Visual Physics Lab Project 1

Size: px
Start display at page:

Download "Visual Physics Lab Project 1"

Transcription

1 Page 1 Visual Physics Lab Project 1 Objectives: The purpose of this Project is to identify sources of error that arise when using a camera to capture data and classify them as either systematic or random errors. Your TA will help you to understand how to find these sources of error. This experiment is designed to magnify these sources of error so that you will be able to see them more clearly. Expectations: You are expected to have read Chapter 2 from Young & Freedman s University Physics before coming to this lab. You must understand 1 dimensional motion and know how to identify displacement, constant velocity, and acceleration on a graph. You will also need to have read the handout on error analysis that is available on the visual physics website. EXPLORATION As you observe yourself on camera, think about how what we perceive visually could translates to what exists in a Cartesian world. Preflight Questions: How could our perceptions change when we look at things from different angles? If you cover up one eye, how could you estimate distances? How can the panoramic setting on your camera and IMAX cameras project images onto a rounded surface? Think about why they do this. Experiment 1 In this experiment we will study what errors may occur in our estimation of displacement when we arrange the camera poorly. Since we will not be examining motion, you will not need to record more than 1 second of video, because you will only be looking at the first frame. Set Up Begin by taking some masking tape and a pen and making several equidistant marks on the air track that can easily be identified in the video. Be sure to record what the separation distances are in your Lab Journal so that you can compare later. Next you arrange the camera into 3 different orientations and record a short video in each arrangement.

2 Page 2 Arrangement 1: Align the camera directly above the center of the track in such a way that the camera is pointing at the center of the track. Arrangement 2: Align the camera above one end of the track in such a way so that the camera is pointing at the center of the track. Arrangement 3: Align the camera directly above the center of the track in such a way that the camera is pointing at the center of the track on the table behind (in front of) you. After you have captured video from all the different arrangements, use the LabApp to select all of the points you marked earlier.

3 Page 3 Note: Do not use LabApp s calibration feature for this experiment. After you have selected the points and saved them open the document in EXCEL and evaluate the separation between the points (in pixels) QUESTIONS Are they equidistant apart in all of the listed arrangements? If not, why not? What does this tell you about how the camera must be arranged in order to evaluate 1 dimensional displacement? Prepare a technical memo that addresses the above questions. EXPLORATION Think about a straight road with a car approaching from the distance. If it seems to speed up as it passes you and then slow down again as it disappears into the distance, can it be moving at constant speed? Preflight Questions Can distortion in an image effect the appearance of velocity in the analysis? Do you think the scenario listed above might cause distortion in the velocity estimates? If so, which ones? Experiment 2 In this experiment we will look at constant velocity motion in 1 dimension. You will need to level the track before doing this part. Your TA will explain how this is done. After your track is leveled make sure the cart glides smoothly along the track s surface without slowing down. 1. You will need to arrange the camera into each of the 3 positions that were described in experiment In each arrangement you need to set the cart into motion and capture enough video so that you have the cart traveling the full length of the track. 3. After you have captured all the videos you will need to run LabApp. 4. In LabApp you need to select a point on the moving cart to click on in each frame of the video. In this way you will track the motion of the cart as it glides along the track. 5. After you have clicked on the cart in each frame of the video calibrate and save the data using a. 2 Points near the center of the track b. 2 Points near the end of the track. c. 2 Points near the other end of the track.

4 Page 4 QUESTIONS In your analysis you will need to compare these different results and explain why you got them. Try to figure out what the source of this error is. Were any of the results surprising? Can you think of any other types of error that may not have been as obvious? If so, Could another camera arrangement magnify these errors? Write a technical memo to your TA reporting your findings. EXPLORATION If you throw a ball into the air you can make it go higher by throwing it harder. If you and a friend throw a ball into the air at the same time it may appear that your ball is accelerating faster and goes higher than theirs. How does your perspective create this illusion? Preflight Questions If the projectile is closer (further away) from the camera than you think, what effect will that have on your calculation of acceleration? What is the difference between instantaneous and average velocity? Acceleration? Write a definition of each. Can you have constant velocity with constant acceleration? Give an example? Experiment 3 In this experiment we will be looking at constant acceleration in 1 dimension. You will need to relocate your camera to the vertical post at your workstation. It will need to be aimed at the other end of the table, as shown in the picture.

5 Page 5 Next you need to get the Marble Launcher from the cabinet and place it at the other end of the table aimed straight up (90 degrees). Then you will suspend your meter stick from the scaffolding, using some string, such that the meter stick hangs vertically next to the marble launcher. 1. Adjust your video camera to show the entire length of the meter stick. Then figure out the best setting for the marble launcher. Try a couple of different settings to see which one gives the best trajectory for your video. (Ideally the marble will travel from one edge of the screen to the opposite edge without going off the screen.) 2. Now you will record a short video of the marble as it is released from the launcher and falls back down. 3. After you have recorded your video open Lab App. Now calibrate the data using the ends of the meter stick and then capture the position of the marble while it is in flight (Only click on the frames where the marble is in flight) 4. Have the other members of your group repeat step After this you should have 3 sets of data. You will need to do a comparison of these 3 data sets to estimate human error. 6. Next you should move the meter stick a few centimeters closer to the camera and repeat steps 1-3. Be sure to record in your notebook how far from the plane of motion you placed the meter stick. 7. Now move the meter stick a few centimeters behind the plane of motion and repeat steps 1-3 again. After you have captured all your data clean up your station and you can begin your analysis. Since the marble is undergoing constant acceleration (g ~ 9.81 m/s 2 at sea level) the formula for its motion should be a 2 nd order polynomial in time (1/2 at 2 + bt + c). Make sure you understand why. Graph your data and try to fit it with a 2 nd order polynomial Trend line in Excel. QUESTIONS Does the trend line fit the data very well? What values do you get for acceleration?

6 Page 6 Does it make a difference if the meter stick is in front of (behind) the plane of motion? In doing future experiments how can you use this information? Write a technical memo to your TA reporting your findings. Post-Flight Extensions: Suggestions What is the role of precision and accuracy in an experiment? Can you be accurate but not precise? How? Can you be precise but not accurate? How? Keeping a careful journal of your results might help in writing up the lab later. What are some other advantages to keeping an accurate lab record?

Projectile Motion. Equipment

Projectile Motion. Equipment rev 05/2018 Projectile Motion Equipment Qty Item Part Number 1 Mini Launcher ME-6800 1 Metal Sphere Projectile 1 and 2 Meter Sticks 1 Large Metal Rod ME-8741 1 Small Metal Rod ME-8736 1 Support Base ME-9355

More information

Name: Period: Date: Go! Go! Go!

Name: Period: Date: Go! Go! Go! Required Equipment and Supplies: constant velocity cart continuous (unperforated) paper towel masking tape stopwatch meter stick graph paper Procedure: Step 1: Fasten the paper towel to the floor. It should

More information

Two Dimensional Motion Activity (Projectile Motion)

Two Dimensional Motion Activity (Projectile Motion) Two Dimensional Motion Activity (Projectile Motion) Purpose A projectile launched into the air either horizontally or at an angle represents Two Dimensional Motion. Using a launcher and two photogates,

More information

12 Projectile Motion 12 - Page 1 of 9. Projectile Motion

12 Projectile Motion 12 - Page 1 of 9. Projectile Motion 12 Projectile Motion 12 - Page 1 of 9 Equipment Projectile Motion 1 Mini Launcher ME-6825A 2 Photogate ME-9498A 1 Photogate Bracket ME-6821A 1 Time of Flight ME-6810 1 Table Clamp ME-9472 1 Rod Base ME-8735

More information

Physics 131 Lab 1: ONE-DIMENSIONAL MOTION

Physics 131 Lab 1: ONE-DIMENSIONAL MOTION 1 Name Date Partner(s) Physics 131 Lab 1: ONE-DIMENSIONAL MOTION OBJECTIVES To familiarize yourself with motion detector hardware. To explore how simple motions are represented on a displacement-time graph.

More information

Determining the Relationship Between the Range and Initial Velocity of an Object Moving in Projectile Motion

Determining the Relationship Between the Range and Initial Velocity of an Object Moving in Projectile Motion Determining the Relationship Between the Range and Initial Velocity of an Object Moving in Projectile Motion Sadaf Fatima, Wendy Mixaynath October 07, 2011 ABSTRACT A small, spherical object (bearing ball)

More information

Engage Examine the picture on the left. 1. What s happening? What is this picture about?

Engage Examine the picture on the left. 1. What s happening? What is this picture about? AP Physics Lesson 1.a Kinematics Graphical Analysis Outcomes Interpret graphical evidence of motion (uniform speed & uniform acceleration). Apply an understanding of position time graphs to novel examples.

More information

Motion Lab : Relative Speed. Determine the Speed of Each Car - Gathering information

Motion Lab : Relative Speed. Determine the Speed of Each Car - Gathering information Motion Lab : Introduction Certain objects can seem to be moving faster or slower based on how you see them moving. Does a car seem to be moving faster when it moves towards you or when it moves to you

More information

Motion Graphs Teacher s Guide

Motion Graphs Teacher s Guide Motion Graphs Teacher s Guide 1.0 Summary Motion Graphs is the third activity in the Dynamica sequence. This activity should be done after Vector Motion. Motion Graphs has been revised for the 2004-2005

More information

LAB 1 Linear Motion and Freefall

LAB 1 Linear Motion and Freefall Cabrillo College Physics 10L Name LAB 1 Linear Motion and Freefall Read Hewitt Chapter 3 What to learn and explore A bat can fly around in the dark without bumping into things by sensing the echoes of

More information

PHYSICS 220 LAB #1: ONE-DIMENSIONAL MOTION

PHYSICS 220 LAB #1: ONE-DIMENSIONAL MOTION /53 pts Name: Partners: PHYSICS 22 LAB #1: ONE-DIMENSIONAL MOTION OBJECTIVES 1. To learn about three complementary ways to describe motion in one dimension words, graphs, and vector diagrams. 2. To acquire

More information

Concepts of Physics Lab 1: Motion

Concepts of Physics Lab 1: Motion THE MOTION DETECTOR Concepts of Physics Lab 1: Motion Taner Edis and Peter Rolnick Fall 2018 This lab is not a true experiment; it will just introduce you to how labs go. You will perform a series of activities

More information

Graph Matching. walk back and forth in front of. Motion Detector

Graph Matching. walk back and forth in front of. Motion Detector Graph Matching One of the most effective methods of describing motion is to plot graphs of position, velocity, and acceleration vs. time. From such a graphical representation, it is possible to determine

More information

Experiment P10: Acceleration of a Dynamics Cart II (Motion Sensor)

Experiment P10: Acceleration of a Dynamics Cart II (Motion Sensor) PASCO scientific Physics Lab Manual: P10-1 Experiment P10: (Motion Sensor) Concept Time SW Interface Macintosh file Windows file Newton s Laws 30 m 500 or 700 P10 Cart Acceleration II P10_CAR2.SWS EQUIPMENT

More information

Activity P07: Acceleration of a Cart (Acceleration Sensor, Motion Sensor)

Activity P07: Acceleration of a Cart (Acceleration Sensor, Motion Sensor) Name Class Date Activity P07: Acceleration of a Cart (Acceleration Sensor, Motion Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Linear motion P07 Accelerate Cart.ds (See end of

More information

F=MA. W=F d = -F YOUTH GUIDE - APPENDICES YOUTH GUIDE 03

F=MA. W=F d = -F YOUTH GUIDE - APPENDICES YOUTH GUIDE 03 W=F d F=MA F 12 = -F 21 YOUTH GUIDE - APPENDICES YOUTH GUIDE 03 APPENDIX A: CALCULATE IT (OPTIONAL ACTIVITY) Time required: 20 minutes If you have additional time or are interested in building quantitative

More information

Graphing Your Motion

Graphing Your Motion Name Date Graphing Your Motion Palm 33 Graphs made using a Motion Detector can be used to study motion. In this experiment, you will use a Motion Detector to make graphs of your own motion. OBJECTIVES

More information

Moving Man LAB #2 PRINT THESE PAGES AND TURN THEM IN BEFORE OR ON THE DUE DATE GIVEN IN YOUR .

Moving Man LAB #2 PRINT THESE PAGES AND TURN THEM IN BEFORE OR ON THE DUE DATE GIVEN IN YOUR  . Moving Man LAB #2 Total : Start : Finish : Name: Date: Period: PRINT THESE PAGES AND TURN THEM IN BEFORE OR ON THE DUE DATE GIVEN IN YOUR EMAIL. POSITION Background Graphs are not just an evil thing your

More information

Lab. a c. (However, coasters are designed so this does not happen.) Another fine lab by T. Wayne

Lab. a c. (However, coasters are designed so this does not happen.) Another fine lab by T. Wayne Background An object will travel in a straight line until a force acts to change its path of motion. This means that to travel in a circle (or a loop) the force must act on an object to push it sideways.

More information

MARBLE RACING. Practice Calculating Speed

MARBLE RACING. Practice Calculating Speed MARBLE RACING Practice Calculating Speed Problem How does the angle of the ramp affect the marble s speed? Materials Ruler Meter stick Masking Tape 5 Books Marble Timer Protractor Procedure 1. Mark a finish

More information

Station 0 -Class Example

Station 0 -Class Example Station 0 Station 0 -Class Example The teacher will demonstrate this one and explain the activity s expectations. Materials: Hanging mass string Procedure Hang a 1 kilogram mass from the ceiling. Attach

More information

Motion Simulation - The Moving Man

Motion Simulation - The Moving Man Constant Velocity Motion Simulation - The Moving Man Today you will learn how to get information from a simulation program. Our goal is to play with the simulation to find the rules that it follows. Simulations

More information

Experiment P11: Newton's Second Law Constant Force (Force Sensor, Motion Sensor)

Experiment P11: Newton's Second Law Constant Force (Force Sensor, Motion Sensor) PASCO scientific Physics Lab Manual: P11-1 Experiment P11: Newton's Second Law Constant Force (Force Sensor, Motion Sensor) Concept Time SW Interface Macintosh file Windows file Newton s Laws 30 m 500

More information

Lab 4 Projectile Motion

Lab 4 Projectile Motion b Lab 4 Projectile Motion Physics 211 Lab What You Need To Know: 1 x = x o + voxt + at o ox 2 at v = vox + at at 2 2 v 2 = vox 2 + 2aΔx ox FIGURE 1 Linear FIGURE Motion Linear Equations Motion Equations

More information

Moving Man - Velocity vs. Time Graphs

Moving Man - Velocity vs. Time Graphs Moving Man Velocity vs. Graphs Procedure Go to http://www.colorado.edu/physics/phet and find The Moving Man simulation under the category of motion. 1. After The Moving Man is open leave the position graph

More information

Lab 1. Motion in a Straight Line

Lab 1. Motion in a Straight Line Lab 1. Motion in a Straight Line Goals To understand how position, velocity, and acceleration are related. To understand how to interpret the signed (+, ) of velocity and acceleration. To understand how

More information

Newton s Laws of Motion Discovery

Newton s Laws of Motion Discovery Student handout Newton s First Law of Motion Discovery Stations Discovery Station: Wacky Washers 1. To prepare for this experiment, stack 4 washers one on top of the other so that you form a tower of washers.

More information

Sensor Calibration Lab

Sensor Calibration Lab Sensor Calibration Lab The lab is organized with an introductory background on calibration and the LED speed sensors. This is followed by three sections describing the three calibration techniques which

More information

INTRODUCTION TO DATA STUDIO

INTRODUCTION TO DATA STUDIO 1 INTRODUCTION TO DATA STUDIO PART I: FAMILIARIZATION OBJECTIVE To become familiar with the operation of the Passport/Xplorer digital instruments and the DataStudio software. INTRODUCTION We will use the

More information

Sensor Calibration Lab

Sensor Calibration Lab Sensor Calibration Lab The lab is organized with an introductory background on calibration and the LED speed sensors. This is followed by three sections describing the three calibration techniques which

More information

The Obstacle Course

The Obstacle Course The Obstacle Course 12.1.2009 Myles Smith, Troy Holcomb, and Chris Wheeler Team 8 Section: B2 2 Abstract We were asked to create a Rube Goldberg device, which explored and demonstrated different topics

More information

Projectile Launcher (Order Code VPL)

Projectile Launcher (Order Code VPL) Projectile Launcher (Order Code VPL) The Vernier Projectile Launcher allows students to investigate important concepts in two-dimensional kinematics. Sample experiments include: Investigate projectile

More information

Lab 4 Projectile Motion

Lab 4 Projectile Motion b Lab 4 Projectile Motion What You Need To Know: x x v v v o ox ox v v ox at 1 t at a x FIGURE 1 Linear Motion Equations The Physics So far in lab you ve dealt with an object moving horizontally or an

More information

Experiment P02: Understanding Motion II Velocity and Time (Motion Sensor)

Experiment P02: Understanding Motion II Velocity and Time (Motion Sensor) PASCO scientific Physics Lab Manual: P02-1 Experiment P02: Understanding Motion II Velocity and Time (Motion Sensor) Concept Time SW Interface Macintosh file Windows file linear motion 30 m 500 or 700

More information

Physics 253 Fundamental Physics Mechanic, September 9, Lab #2 Plotting with Excel: The Air Slide

Physics 253 Fundamental Physics Mechanic, September 9, Lab #2 Plotting with Excel: The Air Slide 1 NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT Physics 253 Fundamental Physics Mechanic, September 9, 2010 Lab #2 Plotting with Excel: The Air Slide Lab Write-up Due: Thurs., September 16, 2010 Place

More information

Picturing Motion 2.1. Frames of Reference. 30 MHR Unit 1 Kinematics

Picturing Motion 2.1. Frames of Reference. 30 MHR Unit 1 Kinematics 2.1 Picturing Motion SECTION Identify the frame of reference for a given motion and distinguish between fixed and moving frames. Draw diagrams to show how the position of an object changes over a number

More information

Standing waves in a string

Standing waves in a string Standing waves in a string Introduction When you shake a string, a pulse travels down its length. When it reaches the end, the pulse can be reflected. A series of regularly occurring pulses will generate

More information

Laboratory 1: Motion in One Dimension

Laboratory 1: Motion in One Dimension Phys 131L Spring 2018 Laboratory 1: Motion in One Dimension Classical physics describes the motion of objects with the fundamental goal of tracking the position of an object as time passes. The simplest

More information

Measure simulated forces of impact on a human head, and test if forces are reduced by wearing a protective headgear.

Measure simulated forces of impact on a human head, and test if forces are reduced by wearing a protective headgear. PocketLab Science Fair Kit: Preventing Concussions and Head Injuries This STEM Science Fair Kit lets you be a scientist and simulate real world accidents and injuries with a crash test style dummy head.

More information

Relationship to theory: This activity involves the motion of bodies under constant velocity.

Relationship to theory: This activity involves the motion of bodies under constant velocity. UNIFORM MOTION Lab format: this lab is a remote lab activity Relationship to theory: This activity involves the motion of bodies under constant velocity. LEARNING OBJECTIVES Read and understand these instructions

More information

6. An oscillator makes four vibrations in one second. What is its period and frequency?

6. An oscillator makes four vibrations in one second. What is its period and frequency? Period and Frequency 19.1 The period of a pendulum is the time it takes to move through one cycle. As the ball on the string is pulled to one side and then let go, the ball moves to the side opposite the

More information

Experiment P01: Understanding Motion I Distance and Time (Motion Sensor)

Experiment P01: Understanding Motion I Distance and Time (Motion Sensor) PASCO scientific Physics Lab Manual: P01-1 Experiment P01: Understanding Motion I Distance and Time (Motion Sensor) Concept Time SW Interface Macintosh file Windows file linear motion 30 m 500 or 700 P01

More information

Note to Teacher. Description of the investigation. Time Required. Materials. Procedures for Wheel Size Matters TEACHER. LESSONS WHEEL SIZE / Overview

Note to Teacher. Description of the investigation. Time Required. Materials. Procedures for Wheel Size Matters TEACHER. LESSONS WHEEL SIZE / Overview In this investigation students will identify a relationship between the size of the wheel and the distance traveled when the number of rotations of the motor axles remains constant. It is likely that many

More information

Procedures for the Use of the PointGrey Flea3 FireWire Camera and ImageJ *

Procedures for the Use of the PointGrey Flea3 FireWire Camera and ImageJ * Procedures for the Use of the PointGrey Flea3 FireWire Camera and ImageJ * * Although the following procedures are given for the Free Fall experiment, you can utilize the camera adjustments and settings,

More information

PURPOSE: To understand the how position-time and velocity-time graphs describe motion in the real world.

PURPOSE: To understand the how position-time and velocity-time graphs describe motion in the real world. PURPOSE: To understand the how position-time and velocity-time graphs describe motion in the real world. INTRODUCTION In this lab you ll be performing four activities that will allow you to compare motion

More information

Waves and Sound Practice Test 43 points total Free- response part: [27 points]

Waves and Sound Practice Test 43 points total Free- response part: [27 points] Name Waves and Sound Practice Test 43 points total Free- response part: [27 points] 1. To demonstrate standing waves, one end of a string is attached to a tuning fork with frequency 120 Hz. The other end

More information

Accelerometers. Objective: To measure the acceleration environments created by different motions.

Accelerometers. Objective: To measure the acceleration environments created by different motions. Accelerometers Objective: To measure the acceleration environments created by different motions. Science Standards: Physical Science - position and motion of objects Unifying Concepts and Processes Change,

More information

Experiment P20: Driven Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor, Power Amplifier)

Experiment P20: Driven Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor, Power Amplifier) PASCO scientific Physics Lab Manual: P20-1 Experiment P20: - Mass on a Spring (Force Sensor, Motion Sensor, Power Amplifier) Concept Time SW Interface Macintosh file Windows file harmonic motion 45 m 700

More information

Experiment A2 Galileo s Inclined Plane Procedure

Experiment A2 Galileo s Inclined Plane Procedure Experiment A2 Galileo s Inclined Plane Procedure Deliverables: Checked lab notebook, Full lab report (including the deliverables from A1) Overview In the first part of this lab, you will perform Galileo

More information

Vision: How does your eye work? Student Version

Vision: How does your eye work? Student Version Vision: How does your eye work? Student Version In this lab, we will explore some of the capabilities and limitations of the eye. We will look Sight is one at of the extent five senses of peripheral that

More information

Lab 12. Optical Instruments

Lab 12. Optical Instruments Lab 12. Optical Instruments Goals To construct a simple telescope with two positive lenses having known focal lengths, and to determine the angular magnification (analogous to the magnifying power of a

More information

3. Draw a side-view picture of the situation below, showing the ringstand, rubber band, and your hand when the rubber band is fully stretched.

3. Draw a side-view picture of the situation below, showing the ringstand, rubber band, and your hand when the rubber band is fully stretched. 1 Forces and Motion In the following experiments, you will investigate how the motion of an object is related to the forces acting on it. For our purposes, we ll use the everyday definition of a force

More information

Projectiles: Target Practice Student Version

Projectiles: Target Practice Student Version Projectiles: Target Practice Student Version In this lab you will shoot a chopstick across the room with a rubber band and measure how different variables affect the distance it flies. You will use concepts

More information

Geometric Optics. This is a double-convex glass lens mounted in a wooden frame. We will use this as the eyepiece for our microscope.

Geometric Optics. This is a double-convex glass lens mounted in a wooden frame. We will use this as the eyepiece for our microscope. I. Before you come to lab Read through this handout in its entirety. II. Learning Objectives As a result of performing this lab, you will be able to: 1. Use the thin lens equation to determine the focal

More information

Cartesian Coordinate System. Student Instruction S-23

Cartesian Coordinate System. Student Instruction S-23 QuickView Design a 6 x 6 grid based on the Cartesian coordinates. Roll two dice to determine the coordinate points on the grid for a specific quadrant. Use the T-Bot II to place a foam block onto the rolled

More information

Don't Shatter My Image

Don't Shatter My Image Don't Shatter My Image Name Physics - Reflection Lab This lab will locate images and relate the size of the angle at which the ray of light hits the plane mirror to the size of the angle at which the light

More information

Activity P40: Driven Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor, Power Amplifier)

Activity P40: Driven Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor, Power Amplifier) Name Class Date Activity P40: Driven Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor, Power Amplifier) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Harmonic motion P40

More information

Projectiles: Earth to Earth; The Dynamics of Catapults & Trebuchets

Projectiles: Earth to Earth; The Dynamics of Catapults & Trebuchets NATURE Sunday Academy 2012-2013 Projectiles: Earth to Earth; The Dynamics of Catapults & Trebuchets Ann Vallie (TMCC) and Dr. Bob Pieri (NDSU) Description: In this Sunday Academy session, students will

More information

(i) node [1] (ii) antinode...

(i) node [1] (ii) antinode... 1 (a) When used to describe stationary (standing) waves explain the terms node...... [1] (ii) antinode....... [1] (b) Fig. 5.1 shows a string fixed at one end under tension. The frequency of the mechanical

More information

Heavy-Duty Bypass Track System

Heavy-Duty Bypass Track System Heavy-Duty Bypass Track System Please Note: This track system must be installed with the screws going into a solid surface such as studs or a header. Due to the spacing of the holes on these Brackets,

More information

Math Labs. Activity 1: Rectangles and Rectangular Prisms Using Coordinates. Procedure

Math Labs. Activity 1: Rectangles and Rectangular Prisms Using Coordinates. Procedure Math Labs Activity 1: Rectangles and Rectangular Prisms Using Coordinates Problem Statement Use the Cartesian coordinate system to draw rectangle ABCD. Use an x-y-z coordinate system to draw a rectangular

More information

The telescope: basics

The telescope: basics The telescope: basics Johannes Hevelius observing with one of his telescopes. (Source:Selenographia, 1647) What is a telescope? A telescope is an instrument used for seeing things that are very far away.

More information

Physics 2310 Lab #5: Thin Lenses and Concave Mirrors Dr. Michael Pierce (Univ. of Wyoming)

Physics 2310 Lab #5: Thin Lenses and Concave Mirrors Dr. Michael Pierce (Univ. of Wyoming) Physics 2310 Lab #5: Thin Lenses and Concave Mirrors Dr. Michael Pierce (Univ. of Wyoming) Purpose: The purpose of this lab is to introduce students to some of the properties of thin lenses and mirrors.

More information

Folding Activity 1. Colored paper Tape or glue stick

Folding Activity 1. Colored paper Tape or glue stick Folding Activity 1 We ll do this first activity as a class, and I will model the steps with the document camera. Part 1 You ll need: Patty paper Ruler Sharpie Colored paper Tape or glue stick As you do

More information

A vibration is one back-and-forth motion.

A vibration is one back-and-forth motion. Basic Skills Students who go to the park without mastering the following skills have difficulty completing the ride worksheets in the next section. To have a successful physics day experience at the amusement

More information

NREM 345 Week 2, Material covered this week contributes to the accomplishment of the following course goal:

NREM 345 Week 2, Material covered this week contributes to the accomplishment of the following course goal: NREM 345 Week 2, 2010 Reading assignment: Chapter. 4 and Sec. 5.1 to 5.2.4 Material covered this week contributes to the accomplishment of the following course goal: Goal 1: Develop the understanding and

More information

Motion Graphs. Plotting distance against time can tell you a lot about motion. Let's look at the axes:

Motion Graphs. Plotting distance against time can tell you a lot about motion. Let's look at the axes: Motion Graphs 1 Name Motion Graphs Describing the motion of an object is occasionally hard to do with words. Sometimes graphs help make motion easier to picture, and therefore understand. Remember: Motion

More information

Vic-2D Manual. Rommel Cintrón University of Puerto Rico, Mayagüez. NEES at CU Boulder CU-NEES-08-07

Vic-2D Manual. Rommel Cintrón University of Puerto Rico, Mayagüez. NEES at CU Boulder CU-NEES-08-07 CU-NEES-08-07 NEES at CU Boulder 01000110 01001000 01010100 The George E Brown, Jr. Network for Earthquake Engineering Simulation Vic-2D Manual By Rommel Cintrón University of Puerto Rico, Mayagüez September

More information

Note to the Teacher. Description of the investigation. Time Required. Additional Materials VEX KITS AND PARTS NEEDED

Note to the Teacher. Description of the investigation. Time Required. Additional Materials VEX KITS AND PARTS NEEDED In this investigation students will identify a relationship between the size of the wheel and the distance traveled when the number of rotations of the motor axles remains constant. Students are required

More information

1 Diffraction of Microwaves

1 Diffraction of Microwaves 1 Diffraction of Microwaves 1.1 Purpose In this lab you will investigate the coherent scattering of electromagnetic waves from a periodic structure. The experiment is a direct analog of the Bragg diffraction

More information

Investigating the equation of a straight line

Investigating the equation of a straight line Task one What is the general form of a straight line equation? Open the Desmos app on your ipad If you do not have the app, then you can access Desmos by going to www.desmos.com and then click on the red

More information

F=MA. W=F d = -F FACILITATOR - APPENDICES

F=MA. W=F d = -F FACILITATOR - APPENDICES W=F d F=MA F 12 = -F 21 FACILITATOR - APPENDICES APPENDIX A: CALCULATE IT (OPTIONAL ACTIVITY) Time required: 20 minutes If you have additional time or are interested in building quantitative skills, consider

More information

CHAPTER 11 TEST REVIEW -- MARKSCHEME

CHAPTER 11 TEST REVIEW -- MARKSCHEME AP PHYSICS Name: Period: Date: 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response MULTIPLE CHOICE DEVIL PHYSICS BADDEST CLASS ON CAMPUS AP EXAM

More information

Bottle Rocket Lab. 7th Accelerated Science. Name Period. (Each individual student will complete his or her own lab report) Target Launch Date:

Bottle Rocket Lab. 7th Accelerated Science. Name Period. (Each individual student will complete his or her own lab report) Target Launch Date: Name Period Bottle Rocket Lab (Each individual student will complete his or her own lab report) Target Launch Date: Grade: Before Launch questions (max 25 points) Questions 1-10, based on accuracy and

More information

This manual describes the Motion Sensor hardware and the locally written software that interfaces to it.

This manual describes the Motion Sensor hardware and the locally written software that interfaces to it. Motion Sensor Manual This manual describes the Motion Sensor hardware and the locally written software that interfaces to it. Hardware Our detectors are the Motion Sensor II (Pasco CI-6742). Calling this

More information

Psychophysics of night vision device halo

Psychophysics of night vision device halo University of Wollongong Research Online Faculty of Health and Behavioural Sciences - Papers (Archive) Faculty of Science, Medicine and Health 2009 Psychophysics of night vision device halo Robert S Allison

More information

Lab 11: Lenses and Ray Tracing

Lab 11: Lenses and Ray Tracing Name: Lab 11: Lenses and Ray Tracing Group Members: Date: TA s Name: Materials: Ray box, two different converging lenses, one diverging lens, screen, lighted object, three stands, meter stick, two letter

More information

Vision: How does your eye work? Student Advanced Version Vision Lab - Overview

Vision: How does your eye work? Student Advanced Version Vision Lab - Overview Vision: How does your eye work? Student Advanced Version Vision Lab - Overview In this lab, we will explore some of the capabilities and limitations of the eye. We will look Sight at is the one extent

More information

Chapter 1 Virtual World Fundamentals

Chapter 1 Virtual World Fundamentals Chapter 1 Virtual World Fundamentals 1.0 What Is A Virtual World? {Definition} Virtual: to exist in effect, though not in actual fact. You are probably familiar with arcade games such as pinball and target

More information

Ask yourself: Yerkes Summer Institute 2002 Resonance

Ask yourself: Yerkes Summer Institute 2002 Resonance Resonance Lab This lab is intended to help you understand: 1) that many systems have natural frequencies or resonant frequencies 2) that by changing the system one can change its natural frequency 3) that

More information

3. Sound source location by difference of phase, on a hydrophone array with small dimensions. Abstract

3. Sound source location by difference of phase, on a hydrophone array with small dimensions. Abstract 3. Sound source location by difference of phase, on a hydrophone array with small dimensions. Abstract A method for localizing calling animals was tested at the Research and Education Center "Dolphins

More information

Computer Vision. The Pinhole Camera Model

Computer Vision. The Pinhole Camera Model Computer Vision The Pinhole Camera Model Filippo Bergamasco (filippo.bergamasco@unive.it) http://www.dais.unive.it/~bergamasco DAIS, Ca Foscari University of Venice Academic year 2017/2018 Imaging device

More information

5 m-measurement system for traceable measurements of tapes and rules

5 m-measurement system for traceable measurements of tapes and rules 5 m-measurement system for traceable measurements of tapes and rules Tanfer Yandayan*, Bulent Ozgur Tubitak Ulusal Metroloji Enstitusu (UME) PK54, 4147 Gebze-KOCAELI / TURKEY ABSTRACT Line standards such

More information

HOW FAR AWAY ARE THE SATELLITES?

HOW FAR AWAY ARE THE SATELLITES? HOW FAR AWAY ARE THE SATELLITES? Concepts A signal is a wave Wave characteristics can be used to measure properties such as velocity, distance, and time Every measurement has units Units are interchangeable

More information

Build a Water Bottle Rocket Assembly!

Build a Water Bottle Rocket Assembly! Build a Water Bottle Rocket Assembly! In February of 2008 Leland flew aboard the Space Shuttle Atlantis for his first space mission, launching with two attached solid rocket boosters. Check out the experiment

More information

Lecture 7: homogeneous coordinates

Lecture 7: homogeneous coordinates Lecture 7: homogeneous Dr. Richard E. Turner (ret26@cam.ac.uk) October 31, 2013 House keeping webpage: http://cbl.eng.cam.ac.uk/public/turner/teaching Recap of last lecture: Pin hole camera image plane

More information

Aimetis Outdoor Object Tracker. 2.0 User Guide

Aimetis Outdoor Object Tracker. 2.0 User Guide Aimetis Outdoor Object Tracker 0 User Guide Contents Contents Introduction...3 Installation... 4 Requirements... 4 Install Outdoor Object Tracker...4 Open Outdoor Object Tracker... 4 Add a license... 5...

More information

Inquiry Unit for CT State Science Standard 5.2

Inquiry Unit for CT State Science Standard 5.2 Inquiry Unit for CT State Science Standard 5.2 Hope Pardee hpardee@milforded.org Marilyn Odell scinco@snet.net Christina Holth cholth@salem.cen.ct.gov Inquiry Institute Classroom Applications Summer 2007

More information

VECTOR LAB: III) Mini Lab, use a ruler and graph paper to simulate a walking journey and answer the questions

VECTOR LAB: III) Mini Lab, use a ruler and graph paper to simulate a walking journey and answer the questions NAME: DATE VECTOR LAB: Do each section with a group of 1 or 2 or individually, as appropriate. As usual, each person in the group should be working together with the others, taking down any data or notes

More information

GlobiScope Analysis Software for the Globisens QX7 Digital Microscope. Quick Start Guide

GlobiScope Analysis Software for the Globisens QX7 Digital Microscope. Quick Start Guide GlobiScope Analysis Software for the Globisens QX7 Digital Microscope Quick Start Guide Contents GlobiScope Overview... 1 Overview of home screen... 2 General Settings... 2 Measurements... 3 Movie capture...

More information

Preview. Light and Reflection Section 1. Section 1 Characteristics of Light. Section 2 Flat Mirrors. Section 3 Curved Mirrors

Preview. Light and Reflection Section 1. Section 1 Characteristics of Light. Section 2 Flat Mirrors. Section 3 Curved Mirrors Light and Reflection Section 1 Preview Section 1 Characteristics of Light Section 2 Flat Mirrors Section 3 Curved Mirrors Section 4 Color and Polarization Light and Reflection Section 1 TEKS The student

More information

Physics Spring 2006 Experiment 9 TRAVELING WAVES

Physics Spring 2006 Experiment 9 TRAVELING WAVES Physics 31210 Spring 2006 Experiment 9 TRAVELING WAVES Reference: Halliday, Resnick & Walker, 7th Ed., Sections 16-1 to 5, Sections 17-1 to 4 I. Introduction: Waves of all kinds, propagating through many

More information

Faraday's Law. Objective: In today's experiment you will investigate electromagnetic induction and determine the factors that affect it.

Faraday's Law. Objective: In today's experiment you will investigate electromagnetic induction and determine the factors that affect it. Faraday's Law 1 Objective: In today's experiment you will investigate electromagnetic induction and determine the factors that affect it. Theory: The phenomenon of electromagnetic induction was first studied

More information

PHYSICS 289 Experiment 8 Fall Geometric Optics II Thin Lenses

PHYSICS 289 Experiment 8 Fall Geometric Optics II Thin Lenses PHYSICS 289 Experiment 8 Fall 2005 Geometric Optics II Thin Lenses Please look at the chapter on lenses in your text before this lab experiment. Please submit a short lab report which includes answers

More information

Perspective in Art. Yuchen Wu 07/20/17. Mathematics in the universe. Professor Hubert Bray. Duke University

Perspective in Art. Yuchen Wu 07/20/17. Mathematics in the universe. Professor Hubert Bray. Duke University Perspective in Art Yuchen Wu 07/20/17 Mathematics in the universe Professor Hubert Bray Duke University Introduction: Although it is believed that science is almost everywhere in our daily lives, few people

More information

Chapter PREPTEST: SHM & WAVE PROPERTIES

Chapter PREPTEST: SHM & WAVE PROPERTIES 2 4 Chapter 13-14 PREPTEST: SHM & WAVE PROPERTIES Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A load of 45 N attached to a spring that is hanging vertically

More information

StandingWaves_P2 [41 marks]

StandingWaves_P2 [41 marks] StandingWaves_P2 [41 marks] A loudspeaker emits sound towards the open end of a pipe. The other end is closed. A standing wave is formed in the pipe. The diagram represents the displacement of molecules

More information

CALIBRATION OF OPTICAL SATELLITE SENSORS

CALIBRATION OF OPTICAL SATELLITE SENSORS CALIBRATION OF OPTICAL SATELLITE SENSORS KARSTEN JACOBSEN University of Hannover Institute of Photogrammetry and Geoinformation Nienburger Str. 1, D-30167 Hannover, Germany jacobsen@ipi.uni-hannover.de

More information

SRV02-Series Rotary Experiment # 3. Ball & Beam. Student Handout

SRV02-Series Rotary Experiment # 3. Ball & Beam. Student Handout SRV02-Series Rotary Experiment # 3 Ball & Beam Student Handout SRV02-Series Rotary Experiment # 3 Ball & Beam Student Handout 1. Objectives The objective in this experiment is to design a controller for

More information

ECEN 4606, UNDERGRADUATE OPTICS LAB

ECEN 4606, UNDERGRADUATE OPTICS LAB ECEN 4606, UNDERGRADUATE OPTICS LAB Lab 3: Imaging 2 the Microscope Original Version: Professor McLeod SUMMARY: In this lab you will become familiar with the use of one or more lenses to create highly

More information