH RESOLUTION COLOR IMAGERY FOR ORTHOMAPS AND REMOTE SENSING. Author: Peter Fricker Director Product Management Image Sensors HIGH RESOLUTION COLOR IMAGERY FOR ORTHOMAPS AND REMOTE SENSING Author: Peter Fricker Director Product Management Image Sensors Co-Author: Tauno Saks Product Manager Airborne Data Acquisition Leica Geosystems

More information

AERIAL SURVEY TEST PROJECT WITH DJI PHANTOM 3 QUADROCOPTER DRONE

AERIAL SURVEY TEST PROJECT WITH DJI PHANTOM 3 QUADROCOPTER DRONE T. Jancso, P. Engler, P. Udvardy Aerial Survey Test Project with DJI Phantom 3 Quadrocopter Drone AERIAL SURVEY TEST PROJECT WITH DJI PHANTOM 3 QUADROCOPTER DRONE Tamas JANCSO, Associate Professor Phd

More information

ABOUT FRAME VERSUS PUSH-BROOM AERIAL CAMERAS

ABOUT FRAME VERSUS PUSH-BROOM AERIAL CAMERAS ABOUT FRAME VERSUS PUSH-BROOM AERIAL CAMERAS Franz Leberl and Michael Gruber Microsoft Photogrammetry, 8010 Graz ABSTRACT When presenting digital large format aerial cameras to the interested community

More information

ULTRACAMX AND A NEW WAY OF PHOTOGRAMMETRIC PROCESSING

ULTRACAMX AND A NEW WAY OF PHOTOGRAMMETRIC PROCESSING ULTRACAMX AND A NEW WAY OF PHOTOGRAMMETRIC PROCESSING Michael Gruber, Bernhard Reitinger Microsoft Photogrammetry Anzengrubergasse 8, A-8010 Graz, Austria {michgrub, bernreit}@microsoft.com ABSTRACT This

More information

Aerial Triangulation Radiometry Essentials Dense Matching Ortho Generation

Aerial Triangulation Radiometry Essentials Dense Matching Ortho Generation Radiometry Aerial Triangulation Essentials Dense Matching Ortho Generation Highly advanced photogrammetric workflow system for UltraCam images. Microsoft UltraMap is a state-of-the-art, end-to-end, complete

More information

MEDIUM FORMAT CAMERA EVALUATION BASED ON THE LATEST PHASE ONE TECHNOLOGY

MEDIUM FORMAT CAMERA EVALUATION BASED ON THE LATEST PHASE ONE TECHNOLOGY MEDIUM FORMAT CAMERA EVALUATION BASED ON THE LATEST PHASE ONE TECHNOLOGY T.Tölg a, G. Kemper b, D. Kalinski c a Phase One / Germany tto@phaseone.com b GGS GmbH, Speyer / Germany kemper@ggs-speyer.de c

More information

Experimental aerial photogrammetry with professional non metric camera Canon EOS 5D

Experimental aerial photogrammetry with professional non metric camera Canon EOS 5D Experimental aerial photogrammetry with professional non metric camera Canon EOS 5D Ante Sladojević, Goran Mrvoš Galileo Geo Sustavi, Croatia 1. Introduction With this project we wanted to test professional

More information

Large Field of View, High Spatial Resolution, Surface Measurements

Large Field of View, High Spatial Resolution, Surface Measurements Large Field of View, High Spatial Resolution, Surface Measurements James C. Wyant and Joanna Schmit WYKO Corporation, 2650 E. Elvira Road Tucson, Arizona 85706, USA jcwyant@wyko.com and jschmit@wyko.com

More information

Topographic mapping from space K. Jacobsen*, G. Büyüksalih**

Topographic mapping from space K. Jacobsen*, G. Büyüksalih** Topographic mapping from space K. Jacobsen*, G. Büyüksalih** * Institute of Photogrammetry and Geoinformation, Leibniz University Hannover ** BIMTAS, Altunizade-Istanbul, Turkey KEYWORDS: WorldView-1,

More information

Coastal areas and land development. An algorithm for monitoring informal constructions An application in coastal areas. Informal building in Greece

Coastal areas and land development. An algorithm for monitoring informal constructions An application in coastal areas. Informal building in Greece An algorithm for monitoring informal constructions An application in coastal areas Ch. Psaltis, Ch. Ioannidis Coastal areas and land development Coastal areas more developed than continental areas Overconcentration

More information

Introduction to DSP ECE-S352 Fall Quarter 2000 Matlab Project 1

Introduction to DSP ECE-S352 Fall Quarter 2000 Matlab Project 1 Objective: Introduction to DSP ECE-S352 Fall Quarter 2000 Matlab Project 1 This Matlab Project is an extension of the basic correlation theory presented in the course. It shows a practical application

More information

1. Introduction 2. Tectonics of NE Iceland Krafla rifting crisis (constraints from spy image matching)

1. Introduction 2. Tectonics of NE Iceland Krafla rifting crisis (constraints from spy image matching) 1. Introduction 2. Tectonics of NE Iceland 3. 1975-1984 Krafla rifting crisis (constraints from spy image matching) 4. 1975-1984 Krafla rifting crisis (constraints from aerial photos) 5. Conclusions Tuesday

More information

LECTURE NOTES 2016 CONTENTS. Sensors and Platforms for Acquisition of Aerial and Satellite Image Data

LECTURE NOTES 2016 CONTENTS. Sensors and Platforms for Acquisition of Aerial and Satellite Image Data LECTURE NOTES 2016 Prof. John TRINDER School of Civil and Environmental Engineering Telephone: (02) 9 385 5020 Fax: (02) 9 313 7493 j.trinder@unsw.edu.au CONTENTS Chapter 1 Chapter 2 Sensors and Platforms

More information

Reikan FoCal Aperture Sharpness Test Report

Reikan FoCal Aperture Sharpness Test Report Focus Calibration and Analysis Software Test run on: 26/01/2016 17:02:00 with FoCal 2.0.6.2416W Report created on: 26/01/2016 17:03:39 with FoCal 2.0.6W Overview Test Information Property Description Data

More information

RPAS Photogrammetric Mapping Workflow and Accuracy

RPAS Photogrammetric Mapping Workflow and Accuracy RPAS Photogrammetric Mapping Workflow and Accuracy Dr Yincai Zhou & Dr Craig Roberts Surveying and Geospatial Engineering School of Civil and Environmental Engineering, UNSW Background RPAS category and

More information

COMPARISON OF INFORMATION CONTENTS OF HIGH RESOLUTION SPACE IMAGES

COMPARISON OF INFORMATION CONTENTS OF HIGH RESOLUTION SPACE IMAGES COMPARISON OF INFORMATION CONTENTS OF HIGH RESOLUTION SPACE IMAGES H. Topan*, G. Büyüksalih*, K. Jacobsen ** * Karaelmas University Zonguldak, Turkey ** University of Hannover, Germany htopan@karaelmas.edu.tr,

More information

technology meets pathology Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin, Germany 3 Overview

technology meets pathology Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin, Germany 3 Overview ASSESSMENT OF TECHNICAL PARAMETERS A. Alekseychuk 1, N. Zerbe 2, Y. Yagi 3 1 Computer Vision and Remote Sensing, TU Berlin, Berlin, Germany 2 Institute of Pathology, Charité Universitätsmedizin Berlin,

More information

MULTIPLE SENSORS LENSLETS FOR SECURE DOCUMENT SCANNERS

MULTIPLE SENSORS LENSLETS FOR SECURE DOCUMENT SCANNERS INFOTEH-JAHORINA Vol. 10, Ref. E-VI-11, p. 892-896, March 2011. MULTIPLE SENSORS LENSLETS FOR SECURE DOCUMENT SCANNERS Jelena Cvetković, Aleksej Makarov, Sasa Vujić, Vlatacom d.o.o. Beograd Abstract -

More information

ANALYZING DMC PERFORMANCE IN A PRODUCTION ENVIRONMENT

ANALYZING DMC PERFORMANCE IN A PRODUCTION ENVIRONMENT ANALYZING DMC PERFORMANCE IN A PRODUCTION ENVIRONMENT J. Talaya, W. Kornus, R. Alamús, E. Soler, M. Pla, A. Ruiz Institut Cartogràfic de Catalunya, 08038 Barcelona, Spain (julia.talaya, wolfgang.kornus,

More information

Lab #10 Digital Orthophoto Creation (Using Leica Photogrammetry Suite)

Lab #10 Digital Orthophoto Creation (Using Leica Photogrammetry Suite) Lab #10 Digital Orthophoto Creation (Using Leica Photogrammetry Suite) References: Leica Photogrammetry Suite Project Manager: Users Guide, Leica Geosystems LLC. Leica Photogrammetry Suite 9.2 Introduction:

More information

Reikan FoCal Aperture Sharpness Test Report

Reikan FoCal Aperture Sharpness Test Report Focus Calibration and Analysis Software Reikan FoCal Sharpness Test Report Test run on: 26/01/2016 17:14:35 with FoCal 2.0.6.2416W Report created on: 26/01/2016 17:16:16 with FoCal 2.0.6W Overview Test

More information

While film cameras still

While film cameras still aerial perspective by Mathias Lemmens, editor-in-chief, GIM International Digital Aerial Cameras System Configurations and Sensor Architectures Editor s note: This issue includes an extensive product survey

More information

Performance Comparison of Spectrometers Featuring On-Axis and Off-Axis Grating Rotation

Performance Comparison of Spectrometers Featuring On-Axis and Off-Axis Grating Rotation Performance Comparison of Spectrometers Featuring On-Axis and Off-Axis Rotation By: Michael Case and Roy Grayzel, Acton Research Corporation Introduction The majority of modern spectrographs and scanning

More information

On the development of a low-cost rigid borescopic fringe projection system

On the development of a low-cost rigid borescopic fringe projection system On the development of a low-cost rigid borescopic fringe projection system Jochen Schlobohm, Andreas Pösch, Markus Kästner, Eduard Reithmeier Leibniz Universität Hannover, Mechanical Engineering, Institute

More information

RADIOMETRIC CAMERA CALIBRATION OF THE BiLSAT SMALL SATELLITE: PRELIMINARY RESULTS

RADIOMETRIC CAMERA CALIBRATION OF THE BiLSAT SMALL SATELLITE: PRELIMINARY RESULTS RADIOMETRIC CAMERA CALIBRATION OF THE BiLSAT SMALL SATELLITE: PRELIMINARY RESULTS J. Friedrich a, *, U. M. Leloğlu a, E. Tunalı a a TÜBİTAK BİLTEN, ODTU Campus, 06531 Ankara, Turkey - (jurgen.friedrich,

More information

APPLICATION AND ACCURACY POTENTIAL OF A STRICT GEOMETRIC MODEL FOR ROTATING LINE CAMERAS

APPLICATION AND ACCURACY POTENTIAL OF A STRICT GEOMETRIC MODEL FOR ROTATING LINE CAMERAS APPLICATION AND ACCURACY POTENTIAL OF A STRICT GEOMETRIC MODEL FOR ROTATING LINE CAMERAS D. Schneider, H.-G. Maas Dresden University of Technology Institute of Photogrammetry and Remote Sensing Mommsenstr.

More information

Reikan FoCal Aperture Sharpness Test Report

Reikan FoCal Aperture Sharpness Test Report Focus Calibration and Analysis Software Reikan FoCal Sharpness Test Report Test run on: 10/02/2016 19:57:05 with FoCal 2.0.6.2416W Report created on: 10/02/2016 19:59:09 with FoCal 2.0.6W Overview Test

More information

Relief Displacement of Vertical Features

Relief Displacement of Vertical Features G 210 Lab. Relief Displacement of Vertical Features An increase in the elevation of a feature causes its position on the photograph to be displaced radially outward from the principle point. Hence, when

More information

Metric Accuracy Testing with Mobile Phone Cameras

Metric Accuracy Testing with Mobile Phone Cameras Metric Accuracy Testing with Mobile Phone Cameras Armin Gruen,, Devrim Akca Chair of Photogrammetry and Remote Sensing ETH Zurich Switzerland www.photogrammetry.ethz.ch Devrim Akca, the 21. ISPRS Congress,

More information

Reikan FoCal Aperture Sharpness Test Report

Reikan FoCal Aperture Sharpness Test Report Focus Calibration and Analysis Software Reikan FoCal Sharpness Test Report Test run on: 27/01/2016 00:35:25 with FoCal 2.0.6.2416W Report created on: 27/01/2016 00:41:43 with FoCal 2.0.6W Overview Test

More information

CLOSE RANGE ORTHOIMAGE USING A LOW COST DIGITAL CAMCORDER

CLOSE RANGE ORTHOIMAGE USING A LOW COST DIGITAL CAMCORDER CLOSE RANGE ORTHOIMAGE USING A LOW COST DIGITAL CAMCORDER E. Tsiligiris a, M. Papakosta a, C. Ioannidis b, A. Georgopoulos c a Surveying Engineer, Post-graduate Student, National Technical University of

More information

Leica - 3 rd Generation Airborne Digital Sensors Features / Benefits for Remote Sensing & Environmental Applications

Leica - 3 rd Generation Airborne Digital Sensors Features / Benefits for Remote Sensing & Environmental Applications Leica - 3 rd Generation Airborne Digital Sensors Features / Benefits for Remote Sensing & Environmental Applications Arthur Rohrbach, Sensor Sales Dir Europe, Middle-East and Africa (EMEA) Luzern, Switzerland,

More information

The TC-OFDM System for Seamless Outdoor & Indoor Positioning in Wide Area

The TC-OFDM System for Seamless Outdoor & Indoor Positioning in Wide Area The TC-OFDM System for Seamless Outdoor & Indoor Positioning in Wide Area Prof. Deng Zhongliang Beijing, China 1. Background 2. TC-OFDM 3. Research Progress 4. Conclusions 2 Emergency Rescue How to save

More information

Better Imaging with a Schmidt-Czerny-Turner Spectrograph

Better Imaging with a Schmidt-Czerny-Turner Spectrograph Better Imaging with a Schmidt-Czerny-Turner Spectrograph Abstract For years, images have been measured using Czerny-Turner (CT) design dispersive spectrographs. Optical aberrations inherent in the CT design

More information