RECONNAISSANCE PAYLOADS FOR RESPONSIVE SPACE

Size: px
Start display at page:

Download "RECONNAISSANCE PAYLOADS FOR RESPONSIVE SPACE"

Transcription

1 3rd Responsive Space Conference RS RECONNAISSANCE PAYLOADS FOR RESPONSIVE SPACE Charles Cox Stanley Kishner Richard Whittlesey Goodrich Optical and Space Systems Division Danbury, CT Frederick Gilligan Goodrich Optical and Space Systems Division Chelmsford, MA 3rd Responsive Space Conference April 25 28, 2005 Los Angeles, CA

2 RECONNAISSANCE PAYLOADS FOR RESPONSIVE SPACE Charles Cox, Stanley Kishner, Richard Whittlesey Goodrich Optical and Space Systems Division, Danbury, CT Frederick Gilligan Goodrich Optical and Space Systems Division, Chelmsford, MA AIAA-RS Abstract Operationally responsive Electro-Optical (EO) imaging capability exists and is routinely used to provide intelligence information to the tactical war fighter. This capability is provided by Goodrich Reconnaissance systems having plug and play interfaces to strategic (i.e., U-2) and tactical airborne platforms. These operational systems have visible, IR and multispectral capability, and the resulting data readily interface into an existing infrastructure providing timely information to theater commanders. These airborne operational systems can be modified to provide reconnaissance capabilities from space to support the Operationally Responsive Space (ORS) vision. This paper describes these systems, summarizes some of the utility provided by them, and discusses hardware modifications and operational scenarios consistent with lowcost mission requirements. This approach, the modification of existing airborne operationally responsive EO imaging systems, provides a low cost alternative to top-down special-purpose development and leverages a continually evolving product stream to provide ORS payloads. Goodrich Reconnaissance Background Goodrich Optical and Space Systems Division (OSSD) is a pioneer in modern reconnaissance. Our heritage over the last 45 years began with the design and manufacture of the cameras for the world s first spaceborne photo-reconnaissance satellite, CORONA. This legacy of Goodrich success in space continues to the present, with examples including the Multispectral Thermal Imager, the x-ray telescope used on NASA s Chandra Observatory, star trackers and other space payloads. We continue to excel in development of special purpose EO payloads and subsystems for demanding space applications. As a leader in airborne reconnaissance, Goodrich EO sensors have provided strategic intelligence collection on the U-2 platform since its inception. Goodrich SYERS-2, a state-of-the-art multispectral sensor, is the Air Force s most advanced real-time long-range EO sensor. We have continually provided enhanced capabilities through successive generations of SYERS sensors. Our DB-110 Dual-Band Reconnaissance System is the newest airborne sensor from Goodrich. Combining visible and infrared imaging capabilities in a compact, lightweight design, this system has proven its performance day and night operationally and in demonstrations worldwide. Goodrich offers a full turnkey capability, including aircraft integration, mission planning, real-time communications, ground stations, image processing and exploitation as well as training and long-term logistical support. Combining Goodrich technologies and capabilities for space payload systems with our continually evolving operational airborne sensor line can provide low-cost payload solutions meeting Operationally Responsive Space objectives. Copyright 2005 by Goodrich Corporation. Published by AIAA 3 rd Responsive Space Conference with permission. 1

3 Airborne Sensor Overview The legacy Goodrich operational sensor developed for use in the U-2 is the Senior Year Electro-Optical Reconnaissance System (SYERS) sensor shown in Figure 1. This multi-spectral sensor system has seven imaging channels, allowing daytime and nighttime intelligence gathering. The SYERS sensor mounts internal to the U-2 aricraft via mechanical, electrical, and data interfaces supporting interchangability with the Synthetic Aperture Radar (SAR) sensor system. pinpoint targeting, tracking, and stereo imaging modes. From its typical altitude, it produces images better than NIIRS-7 at Nadir. [Image quality is quantified using the National Imagery Interpretability Rating Scale (NIIRS) 1,2, which relates the quality of an image to the interpretation tasks that image analysts are asked to do.] Goodrich recently developed the DB-110 sensor as a derivative of SYERS. With a smaller aperture than SYERS, this lightweight sensor is designed for use on tactical aircraft, and is offered in a pod-mounted configuration. This sensor system, shown in Figure 2, has been flying since 1997 and consists of a 2-axis gimbaled sensor, stabilized in pitch and roll, providing simultaneous operation in visible and infrared wavelengths. It has long focal length optics for high altitude standoff operation in both visible and IR wavelengths. Figure 1. The SYERS Sensor System Integrates Internal to the U-2 Nose The Goodrich SYERS sensor combines the information from 3 spectral bands into one color image. It currently has three baseline MSI products: All Visible Composite (Pan, Red, Green) All Infrared Composite (MWIR, SWIR1, SWIR2) Mixed Channel Composite (SWIR, Green, Pan) These bands support various intelligence tasks, such as discrimination of man-made from natural materials, camouflage identification and detection, identification of active vehicles and aircraft due to their increased thermal signature, moving Target Indication (EO-MTI), and water penetration. The SYERS sensor has a two-axis gimbal providing precison pointing along-track and cross-track for target selection in search, Figure 2. The DB-110 System Fits Within a Pod Attached to Tactical Fighter Aircraft 2

4 Goodrich integrates and delivers a complete reconnaissance system in an aircraft pod that attaches to tactical fighter aircraft via standard structural, electrical and data interfaces. In addition to the DB-110 sensor itself, this Goodrich pod system includes the sensor electronics, data recorder, data link, power distribution and environmental control system and a Reconnaissance Management System (RMS) that controls all operations of the podded equipment. The RMS is configured to operate with MIL-STD 1553B and MIL-STD 1760 interfaces. The Goodrich reconnaissance pod comprises all the structural, electrical, and communications functions of a spaceborne payload. Goodrich also provides a mobile ground station with capability for image processing and exploitation. Operational Concept for ORS The basic operational concept is to provide the tactical theater commander EO intelligence from space using assets proven in airborne operations, and using existing command and control infrastructure. The responsive space goals are to provide tactical feedback in the shortest possible time to field commanders and ultimately provide imagery on demand to enable near real time actions to be accomplished. Orbital parameters are chosen to optimize coverage of the target area of interest. More than one spacecraft may be used to further improve coverage. Imaging is performed when the target area is approximately within 30 degrees of nadir. This preserves the design ground resolution, and avoids the deleterious effects of haze on image quality. From an altitude of 300 km, this condition is satisfied for about 45 seconds of the orbit for any given target location. (Opening up the field-ofregard beyond 30 degrees can increase coverage at the cost of lower image quality.) From a 300 km orbit there are approximately 8 minutes of direct line-of-sight access to a ground station located in theater. Once the communication link is established, tasking commands are uplinked, providing coordinates of targets to be imaged. The onboard processor converts target coordinates to spacecraft pointing requirements based on current INS and GPS information. By using an agile spacecraft, the targets can be collected for a region from nadir to ±30 degrees, both along-track and cross-track. Once the first target region is encountered, the on-board processor will collect the required imagery, format the imagery and begin downlinking the data on a high-speed communications link. This approach includes a ground station in theater to accept the imagery and complete any additional image processing. The data can be viewed on monitors, transmitted to laptop computers for display and/or printed in hard copy for delivery in the field. All of this is accomplished over an approximate 8-minute time interval. In the event there is a communications problem, the data will also be recorded on-board so that it can be downloaded in the next pass. Utility from Low Earth Orbit Either the SYERS or DB-110 sensor, modified for space operation, can provide a ground sample distance (GSD) of 1 meter from an altitude of 300 km. Ground Sample Distance (GSD) is a common measure of the resolution provided by an optical system. For example, commercial remote sensing systems typically quantify their performance in terms of GSD, which is the projection onto the ground of the pixel-to-pixel spacing in the focal plane detector. Therefore, measurements of the ground are acquired on a periodic grid, where the sampleto-sample spacing is equal to the GSD. The actual informational content derived from an imaging system is more complex. Generally, the focal plane detector is designed so that the point spread function (i.e., image blur) generated by imaging optics is spanned by two 3

5 pixels, allowing one to resolve object features measuring twice the GSD. The GSD as a function of altitude is plotted in Figure 3 for a DB-110 derivative space EO sensor. GSD (meters) Imagery from a DB-110 derivative system from a 300 km altitude will be NIIRS 4.5, as shown in Figure 4. Coverage of the desired theater would be optimized by choice of orbit parameters and number of sensors/spacecraft. If imaging is restricted to within 30 degrees of the nadir ground track, a 330-km-wide region is accessible as the spacecraft passes over the target area. The EO sensor can scan out swaths that are between 6 and 10 km wide. The length of the image swath would be a function of the particular target Altitude (km) Figure 3. GSD vs Altitude for a DB-110 Derivative EO Imager Figure 4. Extrapolated NIIRS-4.5 Imagery for DB-110 Derivative EO Sensor at 300 km Altitude 4

6 During the available (nominally 45 seconds) imaging time, multiple swaths can be collected at various along- and cross-track locations, with the image data transmitted to an in-theater ground station. The maximum area coverage, assuming no time for repointing (either with a gimbal or by slewing the spacecraft), is between 1200 and 2000 square kilometers per minute. Considering re-pointing, however, we would expect to collect less than 1000 square kilometers of imagery for a collection time of 45 seconds. Assuming 10 bits per pixel, the uncompressed data associated with 1000 square kilometers of imagery can be transmitted to the ground, over a 274 Mbit/sec communications link, in under 40 seconds. Modification for Space Goodrich has been engaged for decades in the development and production of high quality spaceborne EO sensors for a wide variety of applications. These include star trackers, earth sensors, and ultraviolet, visible and infrared telescopes. A recent example of one of Goodrich OSSD s custom-developed Space payloads is the Multispectral Imaging System (MTI) launched in early 2000, pictured in Figures 5 and 6. MTI included an unobscured 3-mirror anastigmat telescope plus a sophisticated, high-accuracy absolute and relative radiometric calibration system. The 30 cm aperture, wide-field-of-view sensor provides imagery over the wide spectral range from visible through long wavelength infrared. Another example of Goodrich technology and infrastructure for spaceborne EO systems is our product line for high quality star trackers and attitude sensors. We build and deliver an average of 12 of these EO systems every year, each one consisting of the opto-mechanical telescope, focal plane, electronics, and software. Goodrich star trackers are shown in Figure 7. Figure 5. The MTI Satellite Provides Detailed Multi-spectral Images of Ground Targets Figure 6. Goodrich Developed and Delivered the MTI Payload Figure 7. Goodrich Star Trackers are Used on a Variety of Spacecraft 5

7 The technologies and capabilities used to develop, build, qualify, and deliver this payload system can be applied to our Airborne sensor line to achieve the Responsive Space Surveillance objective. The main adaptation required to the DB-110 or SYERS sensor system for responsive space is associated with the electronics. The functionality and architecture must be implemented with parts and processes compatible with the vacuum environment, which influences the means by which the electronics are cooled, and the choice of non-outgassing materials. Additionally, the modified design must provide power consumption compatible with available lowcost spacecraft busses. We estimate an orbital average power of under 200 watts for a modified SYERS or DB-110 sensor. Depending on the capabilities of the host spacecraft, the self-contained pointing and stabilization capability of the airborne sensors may be eliminated. By utilizing an agile spacecraft, the sensor mass can be kept to under 180 kg. Summary Existing high acuity airborne reconnaissance sensor designs and manufacturing infrastructure can be leveraged to deliver low-cost space EO sensors that meet the needs of Responsive Space. Modification of existing Goodrich sensors for use in space preserves their legacy of quality and reliability while minimizing the need for investment in new designs, tooling and facilities. References 1 J.C. Leachtenauer, et. al. General Image- Quality Equation: GIQE. Applied Optics 36, pp (1997). 2. L.A. Maver, et. al. Imagery Interpretability Rating Scales, in Digest of Technical Papers: International Symposium of the Society for Information Display (Society for Information Display, Santa Ana, CA, 1995), vol. 26, pp

Reconnaissance Payloads for Responsive Space

Reconnaissance Payloads for Responsive Space 4th Responsive Space Conference RS4-2006-5003 Reconnaissance Payloads for Responsive Space Stanley Kishner, David Flynn, Charles Cox Goodrich Optical and Space Systems Division Danbury, CT 4th Responsive

More information

Remote Sensing Platforms

Remote Sensing Platforms Types of Platforms Lighter-than-air Remote Sensing Platforms Free floating balloons Restricted by atmospheric conditions Used to acquire meteorological/atmospheric data Blimps/dirigibles Major role - news

More information

HALS-H1 Ground Surveillance & Targeting Helicopter

HALS-H1 Ground Surveillance & Targeting Helicopter ARATOS-SWISS Homeland Security AG & SMA PROGRESS, LLC HALS-H1 Ground Surveillance & Targeting Helicopter Defense, Emergency, Homeland Security (Border Patrol, Pipeline Monitoring)... Automatic detection

More information

MR-i. Hyperspectral Imaging FT-Spectroradiometers Radiometric Accuracy for Infrared Signature Measurements

MR-i. Hyperspectral Imaging FT-Spectroradiometers Radiometric Accuracy for Infrared Signature Measurements MR-i Hyperspectral Imaging FT-Spectroradiometers Radiometric Accuracy for Infrared Signature Measurements FT-IR Spectroradiometry Applications Spectroradiometry applications From scientific research to

More information

MR-i. Hyperspectral Imaging FT-Spectroradiometers Radiometric Accuracy for Infrared Signature Measurements

MR-i. Hyperspectral Imaging FT-Spectroradiometers Radiometric Accuracy for Infrared Signature Measurements MR-i Hyperspectral Imaging FT-Spectroradiometers Radiometric Accuracy for Infrared Signature Measurements FT-IR Spectroradiometry Applications Spectroradiometry applications From scientific research to

More information

Compact High Resolution Imaging Spectrometer (CHRIS) siraelectro-optics

Compact High Resolution Imaging Spectrometer (CHRIS) siraelectro-optics Compact High Resolution Imaging Spectrometer (CHRIS) Mike Cutter (Mike_Cutter@siraeo.co.uk) Summary CHRIS Instrument Design Instrument Specification & Performance Operating Modes Calibration Plan Data

More information

Japanese Advanced Meteorological Imager: A Next Generation GEO Imager for MTSAT-1R

Japanese Advanced Meteorological Imager: A Next Generation GEO Imager for MTSAT-1R Japanese Advanced Meteorological Imager: A Next Generation GEO Imager for MTSAT-1R Jeffery J. Puschell 1 Raytheon Electronic Systems, Santa Barbara Remote Sensing ABSTRACT The Japanese Advanced Meteorological

More information

Wind Imaging Spectrometer and Humidity-sounder (WISH): a Practical NPOESS P3I High-spatial Resolution Sensor

Wind Imaging Spectrometer and Humidity-sounder (WISH): a Practical NPOESS P3I High-spatial Resolution Sensor Wind Imaging Spectrometer and Humidity-sounder (WISH): a Practical NPOESS P3I High-spatial Resolution Sensor Jeffery J. Puschell Raytheon Space and Airborne Systems, El Segundo, California Hung-Lung Huang

More information

Geospatial Vision and Policies Korean Industry View 26 November, 2014 SI Imaging Services

Geospatial Vision and Policies Korean Industry View 26 November, 2014 SI Imaging Services Geospatial Vision and Policies Korean Industry View 26 November, 2014 SI Imaging Services Distribution Limitation, SI Imaging Services Proprietary Data : The data contained in this document, without the

More information

Advanced Optical Satellite (ALOS-3) Overviews

Advanced Optical Satellite (ALOS-3) Overviews K&C Science Team meeting #24 Tokyo, Japan, January 29-31, 2018 Advanced Optical Satellite (ALOS-3) Overviews January 30, 2018 Takeo Tadono 1, Hidenori Watarai 1, Ayano Oka 1, Yousei Mizukami 1, Junichi

More information

HYPERCUBE: Hyperspectral Imaging Using a CUBESAT

HYPERCUBE: Hyperspectral Imaging Using a CUBESAT HYPERCUBE: Hyperspectral Imaging Using a CUBESAT Ian S. Robinson Senior Engineering Fellow Raytheon Certified Architect Ian.Robinson@Raytheon.com Customer Success Is Our Mission Copyright 2011 Raytheon

More information

FORMOSAT-5. - Launch Campaign-

FORMOSAT-5. - Launch Campaign- 1 FORMOSAT-5 - Launch Campaign- FORMOSAT-5 Launch Campaign 2 FORMOSAT-5 Launch Campaign Launch Date: 2017.08.24 U.S. Pacific Time Activities 11:50-12:23 Launch Window 13:30-16:00 Reception 3 FORMOSAT-5

More information

Mission requirements and satellite overview

Mission requirements and satellite overview Mission requirements and satellite overview E. BOUSSARIE 1 Dual concept Users need Defence needs Fulfil the Defence needs on confidentiality and security Civilian needs Fulfillment of the different needs

More information

Abstract Quickbird Vs Aerial photos in identifying man-made objects

Abstract Quickbird Vs Aerial photos in identifying man-made objects Abstract Quickbird Vs Aerial s in identifying man-made objects Abdullah Mah abdullah.mah@aramco.com Remote Sensing Group, emap Division Integrated Solutions Services Department (ISSD) Saudi Aramco, Dhahran

More information

Remote Sensing Platforms

Remote Sensing Platforms Remote Sensing Platforms Remote Sensing Platforms - Introduction Allow observer and/or sensor to be above the target/phenomena of interest Two primary categories Aircraft Spacecraft Each type offers different

More information

CubeSat Integration into the Space Situational Awareness Architecture

CubeSat Integration into the Space Situational Awareness Architecture CubeSat Integration into the Space Situational Awareness Architecture Keith Morris, Chris Rice, Mark Wolfson Lockheed Martin Space Systems Company 12257 S. Wadsworth Blvd. Mailstop S6040 Littleton, CO

More information

PRODUCT OVERVIEW FOR THE. Corona 350 II FLIR SYSTEMS POLYTECH AB

PRODUCT OVERVIEW FOR THE. Corona 350 II FLIR SYSTEMS POLYTECH AB PRODUCT OVERVIEW FOR THE Corona 350 II FLIR SYSTEMS POLYTECH AB Table of Contents Table of Contents... 1 Introduction... 2 Overview... 2 Purpose... 2 Airborne Data Acquisition and Management Software (ADAMS)...

More information

An Introduction to Geomatics. Prepared by: Dr. Maher A. El-Hallaq خاص بطلبة مساق مقدمة في علم. Associate Professor of Surveying IUG

An Introduction to Geomatics. Prepared by: Dr. Maher A. El-Hallaq خاص بطلبة مساق مقدمة في علم. Associate Professor of Surveying IUG An Introduction to Geomatics خاص بطلبة مساق مقدمة في علم الجيوماتكس Prepared by: Dr. Maher A. El-Hallaq Associate Professor of Surveying IUG 1 Airborne Imagery Dr. Maher A. El-Hallaq Associate Professor

More information

EPS Bridge Low-Cost Satellite

EPS Bridge Low-Cost Satellite EPS Bridge Low-Cost Satellite Results of a Concept Study being performed for Dr. Hendrik Lübberstedt OHB-System AG OpSE Workshop Walberberg 8th November 2005 EPS Bridge Key System Requirements Minimum

More information

OVERVIEW OF KOMPSAT-3A CALIBRATION AND VALIDATION

OVERVIEW OF KOMPSAT-3A CALIBRATION AND VALIDATION OVERVIEW OF KOMPSAT-3A CALIBRATION AND VALIDATION DooChun Seo 1, GiByeong Hong 1, ChungGil Jin 1, DaeSoon Park 1, SukWon Ji 1 and DongHan Lee 1 1 KARI(Korea Aerospace Space Institute), 45, Eoeun-dong,

More information

OVERVIEW OF THE ALOS SATELLITE SYSTEM

OVERVIEW OF THE ALOS SATELLITE SYSTEM OVERVIEW OF THE ALOS SATELLITE SYSTEM Presented to The Symposium for ALOS Data Application Users @Kogakuin University, Tokyo, Japan Mar. 27, 2001 Takashi Hamazaki Senior Engineer ALOS Project National

More information

Introduction to KOMPSAT

Introduction to KOMPSAT Introduction to KOMPSAT September, 2016 1 CONTENTS 01 Introduction of SIIS 02 KOMPSAT Constellation 03 New : KOMPSAT-3 50 cm 04 New : KOMPSAT-3A 2 KOMPSAT Constellation KOMPSAT series National space program

More information

Microsatellite Constellation for Earth Observation in the Thermal Infrared Region

Microsatellite Constellation for Earth Observation in the Thermal Infrared Region Microsatellite Constellation for Earth Observation in the Thermal Infrared Region Federico Bacci di Capaci Nicola Melega, Alessandro Tambini, Valentino Fabbri, Davide Cinarelli Observation Index 1. Introduction

More information

TopSat: Brief to Ground Segment Coordination. Presenter Ian Pilling. By : W.A. Levett. Co author: E.J. Baxter.

TopSat: Brief to Ground Segment Coordination. Presenter Ian Pilling. By : W.A. Levett. Co author: E.J. Baxter. TopSat: Brief to Ground Segment Coordination Board Presenter Ian Pilling By : W.A. Levett Co author: E.J. Baxter Contents Space Division overview The TopSat mission Overview Development Programme Launch

More information

US Commercial Imaging Satellites

US Commercial Imaging Satellites US Commercial Imaging Satellites In the early 1990s, Russia began selling 2-meter resolution product from its archives of collected spy satellite imagery. Some of this product was down-sampled to provide

More information

Relative Cost and Performance Comparison of GEO Space Situational Awareness Architectures

Relative Cost and Performance Comparison of GEO Space Situational Awareness Architectures Relative Cost and Performance Comparison of GEO Space Situational Awareness Architectures Background Keith Morris Lockheed Martin Space Systems Company Chris Rice Lockheed Martin Space Systems Company

More information

KOMPSAT Constellation. November 2012 Satrec Initiative

KOMPSAT Constellation. November 2012 Satrec Initiative KOMPSAT Constellation November 2012 Satrec Initiative KOMPSAT Constellation KOMPSAT National program Developed and operated by KARI (Korea Aerospace Research Institute) Dual use : Government & commercial

More information

Changing the economics of space. Redefining the word Responsive in Operationally Responsive Space

Changing the economics of space. Redefining the word Responsive in Operationally Responsive Space Changing the economics of space Redefining the word Responsive in Operationally Responsive Space Dr. Stuart Eves s.eves@sstl.co.uk SSTL February 2009 Defining Responsive Responsive means flexible and agile,

More information

METimage an innovative imaging radiometer for Post-EPS

METimage an innovative imaging radiometer for Post-EPS METimage an innovative imaging radiometer for Post-EPS Dr. Christian Brüns 1, Dr. Matthias Alpers 1, Dr. Alexander Pillukat 2 1 DLR German Space Agency, Königswinterer Straße 522-524, D-53227 Bonn, Germany

More information

Module 3 Introduction to GIS. Lecture 8 GIS data acquisition

Module 3 Introduction to GIS. Lecture 8 GIS data acquisition Module 3 Introduction to GIS Lecture 8 GIS data acquisition GIS workflow Data acquisition (geospatial data input) GPS Remote sensing (satellites, UAV s) LiDAR Digitized maps Attribute Data Management Data

More information

A 1m Resolution Camera For Small Satellites

A 1m Resolution Camera For Small Satellites A 1m Resolution Camera For Small Satellites Paper SSC06-X-5 Presenter: Jeremy Curtis 1 Introduction TopSat launched October 2005 carrying RAL s 2.5m GSD camera into a 686km orbit Built and operated by

More information

detected by Himawari-8 then the location will be uplinked to approaching Cubesats as an urgent location for medium resolution imaging.

detected by Himawari-8 then the location will be uplinked to approaching Cubesats as an urgent location for medium resolution imaging. Title: Cubesat constellation for monitoring and detection of bushfires in Australia Primary Point of Contact (POC) & email: siddharth.doshi2@gmail.com Co-authors: Siddharth Doshi, David Lam, Himmat Panag

More information

The studies began when the Tiros satellites (1960) provided man s first synoptic view of the Earth s weather systems.

The studies began when the Tiros satellites (1960) provided man s first synoptic view of the Earth s weather systems. Remote sensing of the Earth from orbital altitudes was recognized in the mid-1960 s as a potential technique for obtaining information important for the effective use and conservation of natural resources.

More information

Design of a Free Space Optical Communication Module for Small Satellites

Design of a Free Space Optical Communication Module for Small Satellites Design of a Free Space Optical Communication Module for Small Satellites Ryan W. Kingsbury, Kathleen Riesing Prof. Kerri Cahoy MIT Space Systems Lab AIAA/USU Small Satellite Conference August 6 2014 Problem

More information

Compact Dual Field-of-View Telescope for Small Satellite Payloads

Compact Dual Field-of-View Telescope for Small Satellite Payloads Compact Dual Field-of-View Telescope for Small Satellite Payloads James C. Peterson Space Dynamics Laboratory 1695 North Research Park Way, North Logan, UT 84341; 435-797-4624 Jim.Peterson@sdl.usu.edu

More information

Consumer digital CCD cameras

Consumer digital CCD cameras CAMERAS Consumer digital CCD cameras Leica RC-30 Aerial Cameras Zeiss RMK Zeiss RMK in aircraft Vexcel UltraCam Digital (note multiple apertures Lenses for Leica RC-30. Many elements needed to minimize

More information

The Challenge. SPOT Vegetation. miniaturization. Proba Vegetation. Technology assessment:

The Challenge. SPOT Vegetation. miniaturization. Proba Vegetation. Technology assessment: The Challenge Spot-5 lifetime expires in 2012. The next French satellite, Pleiades, is solely dedicated to HiRes. The Belgian Federal Science Policy Office (BELSPO) declared their interest to develop an

More information

9/12/2011. Training Course Remote Sensing Basic Theory & Image Processing Methods September 2011

9/12/2011. Training Course Remote Sensing Basic Theory & Image Processing Methods September 2011 Training Course Remote Sensing Basic Theory & Image Processing Methods 19 23 September 2011 Remote Sensing Platforms Michiel Damen (September 2011) damen@itc.nl 1 Overview Platforms & missions aerial surveys

More information

WorldView-2. WorldView-2 Overview

WorldView-2. WorldView-2 Overview WorldView-2 WorldView-2 Overview 6/4/09 DigitalGlobe Proprietary 1 Most Advanced Satellite Constellation Finest available resolution showing crisp detail Greatest collection capacity Highest geolocation

More information

UNCLASSIFIED R-1 ITEM NOMENCLATURE FY 2013 OCO

UNCLASSIFIED R-1 ITEM NOMENCLATURE FY 2013 OCO Exhibit R-2, RDT&E Budget Item Justification: PB 2013 Air Force DATE: February 2012 BA 3: Advanced Development (ATD) COST ($ in Millions) Program Element 75.103 74.009 64.557-64.557 61.690 67.075 54.973

More information

The Nemo Bus: A Third Generation Nanosatellite Bus for Earth Monitoring and Observation

The Nemo Bus: A Third Generation Nanosatellite Bus for Earth Monitoring and Observation The Nemo Bus: A Third Generation Nanosatellite Bus for Earth Monitoring and Observation FREDDY M. PRANAJAYA Manager, Advanced Systems Group S P A C E F L I G H T L A B O R A T O R Y University of Toronto

More information

Microwave Remote Sensing (1)

Microwave Remote Sensing (1) Microwave Remote Sensing (1) Microwave sensing encompasses both active and passive forms of remote sensing. The microwave portion of the spectrum covers the range from approximately 1cm to 1m in wavelength.

More information

9/12/2011. Training Course Remote Sensing Basic Theory & Image Processing Methods September 2011

9/12/2011. Training Course Remote Sensing Basic Theory & Image Processing Methods September 2011 Training Course Remote Sensing Basic Theory & Image Processing Methods 19 23 September 2011 Popular Remote Sensing Sensors & their Selection Michiel Damen (September 2011) damen@itc.nl 1 Overview Low resolution

More information

Update on Landsat Program and Landsat Data Continuity Mission

Update on Landsat Program and Landsat Data Continuity Mission Update on Landsat Program and Landsat Data Continuity Mission Dr. Jeffrey Masek LDCM Deputy Project Scientist NASA GSFC, Code 923 November 21, 2002 Draft LDCM Implementation Phase RFP Overview Page 1 Celebrate!

More information

Japanese Advanced Meteorological Imager

Japanese Advanced Meteorological Imager Japanese Advanced Meteorological Imager Jeffery J. Puschell Raytheon Space and Airborne Systems 2000 East El Segundo Boulevard, EO/E01/C150 El Segundo, CA 90245-0902 UNITED STATES OF AMERICA Abstract:

More information

System outline of small standard bus and ASNARO spacecraft

System outline of small standard bus and ASNARO spacecraft System outline of small standard bus and ASNARO spacecraft August 11 th, 2009 NEC Corporation, USEF, NEDO Toshiaki Ogawa, Kenichi Saito, Keita Miyazaki, and Osamu Ito Outline 1. Introduction 2. ASNARO

More information

THE SPACE TECHNOLOGY RESEARCH VEHICLE 2 MEDIUM WAVE INFRA RED IMAGER

THE SPACE TECHNOLOGY RESEARCH VEHICLE 2 MEDIUM WAVE INFRA RED IMAGER THE SPACE TECHNOLOGY RESEARCH VEHICLE 2 MEDIUM WAVE INFRA RED IMAGER S J Cawley, S Murphy, A Willig and P S Godfree Space Department The Defence Evaluation and Research Agency Farnborough United Kingdom

More information

FLIGHT SUMMARY REPORT

FLIGHT SUMMARY REPORT FLIGHT SUMMARY REPORT Flight Number: 97-011 Calendar/Julian Date: 23 October 1996 297 Sensor Package: Area(s) Covered: Wild-Heerbrugg RC-10 Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) Southern

More information

A CubeSat-Based Optical Communication Network for Low Earth Orbit

A CubeSat-Based Optical Communication Network for Low Earth Orbit A CubeSat-Based Optical Communication Network for Low Earth Orbit Richard Welle, Alexander Utter, Todd Rose, Jerry Fuller, Kristin Gates, Benjamin Oakes, and Siegfried Janson The Aerospace Corporation

More information

Iridium NEXT SensorPODs: Global Access For Your Scientific Payloads

Iridium NEXT SensorPODs: Global Access For Your Scientific Payloads Iridium NEXT SensorPODs: Global Access For Your Scientific Payloads 25 th Annual AIAA/USU Conference on Small Satellites August 9th 2011 Dr. Om P. Gupta Iridium Satellite LLC, McLean, VA, USA Iridium 1750

More information

NEXTMAP. P-Band. Airborne Radar Imaging Technology. Key Benefits & Features INTERMAP.COM. Answers Now

NEXTMAP. P-Band. Airborne Radar Imaging Technology. Key Benefits & Features INTERMAP.COM. Answers Now INTERMAP.COM Answers Now NEXTMAP P-Band Airborne Radar Imaging Technology Intermap is proud to announce the latest advancement of their Synthetic Aperture Radar (SAR) imaging technology. Leveraging over

More information

Model-Based Design for Sensor Systems

Model-Based Design for Sensor Systems 2009 The MathWorks, Inc. Model-Based Design for Sensor Systems Stephanie Kwan Applications Engineer Agenda Sensor Systems Overview System Level Design Challenges Components of Sensor Systems Sensor Characterization

More information

NON-PHOTOGRAPHIC SYSTEMS: Multispectral Scanners Medium and coarse resolution sensor comparisons: Landsat, SPOT, AVHRR and MODIS

NON-PHOTOGRAPHIC SYSTEMS: Multispectral Scanners Medium and coarse resolution sensor comparisons: Landsat, SPOT, AVHRR and MODIS NON-PHOTOGRAPHIC SYSTEMS: Multispectral Scanners Medium and coarse resolution sensor comparisons: Landsat, SPOT, AVHRR and MODIS CLASSIFICATION OF NONPHOTOGRAPHIC REMOTE SENSORS PASSIVE ACTIVE DIGITAL

More information

PLANET IMAGERY PRODUCT SPECIFICATIONS PLANET.COM

PLANET IMAGERY PRODUCT SPECIFICATIONS PLANET.COM PLANET IMAGERY PRODUCT SPECIFICATIONS SUPPORT@PLANET.COM PLANET.COM LAST UPDATED JANUARY 2018 TABLE OF CONTENTS LIST OF FIGURES 3 LIST OF TABLES 4 GLOSSARY 5 1. OVERVIEW OF DOCUMENT 7 1.1 Company Overview

More information

High Resolution Sensor Test Comparison with SPOT, KFA1000, KVR1000, IRS-1C and DPA in Lower Saxony

High Resolution Sensor Test Comparison with SPOT, KFA1000, KVR1000, IRS-1C and DPA in Lower Saxony High Resolution Sensor Test Comparison with SPOT, KFA1000, KVR1000, IRS-1C and DPA in Lower Saxony K. Jacobsen, G. Konecny, H. Wegmann Abstract The Institute for Photogrammetry and Engineering Surveys

More information

Wide-area Motion Imagery for Multi-INT Situational Awareness

Wide-area Motion Imagery for Multi-INT Situational Awareness Wide-area Motion Imagery for Multi-INT Situational Awareness Bernard V. Brower Jason Baker Brian Wenink Harris Corporation TABLE OF CONTENTS ABSTRACT... 3 INTRODUCTION WAMI HISTORY... 4 WAMI Capabilities

More information

Geo/SAT 2 INTRODUCTION TO REMOTE SENSING

Geo/SAT 2 INTRODUCTION TO REMOTE SENSING Geo/SAT 2 INTRODUCTION TO REMOTE SENSING Paul R. Baumann, Professor Emeritus State University of New York College at Oneonta Oneonta, New York 13820 USA COPYRIGHT 2008 Paul R. Baumann Introduction Remote

More information

The DigitalGlobe Constellation. World s Largest Sub-Meter High Resolution Satellite Constellation

The DigitalGlobe Constellation. World s Largest Sub-Meter High Resolution Satellite Constellation The DigitalGlobe Constellation World s Largest Sub-Meter High Resolution Satellite Constellation The DigitalGlobe Constellation The DigitalGlobe constellation of high resolution satellites offers incredible

More information

Stratollites set to provide persistent-image capability

Stratollites set to provide persistent-image capability Stratollites set to provide persistent-image capability [Content preview Subscribe to Jane s Intelligence Review for full article] Persistent remote imaging of a target area is a capability previously

More information

EXAMPLES OF TOPOGRAPHIC MAPS PRODUCED FROM SPACE AND ACHIEVED ACCURACY CARAVAN Workshop on Mapping from Space, Phnom Penh, June 2000

EXAMPLES OF TOPOGRAPHIC MAPS PRODUCED FROM SPACE AND ACHIEVED ACCURACY CARAVAN Workshop on Mapping from Space, Phnom Penh, June 2000 EXAMPLES OF TOPOGRAPHIC MAPS PRODUCED FROM SPACE AND ACHIEVED ACCURACY CARAVAN Workshop on Mapping from Space, Phnom Penh, June 2000 Jacobsen, Karsten University of Hannover Email: karsten@ipi.uni-hannover.de

More information

XVI. LOW EARTH ORBIT, MULTI-SPECTRAL IMAGING SATELLITE

XVI. LOW EARTH ORBIT, MULTI-SPECTRAL IMAGING SATELLITE XVI. LOW EARTH ORBIT, MULTI-SPECTRAL IMAGING SATELLITE A. BACKGROUND According to the Systems Engineering and Integration (SEI) Integrated Concept of Operations discussed in Chapter VII, an essential aspect

More information

HyperSTREEGO A Reactive Multispectral Optical Payload for Small Satellites

HyperSTREEGO A Reactive Multispectral Optical Payload for Small Satellites Driving Innovation in Space Optics and Optical Systems HyperSTREEGO A Reactive Multispectral Optical Payload for Small Satellites Giovanni Bianucci 1 Introduction Demand for remote sensing data is increasing

More information

MSPI: The Multiangle Spectro-Polarimetric Imager

MSPI: The Multiangle Spectro-Polarimetric Imager MSPI: The Multiangle Spectro-Polarimetric Imager I. Summary Russell A. Chipman Professor, College of Optical Sciences University of Arizona (520) 626-9435 rchipman@optics.arizona.edu The Multiangle SpectroPolarimetric

More information

Spectral Signatures. Vegetation. 40 Soil. Water WAVELENGTH (microns)

Spectral Signatures. Vegetation. 40 Soil. Water WAVELENGTH (microns) Spectral Signatures % REFLECTANCE VISIBLE NEAR INFRARED Vegetation Soil Water.5. WAVELENGTH (microns). Spectral Reflectance of Urban Materials 5 Parking Lot 5 (5=5%) Reflectance 5 5 5 5 5 Wavelength (nm)

More information

Beryllium optics and beryllium-aluminum structures for reconnaissance applications

Beryllium optics and beryllium-aluminum structures for reconnaissance applications Beryllium optics and beryllium-aluminum structures for reconnaissance applications Michael J. Russo, Stephen LoBiondo, Bryan Coon, Michel Engelhardt, William Pinzon BAE Systems Inc., 450 Pulaski Road,

More information

Multispectral Scanners for Wildland Fire Assessment NASA Ames Research Center Earth Science Division. Bruce Coffland U.C.

Multispectral Scanners for Wildland Fire Assessment NASA Ames Research Center Earth Science Division. Bruce Coffland U.C. Multispectral Scanners for Wildland Fire Assessment NASA Earth Science Division Bruce Coffland U.C. Santa Cruz Slide Fire Burn Area (MASTER/B200) R 2.2um G 0.87um B 0.65um Airborne Science & Technology

More information

The world s most advanced constellation

The world s most advanced constellation The DigitalGlobe Constellation The world s most advanced constellation of very high-resolution satellites The world s most advanced constellation The DigitalGlobe constellation of high-resolution satellites

More information

Lecture 6: Multispectral Earth Resource Satellites. The University at Albany Fall 2018 Geography and Planning

Lecture 6: Multispectral Earth Resource Satellites. The University at Albany Fall 2018 Geography and Planning Lecture 6: Multispectral Earth Resource Satellites The University at Albany Fall 2018 Geography and Planning Outline SPOT program and other moderate resolution systems High resolution satellite systems

More information

THE NASA/JPL AIRBORNE SYNTHETIC APERTURE RADAR SYSTEM. Yunling Lou, Yunjin Kim, and Jakob van Zyl

THE NASA/JPL AIRBORNE SYNTHETIC APERTURE RADAR SYSTEM. Yunling Lou, Yunjin Kim, and Jakob van Zyl THE NASA/JPL AIRBORNE SYNTHETIC APERTURE RADAR SYSTEM Yunling Lou, Yunjin Kim, and Jakob van Zyl Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Drive, MS 300-243 Pasadena,

More information

Tailored Tactical Surveillance

Tailored Tactical Surveillance Mr. Tim Clark Program Manager Special Projects Office At our last DARPATech, the Special Projects Office (SPO) discussed the need for persistent global and theater surveillance and how, by advancing the

More information

Analysis Of Servomechanisms For Control Of Electro- Optical Surveillance Telescopes By Northrop READ ONLINE

Analysis Of Servomechanisms For Control Of Electro- Optical Surveillance Telescopes By Northrop READ ONLINE Analysis Of Servomechanisms For Control Of Electro- Optical Surveillance Telescopes By Northrop READ ONLINE If searching for a book by Northrop Analysis of Servomechanisms for Control of Electro-Optical

More information

IKONOS High Resolution Multispectral Scanner Sensor Characteristics

IKONOS High Resolution Multispectral Scanner Sensor Characteristics High Spatial Resolution and Hyperspectral Scanners IKONOS High Resolution Multispectral Scanner Sensor Characteristics Launch Date View Angle Orbit 24 September 1999 Vandenberg Air Force Base, California,

More information

Discoverer II Space Based Radar Concept

Discoverer II Space Based Radar Concept Discoverer II Space Based Radar Concept DARPATech 2000 Sept 2000 Allan Steinhardt Outline The Discoverer II Concept New Capabilities Active Electronic Scanned Antenna Space Based Information Processing

More information

Small Satellites: The Execution and Launch of a GPS Radio Occultation Instrument in a 6U Nanosatellite

Small Satellites: The Execution and Launch of a GPS Radio Occultation Instrument in a 6U Nanosatellite Small Satellites: The Execution and Launch of a GPS Radio Occultation Instrument in a 6U Nanosatellite Dave Williamson Director, Strategic Programs Tyvak Tyvak: Satellite Solutions for Multiple Organizations

More information

INNOVATIVE SPECTRAL IMAGING

INNOVATIVE SPECTRAL IMAGING INNOVATIVE SPECTRAL IMAGING food inspection precision agriculture remote sensing defense & reconnaissance advanced machine vision product overview INNOVATIVE SPECTRAL IMAGING Innovative diffractive optics

More information

Microwave Remote Sensing

Microwave Remote Sensing Provide copy on a CD of the UCAR multi-media tutorial to all in class. Assign Ch-7 and Ch-9 (for two weeks) as reading material for this class. HW#4 (Due in two weeks) Problems 1,2,3 and 4 (Chapter 7)

More information

PEGASUS : a future tool for providing near real-time high resolution data for disaster management. Lewyckyj Nicolas

PEGASUS : a future tool for providing near real-time high resolution data for disaster management. Lewyckyj Nicolas PEGASUS : a future tool for providing near real-time high resolution data for disaster management Lewyckyj Nicolas nicolas.lewyckyj@vito.be http://www.pegasus4europe.com Overview Vito in a nutshell GI

More information

Hyper-spectral, UHD imaging NANO-SAT formations or HAPS to detect, identify, geolocate and track; CBRN gases, fuel vapors and other substances

Hyper-spectral, UHD imaging NANO-SAT formations or HAPS to detect, identify, geolocate and track; CBRN gases, fuel vapors and other substances Hyper-spectral, UHD imaging NANO-SAT formations or HAPS to detect, identify, geolocate and track; CBRN gases, fuel vapors and other substances Arnold Kravitz 8/3/2018 Patent Pending US/62544811 1 HSI and

More information

Istanbul Technical University Faculty of Aeronautics and Astronautics Space Systems Design and Test Laboratory

Istanbul Technical University Faculty of Aeronautics and Astronautics Space Systems Design and Test Laboratory Title: Space Advertiser (S-VERTISE) Primary POC: Aeronautics and Astronautics Engineer Hakan AYKENT Organization: Istanbul Technical University POC email: aykent@itu.edu.tr Need Worldwide companies need

More information

ROLE OF SATELLITE DATA APPLICATION IN CADASTRAL MAP AND DIGITIZATION OF LAND RECORDS DR.T. RAVISANKAR GROUP HEAD (LRUMG) RSAA/NRSC/ISRO /DOS HYDERABAD

ROLE OF SATELLITE DATA APPLICATION IN CADASTRAL MAP AND DIGITIZATION OF LAND RECORDS DR.T. RAVISANKAR GROUP HEAD (LRUMG) RSAA/NRSC/ISRO /DOS HYDERABAD ROLE OF SATELLITE DATA APPLICATION IN CADASTRAL MAP AND DIGITIZATION OF LAND RECORDS DR.T. RAVISANKAR GROUP HEAD (LRUMG) RSAA/NRSC/ISRO /DOS HYDERABAD WORKSHOP on Best Practices under National Land Records

More information

Biomass, a polarimetric interferometric P-band SAR mission

Biomass, a polarimetric interferometric P-band SAR mission Biomass, a polarimetric interferometric P-band SAR mission M. Arcioni, P. Bensi, M. Fehringer, F. Fois, F. Heliere, N. Miranda, K. Scipal Fringe 2015, ESRIN 27/03/2015 The Biomass Mission 1. Biomass was

More information

Low Cost Earth Sensor based on Oxygen Airglow

Low Cost Earth Sensor based on Oxygen Airglow Assessment Executive Summary Date : 16.06.2008 Page: 1 of 7 Low Cost Earth Sensor based on Oxygen Airglow Executive Summary Prepared by: H. Shea EPFL LMTS herbert.shea@epfl.ch EPFL Lausanne Switzerland

More information

RADIOMETRIC PERFORMANCE OF THE CRIS INSTRUMENT FOR JPSS-1

RADIOMETRIC PERFORMANCE OF THE CRIS INSTRUMENT FOR JPSS-1 Place image here (10 x 3.5 ) RADIOMETRIC PERFORMANCE OF THE CRIS INSTRUMENT FOR JPSS-1 RONALD GLUMB, LAWRENCE SUWINSKI, STEVEN WELLS, REBECCA MALLOY CALCON Technical Conference Logan, UT August 22-25,

More information

Advanced Fusion Avionics Suite

Advanced Fusion Avionics Suite Advanced Fusion Avionics Suite Full Spherical Coverage by Distributed Aperture System (DAS) Electro-Optical Targeting System (EOTS) Radar Warning System 360 o Coverage Fwd Band 3 / 4 Fwd Band 2 Band 3

More information

PAYLOAD DESIGN FOR A MICROSATELLITE II. Aukai Kent Department of Mechanical Engineering University of Hawai i at Mānoa Honolulu, HI ABSTRACT

PAYLOAD DESIGN FOR A MICROSATELLITE II. Aukai Kent Department of Mechanical Engineering University of Hawai i at Mānoa Honolulu, HI ABSTRACT PAYLOAD DESIGN FOR A MICROSATELLITE II Aukai Kent Department of Mechanical Engineering University of Hawai i at Mānoa Honolulu, HI 96822 ABSTRACT Conventional satellites are extremely large, highly expensive,

More information

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology QuikSCAT Mission Status QuikSCAT Follow-on Mission 2 QuikSCAT instrument and spacecraft are healthy, but aging June 19, 2009 will be the 10 year launch anniversary We ve had two significant anomalies during

More information

Important Missions. weather forecasting and monitoring communication navigation military earth resource observation LANDSAT SEASAT SPOT IRS

Important Missions. weather forecasting and monitoring communication navigation military earth resource observation LANDSAT SEASAT SPOT IRS Fundamentals of Remote Sensing Pranjit Kr. Sarma, Ph.D. Assistant Professor Department of Geography Mangaldai College Email: prangis@gmail.com Ph. No +91 94357 04398 Remote Sensing Remote sensing is defined

More information

Leica ADS80 - Digital Airborne Imaging Solution NAIP, Salt Lake City 4 December 2008

Leica ADS80 - Digital Airborne Imaging Solution NAIP, Salt Lake City 4 December 2008 Luzern, Switzerland, acquired at 5 cm GSD, 2008. Leica ADS80 - Digital Airborne Imaging Solution NAIP, Salt Lake City 4 December 2008 Shawn Slade, Doug Flint and Ruedi Wagner Leica Geosystems AG, Airborne

More information

Sensor resolutions from space: the tension between temporal, spectral, spatial and swath. David Bruce UniSA and ISU

Sensor resolutions from space: the tension between temporal, spectral, spatial and swath. David Bruce UniSA and ISU Sensor resolutions from space: the tension between temporal, spectral, spatial and swath David Bruce UniSA and ISU 1 Presentation aims 1. Briefly summarize the different types of satellite image resolutions

More information

2017 REMOTE SENSING EVENT TRAINING STRATEGIES 2016 SCIENCE OLYMPIAD COACHING ACADEMY CENTERVILLE, OH

2017 REMOTE SENSING EVENT TRAINING STRATEGIES 2016 SCIENCE OLYMPIAD COACHING ACADEMY CENTERVILLE, OH 2017 REMOTE SENSING EVENT TRAINING STRATEGIES 2016 SCIENCE OLYMPIAD COACHING ACADEMY CENTERVILLE, OH This presentation was prepared using draft rules. There may be some changes in the final copy of the

More information

STRATEGIC CHOICES FOR SMALL AND MIDDLE POWERS

STRATEGIC CHOICES FOR SMALL AND MIDDLE POWERS Chapter Five STRATEGIC CHOICES FOR SMALL AND MIDDLE POWERS SPACE DEVELOPMENT IN KOREA Hong-Yul Paik, Director, Satellite Operation Center, Korea Aerospace Research Institute, South Korea Korea is a young

More information

UAV CRAFT CRAFT CUSTOMIZABLE SIMULATOR

UAV CRAFT CRAFT CUSTOMIZABLE SIMULATOR CRAFT UAV CRAFT CUSTOMIZABLE SIMULATOR Customizable, modular UAV simulator designed to adapt, evolve, and deliver. The UAV CRAFT customizable Unmanned Aircraft Vehicle (UAV) simulator s design is based

More information

Remote Sensing 1 Principles of visible and radar remote sensing & sensors

Remote Sensing 1 Principles of visible and radar remote sensing & sensors Remote Sensing 1 Principles of visible and radar remote sensing & sensors Nick Barrand School of Geography, Earth & Environmental Sciences University of Birmingham, UK Field glaciologist collecting data

More information

OPAL Optical Profiling of the Atmospheric Limb

OPAL Optical Profiling of the Atmospheric Limb OPAL Optical Profiling of the Atmospheric Limb Alan Marchant Chad Fish Erik Stromberg Charles Swenson Jim Peterson OPAL STEADE Mission Storm Time Energy & Dynamics Explorers NASA Mission of Opportunity

More information

Rochester Institute of Technology. Wildfire Airborne Sensor Program (WASP) Project Overview

Rochester Institute of Technology. Wildfire Airborne Sensor Program (WASP) Project Overview Rochester Institute of Technology Wildfire Airborne Sensor Program (WASP) Project Overview Introduction The following slides describe a program underway at RIT The sensor system described herein is being

More information

Wide-Area Motion Imagery for Multi-INT Situational Awareness

Wide-Area Motion Imagery for Multi-INT Situational Awareness Bernard V. Brower (U.S.) Jason Baker (U.S.) Brian Wenink (U.S.) Harris Corporation Harris Corporation Harris Corporation bbrower@harris.com JBAKER27@harris.com bwenink@harris.com 332 Initiative Drive 800

More information

Fusion of Heterogeneous Multisensor Data

Fusion of Heterogeneous Multisensor Data Fusion of Heterogeneous Multisensor Data Karsten Schulz, Antje Thiele, Ulrich Thoennessen and Erich Cadario Research Institute for Optronics and Pattern Recognition Gutleuthausstrasse 1 D 76275 Ettlingen

More information

The Biomass Mission, status of the satellite system

The Biomass Mission, status of the satellite system The Biomass Mission, status of the satellite system M. Arcioni, P. Bensi, M. Fehringer, F. Fois, F. Heliere, K. Scipal PolInSAR/Biomass Meeting 2015, ESRIN 29/01/2015 1. Key facts (lifetime, duty cycle

More information

The RapidEye Mission. WGISS-24 Host Workshop Michael Oxfort / Oberpfaffenhofen / 17th October RapidEye proprietary information

The RapidEye Mission. WGISS-24 Host Workshop Michael Oxfort / Oberpfaffenhofen / 17th October RapidEye proprietary information The RapidEye Mission WGISS-24 Host Workshop Michael Oxfort / Oberpfaffenhofen / 17th October 2007 1 Contents 1. Introduction 2. Business Concept 3. Markets and Segments 4. Products and Services (Selected

More information

Abstract. Aerial photographs are taken from a variety of altitudes. The altitude ranges are defined as follows:

Abstract. Aerial photographs are taken from a variety of altitudes. The altitude ranges are defined as follows: LOng Range Oblique Photography (LOROP) for Aerial Reconnaissance G. S. Singh Optics Based Strategic Instrumentation, Central Scientific Instruments Organisation, Sector 30, Chandigarh 160030 (India) drgssr@gmail.com

More information