Imaging Systems Laboratory II. Laboratory 8: The Michelson Interferometer / Diffraction April 30 & May 02, 2002

Size: px
Start display at page:

Download "Imaging Systems Laboratory II. Laboratory 8: The Michelson Interferometer / Diffraction April 30 & May 02, 2002"

Transcription

1 Imaging Systems Laboratory II Laboratory 8: The Michelson Interferometer / Diffraction April 30 & May 02, 2002 Abstract. In the last lab, you saw that coherent light from two different locations in an optical beam could be combined after having traveled along two different paths. The recombined light exhibited sinusoidal fringes whose spatial frequency depended on the difference in angle of the light beams when recombined. The regular variation in relative phase of the light beams resulted in constructive interference (when the relative phase difference is 2πn, where n is an integer) and destructive interference where the relative phase difference is 2πn + π. In this laboratory, you will extend this idea in two ways, first by looking at a Michelson Interferometer, which generates circular fringes and is an example of a division of amplitude interferometer, and second by studying the diffraction effects associated with more complicated apertures. Lab reports will be due one week after you collect your data. 1 Michelson Theory The "ease" with which fringes can be created and viewed is a function of the coherence of the source, which is inversely proportional to the range of temporal frequencies the source emits. Light from a laser is all of the "same" wavelength (actually a very narrow range of λ), while white light contains all frequencies from the blue (λ=400nm) to the red (λ=700nm). Thus it is much easier to create fringes with a laser than with white light. The coherence length of the source can be increased by spectral filtering to remove much of the spectrum (and thus much of the available intensity). The Michelson interferometer is probably the most famous example of an interferometer that splits the beam by dividing the amplitude of the wave at a certain surface. This surface is known as the beamsplitter consists of a half-silvered mirror which reflects some of the light and transmits the rest. 2 Part I Procedure The Michelson interferometer apparatus is shown below. Unfortunately, we only have one setup, so we will have this in one lab, and take turns using it. Meanwhile, you ll be working with your Part II set up in another of the small labs. The light is split into two beams by the beamsplitter, which is "half-silvered" on the "inside" so that light is reflected after transiting through the glass (careful the diagram is a bit misleading in this regard). The two beams emerging from the beam splitter travel perpendicular paths to mirrors where they are directed back to be recombined at the beamsplitter surface. One beam can be tilted by an adjustable mirror and the length of the other path may be changed by a translatable mirror. Note that the path length is changed by TWICE the

2 translation distance of the mirror. A compensator (a plain piece of glass of the same thickness as the beamsplitter) is placed in the beam that was transmitted by beamsplitter. The light transits the compensator twice, and thus the path length traveled in glass by light in this arm is identical to that traveled in glass in the arm that is deflected through 90 degrees by the beamsplitter. This equalization of the path length traveled simplifies (somewhat) the use of the interferometer with a "broad-band" white-light source (which we will not use here). The compensator is not really necessary when a laser is used, because the coherence length is much longer than the path-length difference. The first step is to bring the two beams in to rough alignment. Do this by directing the laser beam through the (empty) filter holder and into the interferometer, and observing the spot pattern produced at the observation plane (a nearby wall is fine for this). Adjust the tiltable mirror until the two main spots appear nearly coincident. Now insert a lens into the beam to expand the laser beam into a spherical wave. The mirrors generate images of the source of the spherical wave, and the resulting spherical wavefronts superpose. The squared magnitude of the "spatial modulation" of the superposition is the visible fringe pattern. The drawings below give an idea of the form of the fringes that will be visible for various configurations of the two mirrors when used with spherical waves. (To observe these patterns, you will probably need to dim the lights.) Figure 1. The Michelson Interferometer.

3 Figure 2. Typical interference patterns obtainable with the Michelson Interferometer. The left pattern is well-centered. Complete the following: 1. Describe the procedure required to center the fringe pattern what type of adjustments were required, once you inserted the lens into the beam, and why do these adjustments allow you to center the pattern? (A sequence of drawings may help the instructor to understand your answer.) 2. Once you have obtained circular fringes that are approximately centered, move the translatable mirror to increase or decrease the optical path difference. (Be sure that you know in which sense you are changing the path length of the direct beam!). Note the "direction" that the fringes move; in other words, do they "appear" from or "disappear" into the center as the path length difference increases? Explain. 3. Place a piece of plastic wrap in one arm of the interferometer. Describe and explain its effect. 4. Put a source of heat in or under one of the arms of the interferometer; your hand will work (if you are warmblooded!), but a more intense source such as a soldering iron works better. Note the effect. 3 Diffraction Theory Coherence, which is a very important concept in understanding both interference and diffraction, refers to the definite relationship of the phases measured at different points in the wave; in other words, the phase of the sinusoidal electric fields is rigidly deterministic. Coherence has two flavors: spatial and temporal. For spatially coherent

4 light, the phase difference φ = φ 1 - φ 2 of the electric field measured at the same time at any two points in space separated by a vector distance r remains constant for all times. If the phase difference measured at the same location at two different times separated by t = t 1 - t 2 is the same for all points in space, then the light is temporally coherent. Light from a laser may be considered to be both spatially and temporally coherent. The properties of coherent light allow phase differences of light that has traveled different paths to be made visible, since the phase difference is constant with time. For example, the examples considered in the first interference lab may be described in terms of the twoaperture experiment originally performed by Thomas Young. The observed patterns were variants of the sinusoidal fringe pattern he first observed. Patterns of light and dark fringes also may be observed in the irradiance patterns generated from large single apertures in coherent light. These effects are lumped into the single category of diffraction, and are due to time-invariant constructive and destructive interference of coherent light emerging from different points in the same aperture. The phase difference of light from different points in the same "large" source can be seen as a similar pattern of dark and bright fringes, though not (usually) with sinusoidal spacing. In other words, the single large aperture (or multiple large apertures) may be considered as a collection of a very large (infinite) number of infinitesimal contiguous point sources, each emitting spherical waves of light with the same wavelength in phase. Since all sources emit the same frequency, the summation at any observation point will oscillate with that same frequency. However, light from different points in the aperture(s) combine at an observation point after traveling different distances, and thus will have different phases. The vector sum of the amplitudes (magnitude and phase) create bright fringes at locations where they add in phase (at least approximately), and create dark fringes where the magnitude of the sum is zero. Diffraction patterns created by one object and viewed at observation planes located at different distances will have very different character. If the distance between source and observation plane is small, we see "near-field" or "Fresnel" diffraction, while at large distances the pattern is "far-field" or "Fraunhofer" diffraction. In Fresnel diffraction, the "shape" of the aperture is still visible (circular or rectangular hole, etc.), though with fringing appearing at the edges. In Fresnel diffraction, the size of the irradiance pattern is proportional to the size of the aperture. In Fraunhofer diffraction, the pattern of the diffracted light does NOT resemble the aperture and the size of the observed pattern is INVERSELY proportional to the size of the diffracting structure. In other words, two diffracting objects of the same shape but different sizes will generate Fraunhofer diffraction patterns of the same shape but reciprocal sizes; the larger object yields a smaller (though brighter) diffraction pattern. The mathematical relation between the shape and size of the output relative to that of the input is a Fourier transform. For a particular aperture shape f(α,β), the output Fraunhofer diffraction pattern has irradiance proportional to

5 ( ( xα + yβ ) 2πi λr I x, y) = f ( α, β ) e dαdβ, where R is the distance between the aperture and the screen and the integral is just the Fourier transform of f(α,β). 2 4 Part II Procedure Equipment: He:Ne Laser, spatial filter, beam expanding and collimating lenses, set of Metrologic slides to serve as diffracting objects. 1. Set up the experimental bench as in Figure 1 with the observing screen fairly close to the aperture (Fresnel diffraction). Measure and record the relevant distances. A number of "apertures" are available for use, including single and multiple slits of different spacings, single and multiple circular apertures, needles (both tips and eyes), razor blades, etc. In addition, aluminum foil and needles are available to make your own apertures. a. Begin with a one of the larger single slits or circular apertures. Note the form of the diffraction pattern. For example, sketch its form and note the sizes/locations of any features. For a slit or circular aperture, you should note "light" and "dark" regions in the pattern; measure the positions of some maxima and minima (about 3). Use the data to derive a scale of the spatial oscillation rate of the pattern. Sketch the pattern including the scale. b. Increase the distance between the screen and the diffracting object. Repeat the measurements of part a. What is the relation between the change in distance to the observation screen and the change in scale of the pattern? c. Repeat parts (a) and (b) using a knife edge as the object. Sketch the pattern observed. You will see that the intensity distribution near the edge of the geometric shadow is not a sharp transition, but rather an undulatory pattern; a magnifying lens or microscope may be helpful to view the pattern.

6 Figure 3. The experimental set-up for Fresnel diffraction. 2. Now observe the diffraction pattern "far" from the aperture (Fraunhofer diffraction). Since our labs are small, you will need to insert a lens after the diffracting aperture to bring the far-field pattern in to a convenient distance for study. Use the same set-up for all measurements and try to take an image of at least one of your diffraction patterns with the CCD camera, clearly showing fringes, as evidence of the nonrectilinear propagation of light. a. Observe Fraunhofer diffraction from apertures of the same shape but different sizes; these are available in the slide set. Measure the size of any observable features and repeat this measurements using the other slits and then the other apertures. What is the influence of the physical dimension of the diffracting objects on the pattern? b. Repeat the procedure using a periodic structure (diffraction grid or grating) as the object. What is special in its pattern? c. Now overlay a periodic structure (grid) with a circular aperture and observe the pattern. The "overlaying" computes the product ("modulation") of the two apertures. Describe the resulting diffraction pattern in terms of the two patterns obtained individually with each mask. d. For an aperture of a known fixed (small) size, estimate the location of the "boundary" between the Fresnel and Fraunhofer diffraction regions. Record and justify your measurement. e. Examine the image and diffraction pattern of a slide of Albert Einstein or other halftone image. Note the features of the diffraction pattern and relate them to the features of the transparency.

7 f. Now, remove your focusing lens and examine the pattern generated by a "Fresnel Zone Plate" (FZP) at different screen distances. The FZP is available in the slide set; it is a circular grating whose spacing decreases with increasing distance from the center. Sketch a "side view" of the transmission of the FZP and note that there is no hole in the center of the plate. Now, for sufficiently large distances, you should see that a bright point appears at the center of the pattern on the screen. Examine the character of this spot closely as you change the location of the screen. Describe how the spot changes at different distances. If time permits, you might also want to overlap another transparency (such as a circular aperture) and the FZP and record the result.

1 Laboratory 7: Fourier Optics

1 Laboratory 7: Fourier Optics 1051-455-20073 Physical Optics 1 Laboratory 7: Fourier Optics 1.1 Theory: References: Introduction to Optics Pedrottis Chapters 11 and 21 Optics E. Hecht Chapters 10 and 11 The Fourier transform is an

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science Student Name Date MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.161 Modern Optics Project Laboratory Laboratory Exercise No. 3 Fall 2005 Diffraction

More information

FRAUNHOFER AND FRESNEL DIFFRACTION IN ONE DIMENSION

FRAUNHOFER AND FRESNEL DIFFRACTION IN ONE DIMENSION FRAUNHOFER AND FRESNEL DIFFRACTION IN ONE DIMENSION Revised November 15, 2017 INTRODUCTION The simplest and most commonly described examples of diffraction and interference from two-dimensional apertures

More information

9. Microwaves. 9.1 Introduction. Safety consideration

9. Microwaves. 9.1 Introduction. Safety consideration MW 9. Microwaves 9.1 Introduction Electromagnetic waves with wavelengths of the order of 1 mm to 1 m, or equivalently, with frequencies from 0.3 GHz to 0.3 THz, are commonly known as microwaves, sometimes

More information

Physics 3340 Spring Fourier Optics

Physics 3340 Spring Fourier Optics Physics 3340 Spring 011 Purpose Fourier Optics In this experiment we will show how the Fraunhofer diffraction pattern or spatial Fourier transform of an object can be observed within an optical system.

More information

PHYS 3153 Methods of Experimental Physics II O2. Applications of Interferometry

PHYS 3153 Methods of Experimental Physics II O2. Applications of Interferometry Purpose PHYS 3153 Methods of Experimental Physics II O2. Applications of Interferometry In this experiment, you will study the principles and applications of interferometry. Equipment and components PASCO

More information

PHY 431 Homework Set #5 Due Nov. 20 at the start of class

PHY 431 Homework Set #5 Due Nov. 20 at the start of class PHY 431 Homework Set #5 Due Nov. 0 at the start of class 1) Newton s rings (10%) The radius of curvature of the convex surface of a plano-convex lens is 30 cm. The lens is placed with its convex side down

More information

Physics 23 Laboratory Spring 1987

Physics 23 Laboratory Spring 1987 Physics 23 Laboratory Spring 1987 DIFFRACTION AND FOURIER OPTICS Introduction This laboratory is a study of diffraction and an introduction to the concepts of Fourier optics and spatial filtering. The

More information

Physical Optics. Diffraction.

Physical Optics. Diffraction. Physical Optics. Diffraction. Interference Young s interference experiment Thin films Coherence and incoherence Michelson interferometer Wave-like characteristics of light Huygens-Fresnel principle Interference.

More information

Experiment 1: Fraunhofer Diffraction of Light by a Single Slit

Experiment 1: Fraunhofer Diffraction of Light by a Single Slit Experiment 1: Fraunhofer Diffraction of Light by a Single Slit Purpose 1. To understand the theory of Fraunhofer diffraction of light at a single slit and at a circular aperture; 2. To learn how to measure

More information

Be aware that there is no universal notation for the various quantities.

Be aware that there is no universal notation for the various quantities. Fourier Optics v2.4 Ray tracing is limited in its ability to describe optics because it ignores the wave properties of light. Diffraction is needed to explain image spatial resolution and contrast and

More information

LOS 1 LASER OPTICS SET

LOS 1 LASER OPTICS SET LOS 1 LASER OPTICS SET Contents 1 Introduction 3 2 Light interference 5 2.1 Light interference on a thin glass plate 6 2.2 Michelson s interferometer 7 3 Light diffraction 13 3.1 Light diffraction on a

More information

R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad.

R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad. R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad. DEPARTMENT OF PHYSICS QUESTION BANK FOR SEMESTER III PAPER III OPTICS UNIT I: 1. MATRIX METHODS IN PARAXIAL OPTICS 2. ABERATIONS UNIT II

More information

7. Michelson Interferometer

7. Michelson Interferometer 7. Michelson Interferometer In this lab we are going to observe the interference patterns produced by two spherical waves as well as by two plane waves. We will study the operation of a Michelson interferometer,

More information

Diffraction. Interference with more than 2 beams. Diffraction gratings. Diffraction by an aperture. Diffraction of a laser beam

Diffraction. Interference with more than 2 beams. Diffraction gratings. Diffraction by an aperture. Diffraction of a laser beam Diffraction Interference with more than 2 beams 3, 4, 5 beams Large number of beams Diffraction gratings Equation Uses Diffraction by an aperture Huygen s principle again, Fresnel zones, Arago s spot Qualitative

More information

Exercise 8: Interference and diffraction

Exercise 8: Interference and diffraction Physics 223 Name: Exercise 8: Interference and diffraction 1. In a two-slit Young s interference experiment, the aperture (the mask with the two slits) to screen distance is 2.0 m, and a red light of wavelength

More information

Unit-23 Michelson Interferometer I

Unit-23 Michelson Interferometer I Unit-23 Michelson Interferometer I Objective: Study the theory and the design of Michelson Interferometer. And use it to measure the wavelength of a light source. Apparatus: Michelson interferometer (include

More information

Physics 476LW. Advanced Physics Laboratory - Microwave Optics

Physics 476LW. Advanced Physics Laboratory - Microwave Optics Physics 476LW Advanced Physics Laboratory Microwave Radiation Introduction Setup The purpose of this lab is to better understand the various ways that interference of EM radiation manifests itself. However,

More information

LEOK-3 Optics Experiment kit

LEOK-3 Optics Experiment kit LEOK-3 Optics Experiment kit Physical optics, geometrical optics and fourier optics Covering 26 experiments Comprehensive documents Include experiment setups, principles and procedures Cost effective solution

More information

Will contain image distance after raytrace Will contain image height after raytrace

Will contain image distance after raytrace Will contain image height after raytrace Name: LASR 51 Final Exam May 29, 2002 Answer all questions. Module numbers are for guidance, some material is from class handouts. Exam ends at 8:20 pm. Ynu Raytracing The first questions refer to the

More information

EOP3056 Optical Metrology and Testing Experiment OM2: The Mach-Zehnder Interferometer

EOP3056 Optical Metrology and Testing Experiment OM2: The Mach-Zehnder Interferometer EOP3056 Optical Metrology and Testing Experiment OM2: The Mach-Zehnder Interferometer 1.0 Objectives To construct a Mach-Zehnder interferometer from discrete optical components. To explain how Mach-Zehnder

More information

Holography (A13) Christopher Bronner, Frank Essenberger Freie Universität Berlin Tutor: Dr. Fidder. July 1, 2007 Experiment on July 2, 2007

Holography (A13) Christopher Bronner, Frank Essenberger Freie Universität Berlin Tutor: Dr. Fidder. July 1, 2007 Experiment on July 2, 2007 Holography (A13) Christopher Bronner, Frank Essenberger Freie Universität Berlin Tutor: Dr. Fidder July 1, 2007 Experiment on July 2, 2007 1 Preparation 1.1 Normal camera If we take a picture with a camera,

More information

HUYGENS PRINCIPLE AND INTERFERENCE

HUYGENS PRINCIPLE AND INTERFERENCE HUYGENS PRINCIPLE AND INTERFERENCE VERY SHORT ANSWER QUESTIONS Q-1. Can we perform Double slit experiment with ultraviolet light? Q-2. If no particular colour of light or wavelength is specified, then

More information

Interference [Hecht Ch. 9]

Interference [Hecht Ch. 9] Interference [Hecht Ch. 9] Note: Read Ch. 3 & 7 E&M Waves and Superposition of Waves and Meet with TAs and/or Dr. Lai if necessary. General Consideration 1 2 Amplitude Splitting Interferometers If a lightwave

More information

Collimation Tester Instructions

Collimation Tester Instructions Description Use shear-plate collimation testers to examine and adjust the collimation of laser light, or to measure the wavefront curvature and divergence/convergence magnitude of large-radius optical

More information

Chapter Ray and Wave Optics

Chapter Ray and Wave Optics 109 Chapter Ray and Wave Optics 1. An astronomical telescope has a large aperture to [2002] reduce spherical aberration have high resolution increase span of observation have low dispersion. 2. If two

More information

Physics. Light Waves & Physical Optics

Physics. Light Waves & Physical Optics Physics Light Waves & Physical Optics Physical Optics Physical optics or wave optics, involves the effects of light waves that are not related to the geometric ray optics covered previously. We will use

More information

Class XII - Physics Wave Optics Chapter-wise Problems

Class XII - Physics Wave Optics Chapter-wise Problems Class XII - hysics Wave Optics Chapter-wise roblems Multiple Choice Question :- 10.1 Consider a light beam incident from air to a glass slab at Brewster s angle as shown in Fig. 10.1. A polaroid is placed

More information

1.6 Beam Wander vs. Image Jitter

1.6 Beam Wander vs. Image Jitter 8 Chapter 1 1.6 Beam Wander vs. Image Jitter It is common at this point to look at beam wander and image jitter and ask what differentiates them. Consider a cooperative optical communication system that

More information

Lecture 2: Interference

Lecture 2: Interference Lecture 2: Interference λ S 1 d S 2 Lecture 2, p.1 Today Interference of sound waves Two-slit interference Lecture 2, p.2 Review: Wave Summary ( ) ( ) The formula y x,t = Acoskx ωt describes a harmonic

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 Q1. Just over two hundred years ago Thomas Young demonstrated the interference of light by illuminating two closely spaced narrow slits with light from a single light source.

More information

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name:

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name: EE119 Introduction to Optical Engineering Spring 2003 Final Exam Name: SID: CLOSED BOOK. THREE 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

More information

Chapter 17: Wave Optics. What is Light? The Models of Light 1/11/13

Chapter 17: Wave Optics. What is Light? The Models of Light 1/11/13 Chapter 17: Wave Optics Key Terms Wave model Ray model Diffraction Refraction Fringe spacing Diffraction grating Thin-film interference What is Light? Light is the chameleon of the physical world. Under

More information

Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: Signature:

Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: Signature: Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: PID: Signature: CLOSED BOOK. TWO 8 1/2 X 11 SHEET OF NOTES (double sided is allowed), AND SCIENTIFIC POCKET CALCULATOR

More information

MICROWAVE OPTICS. Instruction Manual and Experiment Guide for the PASCO scientific Model WA-9314B G

MICROWAVE OPTICS. Instruction Manual and Experiment Guide for the PASCO scientific Model WA-9314B G Includes Teacher's Notes and Typical Experiment Results Instruction Manual and Experiment Guide for the PASCO scientific Model WA-9314B 012-04630G MICROWAVE OPTICS 10101 Foothills Blvd. Roseville, CA 95678-9011

More information

Chapter 4: Fourier Optics

Chapter 4: Fourier Optics Chapter 4: Fourier Optics P4-1. Calculate the Fourier transform of the function rect(2x)rect(/3) The rectangular function rect(x) is given b 1 x 1/2 rect( x) when 0 x 1/2 P4-2. Assume that ( gx (, )) G

More information

Exp No.(8) Fourier optics Optical filtering

Exp No.(8) Fourier optics Optical filtering Exp No.(8) Fourier optics Optical filtering Fig. 1a: Experimental set-up for Fourier optics (4f set-up). Related topics: Fourier transforms, lenses, Fraunhofer diffraction, index of refraction, Huygens

More information

NCSL International 2995 Wilderness Place, Suite 107 Boulder, Colorado Office: (303) Fax: (303)

NCSL International 2995 Wilderness Place, Suite 107 Boulder, Colorado Office: (303) Fax: (303) www.metrologycareers.com 1 Instructions for the NCSLI laser pointer interferometer Warnings and cautions The laser pointer is a class 3 laser. A person could be injured if the laser beam is pointed into

More information

Wave optics and interferometry

Wave optics and interferometry 11b, 2013, lab 7 Wave optics and interferometry Note: The optical surfaces used in this experiment are delicate. Please do not touch any of the optic surfaces to avoid scratches and fingerprints. Please

More information

PRINCIPLE PROCEDURE ACTIVITY. AIM To observe diffraction of light due to a thin slit.

PRINCIPLE PROCEDURE ACTIVITY. AIM To observe diffraction of light due to a thin slit. ACTIVITY 12 AIM To observe diffraction of light due to a thin slit. APPARATUS AND MATERIAL REQUIRED Two razor blades, one adhesive tape/cello-tape, source of light (electric bulb/ laser pencil), a piece

More information

LECTURE 13 DIFFRACTION. Instructor: Kazumi Tolich

LECTURE 13 DIFFRACTION. Instructor: Kazumi Tolich LECTURE 13 DIFFRACTION Instructor: Kazumi Tolich Lecture 13 2 Reading chapter 33-4 & 33-6 to 33-7 Single slit diffraction Two slit interference-diffraction Fraunhofer and Fresnel diffraction Diffraction

More information

AP B Webreview ch 24 diffraction and interference

AP B Webreview ch 24 diffraction and interference Name: Class: _ Date: _ AP B Webreview ch 24 diffraction and interference Multiple Choice Identify the choice that best completes the statement or answers the question.. In order to produce a sustained

More information

GIST OF THE UNIT BASED ON DIFFERENT CONCEPTS IN THE UNIT (BRIEFLY AS POINT WISE). RAY OPTICS

GIST OF THE UNIT BASED ON DIFFERENT CONCEPTS IN THE UNIT (BRIEFLY AS POINT WISE). RAY OPTICS 209 GIST OF THE UNIT BASED ON DIFFERENT CONCEPTS IN THE UNIT (BRIEFLY AS POINT WISE). RAY OPTICS Reflection of light: - The bouncing of light back into the same medium from a surface is called reflection

More information

1 Introduction Installation... 4

1 Introduction Installation... 4 Table of contents 1 Introduction... 3 2 Installation... 4 3 Measurement set up... 5 3.1 Transmissive spatial light modulator...5 3.2 Reflective spatial light modulator...6 4 Software Functions/buttons...

More information

EE119 Introduction to Optical Engineering Fall 2009 Final Exam. Name:

EE119 Introduction to Optical Engineering Fall 2009 Final Exam. Name: EE119 Introduction to Optical Engineering Fall 2009 Final Exam Name: SID: CLOSED BOOK. THREE 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

More information

Week IX: INTERFEROMETER EXPERIMENTS

Week IX: INTERFEROMETER EXPERIMENTS Week IX: INTERFEROMETER EXPERIMENTS Notes on Adjusting the Michelson Interference Caution: Do not touch the mirrors or beam splitters they are front surface and difficult to clean without damaging them.

More information

Holography as a tool for advanced learning of optics and photonics

Holography as a tool for advanced learning of optics and photonics Holography as a tool for advanced learning of optics and photonics Victor V. Dyomin, Igor G. Polovtsev, Alexey S. Olshukov Tomsk State University 36 Lenin Avenue, Tomsk, 634050, Russia Tel/fax: 7 3822

More information

GEOMETRICAL OPTICS Practical 1. Part I. BASIC ELEMENTS AND METHODS FOR CHARACTERIZATION OF OPTICAL SYSTEMS

GEOMETRICAL OPTICS Practical 1. Part I. BASIC ELEMENTS AND METHODS FOR CHARACTERIZATION OF OPTICAL SYSTEMS GEOMETRICAL OPTICS Practical 1. Part I. BASIC ELEMENTS AND METHODS FOR CHARACTERIZATION OF OPTICAL SYSTEMS Equipment and accessories: an optical bench with a scale, an incandescent lamp, matte, a set of

More information

Week IV: FIRST EXPERIMENTS WITH THE ADVANCED OPTICS SET

Week IV: FIRST EXPERIMENTS WITH THE ADVANCED OPTICS SET Week IV: FIRST EXPERIMENTS WITH THE ADVANCED OPTICS SET The Advanced Optics set consists of (A) Incandescent Lamp (B) Laser (C) Optical Bench (with magnetic surface and metric scale) (D) Component Carriers

More information

Single Photon Interference Laboratory

Single Photon Interference Laboratory Single Photon Interference Laboratory Renald Dore Institute of Optics University of Rochester, Rochester, NY 14627, U.S.A Abstract The purpose of our laboratories was to observe the wave-particle duality

More information

Department of Mechanical and Aerospace Engineering, Princeton University Department of Astrophysical Sciences, Princeton University ABSTRACT

Department of Mechanical and Aerospace Engineering, Princeton University Department of Astrophysical Sciences, Princeton University ABSTRACT Phase and Amplitude Control Ability using Spatial Light Modulators and Zero Path Length Difference Michelson Interferometer Michael G. Littman, Michael Carr, Jim Leighton, Ezekiel Burke, David Spergel

More information

Activity 1: Diffraction of Light

Activity 1: Diffraction of Light Activity 1: Diffraction of Light When laser light passes through a small slit, it forms a diffraction pattern of bright and dark fringes (as shown below). The central bright fringe is wider than the others.

More information

Single Slit Diffraction

Single Slit Diffraction PC1142 Physics II Single Slit Diffraction 1 Objectives Investigate the single-slit diffraction pattern produced by monochromatic laser light. Determine the wavelength of the laser light from measurements

More information

Chapter Wave Optics. MockTime.com. Ans: (d)

Chapter Wave Optics. MockTime.com. Ans: (d) Chapter Wave Optics Q1. Which one of the following phenomena is not explained by Huygen s construction of wave front? [1988] (a) Refraction Reflection Diffraction Origin of spectra Q2. Which of the following

More information

Physics 4. Diffraction. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 4. Diffraction. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Physics 4 Diffraction Diffraction When light encounters an obstacle it will exhibit diffraction effects as the light bends around the object or passes through a narrow opening. Notice the alternating bright

More information

Chapter 36: diffraction

Chapter 36: diffraction Chapter 36: diffraction Fresnel and Fraunhofer diffraction Diffraction from a single slit Intensity in the single slit pattern Multiple slits The Diffraction grating X-ray diffraction Circular apertures

More information

Diffraction Single-slit Double-slit Diffraction grating Limit on resolution X-ray diffraction. Phys 2435: Chap. 36, Pg 1

Diffraction Single-slit Double-slit Diffraction grating Limit on resolution X-ray diffraction. Phys 2435: Chap. 36, Pg 1 Diffraction Single-slit Double-slit Diffraction grating Limit on resolution X-ray diffraction Phys 2435: Chap. 36, Pg 1 Single Slit New Topic Phys 2435: Chap. 36, Pg 2 Diffraction: bending of light around

More information

Engineering Sciences 151. Electromagnetic Communication Laboratory Assignment 4 Fall Term

Engineering Sciences 151. Electromagnetic Communication Laboratory Assignment 4 Fall Term Engineering Sciences 151 Electromagnetic Communication Laboratory Assignment 4 Fall Term 1997-98 OBJECTIVES: To build familiarity with interference phenomena and interferometric measurement techniques;

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science Student Name Date MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.161 Modern Optics Project Laboratory Laboratory Exercise No. 6 Fall 2010 Solid-State

More information

Projects in Optics. Applications Workbook

Projects in Optics. Applications Workbook Projects in Optics Applications Workbook Created by the technical staff of Newport Corporation with the assistance of Dr. Donald C. O Shea of the School of Physics at the Georgia Institute of Technology.

More information

Optical Coherence: Recreation of the Experiment of Thompson and Wolf

Optical Coherence: Recreation of the Experiment of Thompson and Wolf Optical Coherence: Recreation of the Experiment of Thompson and Wolf David Collins Senior project Department of Physics, California Polytechnic State University San Luis Obispo June 2010 Abstract The purpose

More information

SUBJECT: PHYSICS. Use and Succeed.

SUBJECT: PHYSICS. Use and Succeed. SUBJECT: PHYSICS I hope this collection of questions will help to test your preparation level and useful to recall the concepts in different areas of all the chapters. Use and Succeed. Navaneethakrishnan.V

More information

Physics 202, Lecture 28

Physics 202, Lecture 28 Physics 202, Lecture 28 Today s Topics Michelson Interferometer iffraction Single Slit iffraction Multi-Slit Interference iffraction on Circular Apertures The Rayleigh Criterion Wave Superposition Using

More information

Tuesday, Nov. 9 Chapter 12: Wave Optics

Tuesday, Nov. 9 Chapter 12: Wave Optics Tuesday, Nov. 9 Chapter 12: Wave Optics We are here Geometric optics compared to wave optics Phase Interference Coherence Huygens principle & diffraction Slits and gratings Diffraction patterns & spectra

More information

Lecture Outline Chapter 28. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 28. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 28 Physics, 4 th Edition James S. Walker Chapter 28 Physical Optics: Interference and Diffraction Units of Chapter 28 Superposition and Interference Young s Two-Slit Experiment

More information

Interference and Diffraction of Microwaves

Interference and Diffraction of Microwaves Interference and Diffraction of Microwaves References: Equipment: Ford, Kenneth W., Classical and Modern Physics Vol2 Xerox College Publishing 1972 pp. 850-871. Pasco Instruction Manual and Experiment

More information

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS 3B SCIENTIFIC PHYSICS Equipment Set for Wave Optics with Laser U17303 Instruction sheet 10/08 Alf 1. Safety instructions The laser emits visible radiation at a wavelength of 635 nm with a maximum power

More information

Chapter 25. Optical Instruments

Chapter 25. Optical Instruments Chapter 25 Optical Instruments Optical Instruments Analysis generally involves the laws of reflection and refraction Analysis uses the procedures of geometric optics To explain certain phenomena, the wave

More information

Chapter 16 Light Waves and Color

Chapter 16 Light Waves and Color Chapter 16 Light Waves and Color Lecture PowerPoint Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. What causes color? What causes reflection? What causes color?

More information

Radial Polarization Converter With LC Driver USER MANUAL

Radial Polarization Converter With LC Driver USER MANUAL ARCoptix Radial Polarization Converter With LC Driver USER MANUAL Arcoptix S.A Ch. Trois-portes 18 2000 Neuchâtel Switzerland Mail: info@arcoptix.com Tel: ++41 32 731 04 66 Principle of the radial polarization

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Mechanical Engineering Department. 2.71/2.710 Final Exam. May 21, Duration: 3 hours (9 am-12 noon)

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Mechanical Engineering Department. 2.71/2.710 Final Exam. May 21, Duration: 3 hours (9 am-12 noon) MASSACHUSETTS INSTITUTE OF TECHNOLOGY Mechanical Engineering Department 2.71/2.710 Final Exam May 21, 2013 Duration: 3 hours (9 am-12 noon) CLOSED BOOK Total pages: 5 Name: PLEASE RETURN THIS BOOKLET WITH

More information

The diffraction of light

The diffraction of light 7 The diffraction of light 7.1 Introduction As introduced in Chapter 6, the reciprocal lattice is the basis upon which the geometry of X-ray and electron diffraction patterns can be most easily understood

More information

Sensitive measurement of partial coherence using a pinhole array

Sensitive measurement of partial coherence using a pinhole array 1.3 Sensitive measurement of partial coherence using a pinhole array Paul Petruck 1, Rainer Riesenberg 1, Richard Kowarschik 2 1 Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07747 Jena,

More information

Mach Zehnder Interferometer Apparatus:

Mach Zehnder Interferometer Apparatus: Mach Zehnder Interferometer Apparatus: Parts for Interferometer: 1.) Breadboard 12 x24 $282 Quantity:1 http://www.thorlabs.com/thorproduct.cfm?partnumber=mb1224 2.) 2 Kinematic Optics Mount $75 Quantity:

More information

Prac%ce Quiz 2. These are Q s from old quizzes. I do not guarantee that the Q s on this year s quiz will be the same, or even similar.

Prac%ce Quiz 2. These are Q s from old quizzes. I do not guarantee that the Q s on this year s quiz will be the same, or even similar. Prac%ce Quiz 2 These are Q s from old quizzes. I do not guarantee that the Q s on this year s quiz will be the same, or even similar. A laser beam shines vertically upwards. What laser power is needed

More information

28 The diagram shows an experiment which has been set up to demonstrate two-source interference, using microwaves of wavelength λ.

28 The diagram shows an experiment which has been set up to demonstrate two-source interference, using microwaves of wavelength λ. PhysicsndMathsTutor.com 28 The diagram shows an experiment which has been set up to demonstrate two-source interference, using microwaves of wavelength λ. 9702/1/M/J/02 X microwave transmitter S 1 S 2

More information

N.N.Soboleva, S.M.Kozel, G.R.Lockshin, MA. Entin, K.V. Galichsky, P.L. Lebedinsky, P.M. Zhdanovich. Moscow Institute ofphysics and Technology

N.N.Soboleva, S.M.Kozel, G.R.Lockshin, MA. Entin, K.V. Galichsky, P.L. Lebedinsky, P.M. Zhdanovich. Moscow Institute ofphysics and Technology Computer assisted optics teaching at the Moscow Institute ofphysics and Technology N.N.Soboleva, S.M.Kozel, G.R.Lockshin, MA. Entin, K.V. Galichsky, P.L. Lebedinsky, P.M. Zhdanovich Moscow Institute ofphysics

More information

Physics 248 Spring 2009 Lab 1: Interference and Diffraction

Physics 248 Spring 2009 Lab 1: Interference and Diffraction Name Section Physics 248 Spring 2009 Lab 1: Interference and Diffraction Your TA will use this sheet to score your lab. It is to be turned in at the end of lab. You must clearly explain your reasoning

More information

ADVANCED OPTICS LAB -ECEN 5606

ADVANCED OPTICS LAB -ECEN 5606 ADVANCED OPTICS LAB -ECEN 5606 Basic Skills Lab Dr. Steve Cundiff and Edward McKenna, 1/15/04 rev KW 1/15/06, 1/8/10 The goal of this lab is to provide you with practice of some of the basic skills needed

More information

The Wave Nature of Light

The Wave Nature of Light The Wave Nature of Light Physics 102 Lecture 7 4 April 2002 Pick up Grating & Foil & Pin 4 Apr 2002 Physics 102 Lecture 7 1 Light acts like a wave! Last week we saw that light travels from place to place

More information

Diffraction. modern investigations date from Augustin Fresnel

Diffraction. modern investigations date from Augustin Fresnel Diffraction Diffraction controls the detail you can see in optical instruments, makes holograms, diffraction gratings and much else possible, explains some natural phenomena Diffraction was discovered

More information

Why is There a Black Dot when Defocus = 1λ?

Why is There a Black Dot when Defocus = 1λ? Why is There a Black Dot when Defocus = 1λ? W = W 020 = a 020 ρ 2 When a 020 = 1λ Sag of the wavefront at full aperture (ρ = 1) = 1λ Sag of the wavefront at ρ = 0.707 = 0.5λ Area of the pupil from ρ =

More information

Observational Astronomy

Observational Astronomy Observational Astronomy Instruments The telescope- instruments combination forms a tightly coupled system: Telescope = collecting photons and forming an image Instruments = registering and analyzing the

More information

Physics 4C. Chapter 36: Diffraction. Diffraction. Diffraction. Diffraction

Physics 4C. Chapter 36: Diffraction. Diffraction. Diffraction. Diffraction Physics 4C Diffraction Chapter 36: Diffraction Slide 1 Slide 2 Slide 3 Slide 4 Slide 5 Slide 6 Slide 7 Slide 8 Slide 9 Slide 10 Slide 11 Slide 12 Slide 13 Slide 14 Slide 15 Slide 16 Slide 17 Slide 18 Slide

More information

Phy Ph s y 102 Lecture Lectur 22 Interference 1

Phy Ph s y 102 Lecture Lectur 22 Interference 1 Phys 102 Lecture 22 Interference 1 Physics 102 lectures on light Light as a wave Lecture 15 EM waves Lecture 16 Polarization Lecture 22 & 23 Interference& diffraction Light as a ray Lecture 17 Introduction

More information

3.0 Alignment Equipment and Diagnostic Tools:

3.0 Alignment Equipment and Diagnostic Tools: 3.0 Alignment Equipment and Diagnostic Tools: Alignment equipment The alignment telescope and its use The laser autostigmatic cube (LACI) interferometer A pin -- and how to find the center of curvature

More information

PES 2130 Fall 2014, Spendier Lecture 23/Page 1

PES 2130 Fall 2014, Spendier Lecture 23/Page 1 PS 13 Fall 14, Spendier Lecture 3/Page 1 Lecture today: Chapter 35 Interference 1) Intensity in Double-Slit Interference ) Thin Film Interference Announcements: - Shortened office hours this Thursday (1-1:3am).

More information

Chapter 17 Waves in Two and Three Dimensions

Chapter 17 Waves in Two and Three Dimensions Chapter 17 Waves in Two and Three Dimensions Slide 17-1 Chapter 17: Waves in Two and Three Dimensions Concepts Slide 17-2 Section 17.1: Wavefronts The figure shows cutaway views of a periodic surface wave

More information

Experimental Question 2: An Optical Black Box

Experimental Question 2: An Optical Black Box Experimental Question 2: An Optical Black Box TV and computer screens have advanced significantly in recent years. Today, most displays consist of a color LCD filter matrix and a uniform white backlight

More information

Industrial Fiber Optics

Industrial Fiber Optics Industrial Fiber Optics PHYSICAL OPTICS USING A HELIUM-NEON LASER Copyright 2009 by Industrial Fiber Optics Inc. IFO 45-788 February 2009 TABLE OF CONTENTS Safety Notes... 3 Preface and Introduction...

More information

Lab in a Box Microwave Interferometer

Lab in a Box Microwave Interferometer In 1887 Michelson and Morley used an optical interferometer (a device invented by Michelson to accurately detect aether flow) to try and detect the relative motion of light through the luminous either.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Optically reconfigurable metasurfaces and photonic devices based on phase change materials S1: Schematic diagram of the experimental setup. A Ti-Sapphire femtosecond laser (Coherent Chameleon Vision S)

More information

PHYS320(O) ilab Experiment 4 Instructions Diffraction and Interference: Measurement of the Wavelength of Light

PHYS320(O) ilab Experiment 4 Instructions Diffraction and Interference: Measurement of the Wavelength of Light Objective: PHYS320(O) ilab Experiment 4 Instructions Diffraction and Interference: Measurement of the Wavelength of Light The purpose of this activity is to determine the wavelength of the light emitted

More information

Mirrors and Lenses. Images can be formed by reflection from mirrors. Images can be formed by refraction through lenses.

Mirrors and Lenses. Images can be formed by reflection from mirrors. Images can be formed by refraction through lenses. Mirrors and Lenses Images can be formed by reflection from mirrors. Images can be formed by refraction through lenses. Notation for Mirrors and Lenses The object distance is the distance from the object

More information

MECH 6491 Engineering Metrology and Measurement Systems. Lecture 4 Cont d. Instructor: N R Sivakumar

MECH 6491 Engineering Metrology and Measurement Systems. Lecture 4 Cont d. Instructor: N R Sivakumar MECH 6491 Engineering Metrology and Measurement Systems Lecture 4 Cont d Instructor: N R Sivakumar 1 Light Polarization In 1669, Huygens studied light through a calcite crystal observed two rays (birefringence).

More information

Experimental Competition

Experimental Competition 37 th International Physics Olympiad Singapore 8 17 July 2006 Experimental Competition Wed 12 July 2006 Experimental Competition Page 2 List of apparatus and materials Label Component Quantity Label Component

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY. 2.71/2.710 Optics Spring 14 Practice Problems Posted May 11, 2014

MASSACHUSETTS INSTITUTE OF TECHNOLOGY. 2.71/2.710 Optics Spring 14 Practice Problems Posted May 11, 2014 MASSACHUSETTS INSTITUTE OF TECHNOLOGY 2.71/2.710 Optics Spring 14 Practice Problems Posted May 11, 2014 1. (Pedrotti 13-21) A glass plate is sprayed with uniform opaque particles. When a distant point

More information

Lecture 21. Physics 1202: Lecture 21 Today s Agenda

Lecture 21. Physics 1202: Lecture 21 Today s Agenda Physics 1202: Lecture 21 Today s Agenda Announcements: Team problems today Team 14: Gregory Desautels, Benjamin Hallisey, Kyle Mcginnis Team 15: Austin Dion, Nicholas Gandza, Paul Macgillis-Falcon Homework

More information

6 Experiment II: Law of Reflection

6 Experiment II: Law of Reflection Lab 6: Microwaves 3 Suggested Reading Refer to the relevant chapters, 1 Introduction Refer to Appendix D for photos of the apparatus This lab allows you to test the laws of reflection, refraction and diffraction

More information

Lab 10 - MICROWAVE AND LIGHT INTERFERENCE

Lab 10 - MICROWAVE AND LIGHT INTERFERENCE 179 Name Date Partners Lab 10 - MICROWAVE AND LIGHT INTERFERENCE Amazing pictures of the microwave radiation from the universe have helped us determine the universe is 13.7 billion years old. This picture

More information