Error Fields Expected in ITER and their Correction

Size: px
Start display at page:

Download "Error Fields Expected in ITER and their Correction"

Transcription

1 1 ITR/P5-9 Error Fields Expected in ITER and their Correction Y. Gribov 1, V. Amoskov, E. Lamzin, N. Maximenkova, J. E. Menard 3, J.-K. Park 3, V. Belyakov, J. Knaster 1, S. Sytchevsky 1 ITER Organization, Route de Vinon sur Verdon, Saint Paul Lez Durance, France D.V. Efremov Scientific Research Institute, St.-Petersburg, Russia 3 Princeton Plasma Physics Laboratory, Princeton, NJ, USA contact of main author: yuri.gribov@iter.org Abstract. The paper summarises the present status in the study of error fields expected in ITER (n = 1 modes) and their correction. Two approaches are used in the study of ITER error fields: analysis of the 3-mode error fields and analysis of the overlap error fields. The error fields expected in ITER from different sources are analyzed. The main contributor to the error fields is misalignments of the ITER coils. The analysis performed has shown that the error field Correction coils are capable to reduce the expected error fields below the present criteria. Capability of the in-vessel ELM control coils to correct error fields is also analyzed. 1. Introduction Non-axisymmetric components of tokamak magnetic field (error fields), caused by asymmetries in the machine design and construction, degrade plasma confinement and can cause a disruption [1]. This paper summarises the present status in the study of error fields expected in ITER (n = 1 modes) and in the analysis of capability of the error fields correction by the Correction coils (CC) and ELM control coils. Section describes criteria used for the error field study. Section 3 describes ITER error field correction system. Assessment of error fields expected from misalignments of the ITER superconducting coils is given in Section 4. Analysis of error fields expected from other sources is given in Section 5. Section 6 draws the conclusions. The studies of the main contributors to the error fields were performed for the latest ITER design (Baseline 010).. Criteria for Error Field Correction Two approaches were used in the error field studies: analysis of the 3-mode error fields [1] and analysis of the overlap error fields []. 3-mode error field criterion Since the earliest phase of the ITER design activity, the 3-mode error field criterion, based on experimental data from a range of tokamaks, has been used to determine the allowable level of error fields (the Locked Mode Threshold for operation with low plasma density) [1, 3-5]: B 5 3 mode 0. ( B1,1 ) ( B,1) 0.8 ( B3,1 ) 5 10 B0. Here B 3-mode is the weighted averaged amplitude of the (1,1), (,1) and (3,1) Fourier modes of the component of magnetic field normal to the q = surface and B 0 = 5.3 T is the toroidal field in the centre of plasma cross section (R =6. m). The definition of the modes amplitude is given in [3-5].

2 ITR/P5-9 Plasma with low β p at the start of current flattop in 155 MA DT inductive scenario ( Plasma 1 ) has been used for the analysis as one of the mostt sensitive to error fields (high plasma current, low density and lack of plasma rotation drivenn by tangential injection of the neutral beams). Overlap error field criteria The algorithm for calculation of the overlap external error field, B over rlap, [, 6] has been derived from analysis performed with thee IPEC code for three fiducial ITERR plasmas: i) Plasmaa 1 - characterised above, ii) Plasmaa - high β p plasma at the state of burn in 155 MA DT inductive scenario, iii) Plasmaa 3 - high β p plasma at the state of burn in 9 MA DT steady-state scenario. The IPEC code calculates those components of the external (to the plasma) error fields which are most efficient at driving the growth of a magnetic island, takingg into account the perturbation to the plasma equilibrium associated with the external fields. For calculation of the overlap errorr field, the normal component of the external error field (n = 1) is calculated on the plasma boundary. The following f criteria on the overlap error fields, B overlap / B 0, were developed for the fiducial plasmas on the basis of experimental results from DIII-D, NSTX and CMOD: B overl lap / B for Plasma 1, for Plasma and a for Plasmaa 3. It should be noted that the criteria for error field correction aree not final and they are studied in the framework of International Tokamak Physics Activity (MHD Stability Topical Group). Moreover other multi-harmonic criteria are being developed at present. p 3. Error Field Correction System Taking into account that at present misalignments of ITER superconducting coils are rather uncertain and criteria for error field correction are still a developing area, ITER hass unique tools for identification of the error fields, for study of how they should be corrected (in dedicated experiments) and for the error fields multi-harmonic correction. c The main actuator for error field correction in ITER is superconducting Correction coils located outside the vacuum vessel (shownn in Figs. 1 and ) [7]. FIG. 1. Error field Correction coils, central solenoid and poloidal field coils. FIG.. Error field Correction coils (blue coils) and ELMM control coils (black coils).

3 3 ITR/P5-9 There are three sets of the coils: Top CC, Side CC, and Bottomm CC. Maximum values of the coil currents are 30 ka turns, 00 ka turns and 30 ka turns, respectively. Each set of the CC consists of 6 saddle coils. Within each set, the toroidallyy opposite coils are connected electrically in anti-seriehas three independent power supplies, which allows a phase adjustment of the to provide suppression of error field modes withh n = 1. Each set of the CC correction field. The primary objective of the in-vessel ELM control coils (shown in Fig. in black) is the control of Edge Localized Modes with h the goal of avoidingg excessive heat loadss on the plasma facing components of the tokamak. However, in combination with the Correction coils, these coils are a unique tool for the control of error fields. The whole coil system, comprising 7 ELM coils (maximum( current 90 ka turns) with 7 independent power suppliess and 18 CCC with 9 independent power supplies, allows a very high flexibility in the production of a range of spectra of non-axisymmetric magnetic fields. 4. Error Fields from Misalignments of TF, CS and PF Coils The main contributor to errorr fields is the manufacturing and assembly errors of the central solenoid (CS), poloidal (PF) and toroidal field (TF) coils, usually considered as positioning errors in the current centrelinee (CCL) of the coils. The baseline set of the coil tolerances [8] is given in Table I. The table specify limitss for 670 independent degrees off freedom (DOF) in position and shape of the CCL of the tokamak main magnetss causing error fields with the toroidal mode number n = 1. Errors in thee CS and PF coil wrapping are defined in Fig. 3. FIG. 3. Error in CS and PF coil wrapping.. FIG. 4. Locations of the reference points ABCDRFG onn the TF coil l current centerline. The TF coil manufacturing and assembly errors come from: 1) winding pack (WP) manufacture, ) WP insertion in the case, and 3) assembling of eighteen TF coils around the vertical axis of the machine. These errorss can be considered separately as follows. 1) The TF coils manufacturing sizes may be checked by indirect methods. A set of seven reference points marked by ABCDEFG (Fig. 4) is used for checking position and shape of the CCL. Shifts in X, Y,, and Z-directions of these pointss (1 DOF per coil) define the WP errors.

4 4 ITR/P5-9 ) On insertion of the winding pack in the case, it may be shifted or tilted as a rigid body (6 DOF per coil). 3) The assembly errors are considered to be in the form of rigid body displacement and/or rotation of TF coil case (6 DOF per coil) around the vertical axis of the machine. TABLE I: BASELINE TOLERANCES ON DIFFERENT DEVIATIONS OF CS, PF AND TF COILS CURRENT CENTRELINES RELATIVE TO THEIR IDEAL POSITION AND SHAPE (n = 1) Type of deviation Tolerance mm CSU3 shift 3 CSU shift 3 CSU1 shift 3 CSL1 shift 3 CSL shift 3 CSL3 shift 3 CSU3 tilt CSU tilt 1.7 CSU1 tilt 1.4 CSL1 tilt 1.1 CSL tilt 0.8 CSL3 tilt 0.5 CS stack shift CS stack tilt 0 CSU3 wrapping 1 CSU wrapping 1 CSU1 wrapping 1 CSL1 wrapping 1 CSL wrapping 1 CSL3 wrapping 1 PF coil shift PF coil tilt 1 PF1 wrapping 1 PF wrapping 1 PF3 wrapping 1 PF4 wrapping 1 PF5 wrapping 1 PF6 wrapping 1 Type of deviation Tolerance mm TFC WP radial shift 0.5 TFC WP side shift 1 TFC WP vertical shift 0.5 TFC WP tilt, around axis Y 0.5 TFC WP tilt, around axis Z TFC WP tilt, around axis X Points A, B, shift along X-axis 1 Points A, B, shift along Y-axis 3 Points A, B, shift along Z-axis 1 Points C, F, shift along X-axis Points C, F, shift along Y-axis 3 Points C, F, shift along Z-axis Points D, E, G, shift along X- axis Points D, E, G, shift along Y- axis 3 Points D, E, G, shift along Z- axis TFC case radial shift TFC case side shift TFC case vertical shift TFC case tilt, around axis Z TFC case tilt, around axis Y 4 TFC case tilt, around axis X 4 Statistical analysis of the expected error fields was performed on the basis of a million Monte Carlo calculations, assuming uniform distribution of the errors within the given tolerances. Assessment of the CC currents required for the error fields correction is based on the Fourier transform of CC correction fields and can be treated as an inverse problem, which in this case is ill-conditioned. The problem is solved by using the regularization procedures. Different set of currents in CC can be obtained using different optimization criteria.

5 5 ITR/P5-9 Two optimization approaches were used in the study. In the first approach, currents in the CC were calculated minimizing their root-mean square norm. The following vector norm was minimized in this approach: 1/ 9 I I i. (1) i 1 In the second approach, currents in the CC were calculated minimizing maximum value of the current among all coils. The following vector norm was minimized in this approach: I max I, () 1 i 9 i The study has shown that, for 1,000,000 statistical events, the "3-mode" error fields, expected from misalignments of the TF, CS, and PF coils for the baseline set of the coil tolerances, is less than B 3-mode /B 0 = with the probability 100% and less than with the probability 99.9%. With the confidence 99.9% the "3-mode" error fields can be reduced to by the currents within 13 ka turns in the Top CC, 60 ka turns in the Side CC, and 164 ka turns in the Bottom CC, if the optimization approach (1) is used. Using the optimization approach (), similar correction can be performed by the currents in all coils within 130 ka turns. However, in this case 130 ka turns will require in all CC. Figs. 5a and 5b illustrate this conclusion. FIG. 5a. Representation of 1,000,000 statistical events (670 DOF) in calculations of 3-mode error fields (horizontal axis) and currents in the Bottom CC required for the error field reduction to calculated using the optimization approach (1) (vertical axis). FIG. 5b. Representation of 1,000,000 statistical events (670 DOF) in calculations of 3-mode error fields (horizontal axis) and currents in the Bottom CC required for the error field reduction to calculated using the optimization approach () (vertical axis). The statistical analysis of the overlap error fields, performed for the three fiducial ITER plasmas, has demonstrated that with the probability 100% the error fields are less than the overlap error field criteria.

6 6 ITR/P Error Fields from other Sources Maximum error fields expected from the TF, CS and PF coils misalignments are shown in the upper row of Table II. TABLE II: ERROR FIELDS (n = 1) EXPECTED IN ITER (IN 10-5 OF THE TOROIDAL MAGNETIC FIELD, 5.3T) Type of analysis 3-mode Overlap Source of error field Plasma 1 Plasma 1 Plasma Plasma 3 misalignments of TF, CS and PF coils (baseline) < 17 < 10 < 4 < joints and busbars of TF, CS and PF coils, 1) 1.0 < 0.8 < 0.41 < 0.15 six test blanket modules, ) irregularity of ferromagnetic inserts (FI), 3) test blanket modules and FI irregularity, ) & 3) scattering in FI magnetic properties, 4) <.0 NBI magnetic field reduction system, 5) 1. rebar in concrete of bioshield, 6) < 1 rebar in concrete of tokamak complex, 7) 0. cryostat and cryostat thermal shield, 8) < 0.04 < 0.03 < 0.03 < 0.0 vacuum vessel thermal shield, 9) < 0.01 < < < scattering in big knuckle magnetic properties, 10) < 0.0 < 0.01 < < misalignments of VS coils (at 40 ka turns), 11) < 4.3 < 5.1 < 6.0 < 7. Locked mode criterion: The table also shows error fields expected from other sources. These are: 1) TF, CS and PF coils joints and busbars (Fig. 6), ) ferromagnetic structures of six test blanket modules (Fig. 7), 3) irregularity of ferromagnetic inserts located between inner and outer shells of the vacuum vessel (for reduction of the toroidal field ripple, Fig. 8), 4) scattering in the values of ferromagnetic inserts steel plate thicknesses (±.5%) and saturated magnetization (±.5%), 5) magnetic field reduction system of the neutral beam injectors (two Heating NBIs and one Diagnostic NBI, Fig. 9), 6) ferromagnetic elements of the bioshield (rebar in concrete), 7) ferromagnetic elements of the tokamak complex other than the bioshield, 8) scattering in weak magnetic permeability of the austenitic steel from which the cryostat and the cryostat thermal shield are made (maximum value of μ = 1.05), 9) scattering in weak magnetic permeability of the austenitic steel from which the vacuum vessel thermal shield are made (maximum value of μ = 1.05, 10) scattering in saturation magnetization of Ni-Al bronze from which the divertor big knuckle is made (μ 0 M S = mt), 11) misalignments of VS in-vessel coils (± cm, at maximum current 40 ka turns). The following comments need to be done on the error fields produced by the VS in-vessel coils due to misalignment of their current centrelines relative to their ideal (axisymmetrical) position. In the statistical analysis, it was assumed maximum value of the coil current (40 ka turns) and deviation of the current centrelines relative to the ideal position (tolerance) +/-0 mm in the horizontal and vertical directions. It should be noted, that due to the VS coils heating they may conduct the maximum current only for a short time (time scale 0. s).

7 7 ITR/P5-9 Maximum allowable value of the coils effective current is only 40 ka turns. Short transient error fields caused by high transient currents in VS coils, if necessary, can be corrected by the ELM control coils. FIG. 6. TF, CS and PF coil joints and busbars. FIG. 7. Magnetic model of six TBMs. FIG. 8. Magnetic model of Ferromagnetic Inserts. FIG. 9. Models of magnetic field reduction system of the neutral beam injectors (upper - Heating NBI, lower - Diagnostic NBI). The following results were obtained using Monte Carlo simulations with 1,000,000 statistical events assuming the current in VS coils 40 ka turns and position tolerance +/-0 mm. 1) With the probability 99.9% the "3-mode" error field is less than of the toroidal magnetic field. Reduction of the error field to about 10-7 with the probability 99.9% requires currents in ELM coils less than 5.3 ka turns. This maximum current is required in the Lower coils. ) With the probability 100% the overlap error field is less than of the toroidal magnetic field for Plasma 1, less than for Plasma, and less than for Plasma 3. Reduction of the error field to about 10-7 with the probability 100% requires currents in ELM coils less than 6.8 kat. This maximum current is required in the Equatorial coils.

8 8 ITR/P Summary Analysis of n = 1 modes of error fields expected in ITER has been performed using two criteria: the 3-mode criterion, used since many years for the ITER error field study [1], and the overlap error field criterion, based on the analysis performed with the IPEC code for three fiducial ITER plasmas []. So far twelve potential sources of error fields have been analyzed. The main contributor to the error fields is the manufacturing and assembly errors of the CS, PF and TF coils. Error fields expected from the coils were calculated using the baseline set of the coil tolerances specifying limits on 670 independent DOF in position and shape of the coils current centrelines causing error fields with the toroidal mode number n = 1. Statistical analysis of the expected error fields was performed on the basis of 1,000,000 Monte Carlo calculations, assuming uniform distribution of the positioning and shaping errors within the given tolerances. The expected error fields can exceed by 3.4 times the 3-mode criterion for the Plasma 1, whereas they should be less than the present overlap criteria for the Plasmas 1, and 3. For the baseline set of the coil tolerances, with the confidence 99.9% the "3-mode" error fields can be reduced to below the criterion by the Correction coils keeping 14% margin in the currents of the Top coils, 33% margin in the Side coils and 95% margin in the Bottom coils, if optimization approach (1) is used. It should be noted, that after the coils manufacturing and installation, the real errors in position and shape of the coils current centrelines can be higher than the baseline set of the coil tolerances. Moreover, the criteria for error field correction are not final and they are studied in the framework of International Tokamak Physics Activity. Other sources of error fields, which have been analyzed so far, produce error fields less that the threshold values according to the both criteria considered. Disclaimer: The views and opinions expressed herein do not necessarily reflect those of the ITER Organization. References [1] HENDER, T.C., et al., Progress in ITER Physics Basis, Chapter 3 MHD stability, operational limits and disruptions, Section.4, Nucl. Fusion 47 (007) 51. [] PARK, J.-K., et al., Error field correction in ITER, Nucl. Fusion 48 (008) [3] AMOSKOV, V, et al., Fourier analysis of 3D error fields in tokamaks, Plasma Devices and Operations 1 (004) 85. [4] AMOSKOV, V, et al., Statistical analysis of expected error fields in tokamaks and their correction, Plasma Devices and Operations 13 (005) 87. [5] KNASTER, J., et al., ITER non-axisymmetric error fields induced by its magnet system, Fusion Engineering and Design 86 (011) [6] PARK, J.-K., et al., Robust correction of 3D error fields in tokamaks including ITER, 3rd IAEA Fusion Energy Conference, Daejon, Korea Rep., October 010, EX- S/P5-1. [7] FOUSSAT, A., et al., From design to development phase of the ITER correction coils, IEEE Transactions on Applied Superconductivity, 1 (011) [8] MITCHELL, N., KNASTER, J., Contributions to Plasma Error Fields from the CS, PF and TF Coils, Private communication, 006, version 1.3.

Effect of Resonant and Non-resonant Magnetic Braking on Error Field Tolerance in High Beta Plasmas

Effect of Resonant and Non-resonant Magnetic Braking on Error Field Tolerance in High Beta Plasmas Effect of Resonant and Non-resonant Magnetic Braking on Error Field Tolerance in High Beta Plasmas Holger Reimerdes With A.M. Garofalo, 1 E.J. Strait, 1 R.J. Buttery, 2 M.S. Chu, 1 Y. In, 3 G.L. Jackson,

More information

Fault Analysis of ITER Coil Power Supply System

Fault Analysis of ITER Coil Power Supply System Fault Analysis of ITER Coil Power Supply System INHO SONG*, JEFF THOMSEN, FRANCESCO MILANI, JUN TAO, IVONE BENFATTO ITER Organization CS 90 046, 13067 St. Paul Lez Durance Cedex France *Inho.song@iter.org

More information

Task on the evaluation of the plasma response to the ITER ELM stabilization coils in ITER H- mode operational scenarios. Technical Specifications

Task on the evaluation of the plasma response to the ITER ELM stabilization coils in ITER H- mode operational scenarios. Technical Specifications Task on the evaluation of the plasma response to the ITER ELM stabilization coils in ITER H- mode operational scenarios Technical Specifications Version 1 Date: 28/07/2011 Name Affiliation Author G. Huijsmans

More information

Improvements in the fast vertical control systems in KSTAR, EAST, NSTX and NSTX-U

Improvements in the fast vertical control systems in KSTAR, EAST, NSTX and NSTX-U 1 PPC/P8-17 Improvements in the fast vertical control systems in KSTAR, EAST, NSTX and NSTX-U D. Mueller 1, N.W. Eidietis 2, D. A. Gates 1, S. Gerhardt 1, S.H. Hahn 3, E. Kolemen 1, L. Liu 5, J. Menard

More information

Interdependence of Magnetic Islands, Halo Current and Runaway Electrons in T-10 Tokamak

Interdependence of Magnetic Islands, Halo Current and Runaway Electrons in T-10 Tokamak IAEA-CN-77/EXP2/02 Interdependence of Magnetic Islands, Halo Current and Runaway Electrons in T-10 Tokamak N.V. Ivanov, A.M. Kakurin, V.A. Kochin, P.E. Kovrov, I.I. Orlovski, Yu.D.Pavlov, V.V. Volkov Nuclear

More information

Magnets Y.C. Saxena Institute for Plasma Research. 1/16/2007 IPR Peer Review Jan

Magnets Y.C. Saxena Institute for Plasma Research. 1/16/2007 IPR Peer Review Jan Magnets Y.C. Saxena Institute for Plasma Research 1/16/2007 IPR Peer Review 15-17 Jan 2007 1 Magnet Development Program driven by Laboratory Scale Experiments ADITYA Tokamak SST-1 Tokamak 1/16/2007 IPR

More information

GA A D VACUUM MAGNETIC FIELD MODELING OF THE ITER ELM CONTROL COILS DURING STANDARD OPERATING SCENARIOS

GA A D VACUUM MAGNETIC FIELD MODELING OF THE ITER ELM CONTROL COILS DURING STANDARD OPERATING SCENARIOS GA A27389 3D VACUUM MAGNETIC FIELD MODELING OF THE ITER ELM CONTROL COILS DURING STANDARD OPERATING SCENARIOS by T.E. EVANS, D.M. ORLOV, A. WINGEN, W. WU, A. LOARTE, T.A. CASPER, O. SCHMITZ, G. SAIBENE,

More information

2.3 PF System. WU Weiyue PF5 PF PF1

2.3 PF System. WU Weiyue PF5 PF PF1 2.3 PF System WU Weiyue 2.3.1 Introduction The poloidal field (PF) system consists of fourteen superconducting coils, including 6 pieces of central selenoid coils, 4 pieces of divertor coils and 4 pieces

More information

Presented by Rob La Haye. on behalf of Francesco Volpe. at the 4 th IAEA-TM on ECRH for ITER

Presented by Rob La Haye. on behalf of Francesco Volpe. at the 4 th IAEA-TM on ECRH for ITER Locked Neoclassical Tearing Mode Control on DIII-D by ECCD and Magnetic Perturbations Presented by Rob La Haye General Atomics, San Diego (USA) on behalf of Francesco Volpe Max-Planck Gesellschaft (Germany)

More information

System Upgrades to the DIII-D Facility

System Upgrades to the DIII-D Facility System Upgrades to the DIII-D Facility A.G. Kellman for the DIII-D Team 24th Symposium on Fusion Technology Warsaw, Poland September 11-15, 2006 Upgrades Performed During the Long Torus Opening (LTOA)

More information

DIII-D INTEGRATED PLASMA CONTROL TOOLS APPLIED TO NEXT GENERATION TOKAMAKS

DIII-D INTEGRATED PLASMA CONTROL TOOLS APPLIED TO NEXT GENERATION TOKAMAKS GA-A776 by J.A. LEUER, R.D. DERANIAN, J.R. FERRON, D.A. HUMPHREYS, R.D. JOHNSON, B.G. PENAFLOR, M.L. WALKER, A.S. WELANDER, D. GATES, R. HATCHER, J. MENARD, D. MUELLER, G. McARDLE, J. STORRS, B. WAN, Y.

More information

Technical Readiness Level For Plasma Control

Technical Readiness Level For Plasma Control Technical Readiness Level For Plasma Control PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION A.D. Turnbull, General Atomics ARIES Team Meeting University of Wisconsin, Madison,

More information

A Design Study of Stable Coil Current Control Method for Back-to-Back Thyristor Converter in JT-60SA

A Design Study of Stable Coil Current Control Method for Back-to-Back Thyristor Converter in JT-60SA J. Plasma Fusion Res. SERIES, Vol. 9 (1) A Design Study of Stable Coil Current Control Method for Back-to-Back Thyristor Converter in JT-6SA Katsuhiro SHIMADA 1, Tsunehisa TERAKADO 1, Makoto MATSUKAWA

More information

Modelling ITER Asymmetric VDEs through asymmetries of toroidal eddy currents

Modelling ITER Asymmetric VDEs through asymmetries of toroidal eddy currents EUROFUSION WPJET1-CP(16) 15770 R Roccella et al. Modelling ITER Asymmetric VDEs through asymmetries of toroidal eddy currents Preprint of Paper to be submitted for publication in Proceedings of 26th IAEA

More information

Real-time Systems in Tokamak Devices. A case study: the JET Tokamak May 25, 2010

Real-time Systems in Tokamak Devices. A case study: the JET Tokamak May 25, 2010 Real-time Systems in Tokamak Devices. A case study: the JET Tokamak May 25, 2010 May 25, 2010-17 th Real-Time Conference, Lisbon 1 D. Alves 2 T. Bellizio 1 R. Felton 3 A. C. Neto 2 F. Sartori 4 R. Vitelli

More information

Study of Plasma Equilibrium during the AC Current Reversal Phase on the STOR-M Tokamak

Study of Plasma Equilibrium during the AC Current Reversal Phase on the STOR-M Tokamak 1 Study of Plasma Equilibrium during the AC Current Reversal Phase on the STOR-M Tokamak C. Xiao 1), J. Morelli 1), A.K. Singh 1, 2), O. Mitarai 3), T. Asai 1), A. Hirose 1) 1) Department of Physics and

More information

3D-MAPTOR Code for Computation of Magnetic Fields in Tokamaks

3D-MAPTOR Code for Computation of Magnetic Fields in Tokamaks 3D-MAPTOR Code for Computation of Magnetic Fields in Tokamaks J. Julio E. Herrera-Velázquez 1), Esteban Chávez-Alaercón 2) 1) Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, México

More information

The Compact Toroidal Hybrid A university scale fusion experiment. Greg Hartwell

The Compact Toroidal Hybrid A university scale fusion experiment. Greg Hartwell The Compact Toroidal Hybrid A university scale fusion experiment Greg Hartwell Plasma Physics Workshop, SMF-PPD, Universidad National Autónoma México, October 12-14, 2016 CTH Team and Collaborators CTH

More information

Magnetics and Power System Upgrades for the Pegasus-U Experiment

Magnetics and Power System Upgrades for the Pegasus-U Experiment Magnetics and Power System Upgrades for the Pegasus-U Experiment R.C. Preston, M.W. Bongard, R.J. Fonck, and B.T. Lewicki 56 th Annual Meeting of the APS Division of Plasma Physics University of Wisconsin-Madison

More information

Increased Stable Beta in DIII D by Suppression of a Neoclassical Tearing Mode Using Electron Cyclotron Current Drive and Active Feedback

Increased Stable Beta in DIII D by Suppression of a Neoclassical Tearing Mode Using Electron Cyclotron Current Drive and Active Feedback 1 EX/S1-3 Increased Stable Beta in DIII D by Suppression of a Neoclassical Tearing Mode Using Electron Cyclotron Current Drive and Active Feedback R.J. La Haye, 1 D.A. Humphreys, 1 J. Lohr, 1 T.C. Luce,

More information

Investigation of compact toroid penetration for fuelling spherical tokamak plasmas on CPD

Investigation of compact toroid penetration for fuelling spherical tokamak plasmas on CPD 1 EX/P5-7 Investigation of compact toroid penetration for fuelling spherical tokamak plasmas on CPD N. Fukumoto 1), K. Hanada 2), S. Kawakami 2), S. Honma 2), M. Nagata 1), N. Nishino 3), H. Zushi 2),

More information

Physics, Technologies and Status of the Wendelstein 7-X Device

Physics, Technologies and Status of the Wendelstein 7-X Device Physics, Technologies and Status of the Wendelstein 7-X Device F. Wagner on behalf of the W7-X team IPP, BI-Greifswald, EURATOM association Stellarators: toroidal devices with external confinement External

More information

Active Control for Stabilization of Neoclassical Tearing Modes

Active Control for Stabilization of Neoclassical Tearing Modes Active Control for Stabilization of Neoclassical Tearing Modes Presented by D.A. Humphreys General Atomics 47th APS-DPP Meeting Denver, Colorado October 24 28, 2005 Control of NTM s is an Important Objective

More information

Recent Results on RFX-mod control experiments in RFP and tokamak configuration

Recent Results on RFX-mod control experiments in RFP and tokamak configuration Recent Results on RFX-mod control experiments in RFP and tokamak configuration L.Marrelli Summarizing contributions by M.Baruzzo, T.Bolzonella, R.Cavazzana, Y. In, G.Marchiori, P.Martin, E.Martines, M.Okabayashi,

More information

Linear and Impulse Control Systems for Plasma Unstable Vertical Position in Elongated Tokamak

Linear and Impulse Control Systems for Plasma Unstable Vertical Position in Elongated Tokamak 51st IEEE Conference on Decision and Control December 10-13, 2012. Maui, Hawaii, USA Linear and Impulse Control Systems for Plasma Unstable Vertical Position in Elongated okamak Yuri V. Mitrishkin, Semyon

More information

GA A27238 MEASUREMENT OF DEUTERIUM ION TOROIDAL ROTATION AND COMPARISON TO NEOCLASSICAL THEORY IN THE DIII-D TOKAMAK

GA A27238 MEASUREMENT OF DEUTERIUM ION TOROIDAL ROTATION AND COMPARISON TO NEOCLASSICAL THEORY IN THE DIII-D TOKAMAK GA A27238 MEASUREMENT OF DEUTERIUM ION TOROIDAL ROTATION AND COMPARISON TO NEOCLASSICAL THEORY IN THE DIII-D TOKAMAK by B.A. GRIERSON, K.H. BURRELL, W.W. HEIDBRINK, N.A. PABLANT and W.M. SOLOMON APRIL

More information

GA A25836 PRE-IONIZATION EXPERIMENTS IN THE DIII-D TOKAMAK USING X-MODE SECOND HARMONIC ELECTRON CYCLOTRON HEATING

GA A25836 PRE-IONIZATION EXPERIMENTS IN THE DIII-D TOKAMAK USING X-MODE SECOND HARMONIC ELECTRON CYCLOTRON HEATING GA A25836 PRE-IONIZATION EXPERIMENTS IN THE DIII-D TOKAMAK USING X-MODE SECOND HARMONIC ELECTRON CYCLOTRON HEATING by G.L. JACKSON, M.E. AUSTIN, J.S. degrassie, J. LOHR, C.P. MOELLER, and R. PRATER JULY

More information

Effect of electrode biasing on m/n=2/1 tearing modes in J-TEXT experiments

Effect of electrode biasing on m/n=2/1 tearing modes in J-TEXT experiments Effect of electrode biasing on m/n=2/1 tearing modes in J-TEXT experiments Hai Liu 1, Qiming Hu 1, a, Zhipeng Chen 1, a, Q. Yu 2, Lizhi Zhu 1, Zhifeng Cheng 1, Ge Zhuang 1 and Zhongyong Chen 1 1 State

More information

Sensitivity study for the optimization of the viewing chord arrangement of the ITER poloidal polarimeter

Sensitivity study for the optimization of the viewing chord arrangement of the ITER poloidal polarimeter P8-29 6th International Toki Conference, December 5-8, 26 Sensitivity study for the optimization of the viewing chord arrangement of the ITER poloidal polarimeter T. Yamaguchi, Y. Kawano and Y. Kusama

More information

Status of Japanese DA

Status of Japanese DA Status of Japanese DA Plenary Session IBF/07 Takeo Nishitani Japan Atomic Energy Agency Nice France 10-12 December 2007 Acropolis Congress Centre 1 Status of JADA Takeo Nishitani Establishment of JADA

More information

Non-Axisymmetric Ideal Equilibrium and Stability of ITER Plasmas with Rotating RMPs

Non-Axisymmetric Ideal Equilibrium and Stability of ITER Plasmas with Rotating RMPs EUROFUSION WP14ER PR(16)14672 C.J. Ham et al. Non-Axisymmetric Ideal Equilibrium and Stability of ITER Plasmas with Rotating RMPs Preprint of Paper to be submitted for publication in Nuclear Fusion This

More information

ICRF Physics in KSTAR Steady State

ICRF Physics in KSTAR Steady State ICRF Physics in KSTAR Steady State Operation (focused on the base line operation) Oct. 24, 2005 Jong-gu Kwak on the behalf of KSTAR ICRF TEAM Korea Atomic Energy Research Institute Contents Roles of ICRF

More information

What does this all mean?

What does this all mean? What does this all mean? The JIA created: The ITER Organization (IO), a public international organization, as the agent for the 7 Members to realize the purpose of the ITER to demonstrate the scientific

More information

TOKAMAK T-15MD: experience of scientific and technical project realization in RUSSIA

TOKAMAK T-15MD: experience of scientific and technical project realization in RUSSIA TOKAMAK T-15MD: experience of scientific and technical project realization in RUSSIA Stage one: Physicists decided What tokamak is needed? Compact or medium size (Aspect ratio ~ 2 or ~3) Divertor configuration:

More information

FAST VISUALISATION OF SAFETY MARGINS OF THE W7-X PLASMA VESSEL

FAST VISUALISATION OF SAFETY MARGINS OF THE W7-X PLASMA VESSEL FAST VISUALISATION OF SAFETY MARGINS OF THE W7-X PLASMA VESSEL J. Simon-Weidner*, N. Jaksic Max-Planck-Institut für Plasmaphysik, EURATOM-Association D-85748 Garching, Germany ABSTRACT For the case of

More information

Engineering Aspects of Compact Stellarators *

Engineering Aspects of Compact Stellarators * 1 IAEA-CN-94/FT/2-4 Engineering Aspects of Compact Stellarators * B. E. Nelson 1, A. Brooks 2, R. D. Benson 1, L. A. Berry 1, T. G. Brown 2, J. Chrzanowski 2, M. J. Cole 1, F. Dahlgren 2, H. M. Fan 2,

More information

Gyung-Su Lee National Fusion R & D Center Korea Basic Science Institute

Gyung-Su Lee National Fusion R & D Center Korea Basic Science Institute Status of the KSTAR Project and Fusion Research in Korea Gyung-Su Lee National Fusion R & D Center Korea Basic Science Institute Fusion Research Activities and Plan in Korea Basic Plasma and Fusion Research

More information

DESIGN OF THE ITER IN-VESSEL COILS. Princeton University, Plasma Physics Lab, Princeton, NJ, USA, 2

DESIGN OF THE ITER IN-VESSEL COILS. Princeton University, Plasma Physics Lab, Princeton, NJ, USA, 2 DESIGN OF THE ITER IN-VESSEL COILS C. Neumeyer1, A. Brooks1, L. Bryant1, J. Chrzanowski1, R. Feder1, M. Gomez1, P. Heitzenroeder1, M. Kalish1, A. Lipski1, M. Mardenfeld1, R. Simmons1, P. Titus1, I. Zatz1,

More information

Investigating High Frequency Magnetic Activity During Local Helicity Injection on the PEGASUS Toroidal Experiment

Investigating High Frequency Magnetic Activity During Local Helicity Injection on the PEGASUS Toroidal Experiment Investigating High Frequency Magnetic Activity During Local Helicity Injection on the PEGASUS Toroidal Experiment Nathan J. Richner M.W. Bongard, R.J. Fonck, J.L. Pachicano, J.M. Perry, J.A. Reusch 59

More information

Plasma Confinement by Pressure of Rotating Magnetic Field in Toroidal Device

Plasma Confinement by Pressure of Rotating Magnetic Field in Toroidal Device 1 ICC/P5-41 Plasma Confinement by Pressure of Rotating Magnetic Field in Toroidal Device V. Svidzinski 1 1 FAR-TECH, Inc., San Diego, USA Corresponding Author: svidzinski@far-tech.com Abstract: Plasma

More information

Observation of high-frequency secondary modes during strong tearing mode activity in FTU plasmas without fast ions

Observation of high-frequency secondary modes during strong tearing mode activity in FTU plasmas without fast ions 1 Observation of high-frequency secondary modes during strong tearing mode activity in FTU plasmas without fast ions P.Buratti, P.Smeulders, F. Zonca, S.V. Annibaldi, M. De Benedetti, H. Kroegler, G. Regnoli,

More information

CXRS-edge Diagnostic in the Harsh ITER Environment

CXRS-edge Diagnostic in the Harsh ITER Environment 1 FIP/P4-17 CXRS-edge Diagnostic in the Harsh ITER Environment A.Zvonkov 1, M.De Bock 2, V.Serov 1, S.Tugarinov 1 1 Project Center ITER, Kurchatov sq.1, Building 3, 123182 Moscow, Russia 2 ITER Organization,

More information

Structural Analysis of High-field-Side RF antennas during a disruption on the Advanced Divertor experiment (ADX)

Structural Analysis of High-field-Side RF antennas during a disruption on the Advanced Divertor experiment (ADX) Structural Analysis of High-field-Side RF antennas during a disruption on the Advanced Divertor experiment (ADX) J. Doody, B. LaBombard, R. Leccacorvi, S. Shiraiwa, R. Vieira, G.M. Wallace, S.J. Wukitch,

More information

Preliminary ARIES-AT-DCLL Radial Build for ASC

Preliminary ARIES-AT-DCLL Radial Build for ASC Preliminary ARIES-AT-DCLL Radial Build for ASC L. El-Guebaly and C. Kessel UW - Madison PPPL ARIES-Pathways Project Meeting March 3-4, 2008 UCSD Objectives Define preliminary radial builds for ARIES-AT-DCLL

More information

High-Resolution Detection and 3D Magnetic Control of the Helical Boundary of a Wall-Stabilized Tokamak Plasma

High-Resolution Detection and 3D Magnetic Control of the Helical Boundary of a Wall-Stabilized Tokamak Plasma 1 EX/P4-19 High-Resolution Detection and 3D Magnetic Control of the Helical Boundary of a Wall-Stabilized Tokamak Plasma J. P. Levesque, N. Rath, D. Shiraki, S. Angelini, J. Bialek, P. Byrne, B. DeBono,

More information

Magnetic System for the Upgraded Spherical Tokamak Globus-M2

Magnetic System for the Upgraded Spherical Tokamak Globus-M2 1 ICC/P1-01 Magnetic System for the Upgraded Spherical Tokamak Globus-M2 V.B. Minaev 1, V.K. Gusev 1, N.V. Sakharov 1, Yu.V. Petrov 1, E.N. Bondarchuk 2, A.F. Arneman 2, A.A. Kavin 2, N.M. Kozhukhovskaya

More information

Improved core transport triggered by off-axis ECRH switch-off on the HL-2A tokamak

Improved core transport triggered by off-axis ECRH switch-off on the HL-2A tokamak Improved core transport triggered by off-axis switch-off on the HL-2A tokamak Z. B. Shi, Y. Liu, H. J. Sun, Y. B. Dong, X. T. Ding, A. P. Sun, Y. G. Li, Z. W. Xia, W. Li, W.W. Xiao, Y. Zhou, J. Zhou, J.

More information

Magnetic Reconnection and Ion Flows During Point Source Helicity Injection on the Pegasus Toroidal Experiment

Magnetic Reconnection and Ion Flows During Point Source Helicity Injection on the Pegasus Toroidal Experiment Magnetic Reconnection and Ion Flows During Point Source Helicity Injection on the Pegasus Toroidal Experiment M.G. Burke, R.J. Fonck, J.L. Barr, K.E. Thome, E.T. Hinson, M.W. Bongard, A.J. Redd, D.J. Schlossberg

More information

Feedback control of ECRH for MHD mode stabilization on TEXTOR

Feedback control of ECRH for MHD mode stabilization on TEXTOR -Institute for Plasma Physics Rijnhuizen Association Euratom- Feedback control of ECRH for MHD mode stabilization on TEXTOR Bart Hennen Tuesday, 25 November, 28 With contributions from: E. Westerhof, M.

More information

Design and Construction of JT-60SA Superconducting Magnet System

Design and Construction of JT-60SA Superconducting Magnet System J. Plasma Fusion Res. SERIES, Vol. 9 (2010) 1 Design and Construction of JT-60SA Superconducting Magnet System Kiyoshi YOSHIDA 1), Katsuhiko TSUCHIYA 1), Kaname KIZU 1), Haruyuki MURAKAMI 1), Koji. KAMIYA

More information

Experimental observations of plasma edge magnetic field response to resonant magnetic

Experimental observations of plasma edge magnetic field response to resonant magnetic Home Search Collections Journals About Contact us My IOPscience Experimental observations of plasma edge magnetic field response to resonant magnetic perturbation on the TEXTOR Tokamak This article has

More information

PLASMA STUDIES AT HIGH NORMALIZED CURRENT IN THE PEGASUS EXPERIMENT

PLASMA STUDIES AT HIGH NORMALIZED CURRENT IN THE PEGASUS EXPERIMENT PLASMA STUDIES AT HIGH NORMALIZED CURRENT IN THE PEGASUS EXPERIMENT for the PEGASUS team: D. Battaglia M. Bongard S. Burke N. Eideitis G. Garstka M. Kozar B. Lewicki E. Unterberg Raymond.J. Fonck presented

More information

EX/P9-5. Comprehensive Control of Resistive Wall Modes in DIII-D Advanced Tokamak Plasmas

EX/P9-5. Comprehensive Control of Resistive Wall Modes in DIII-D Advanced Tokamak Plasmas Comprehensive Control of Resistive Wall Modes in DIII-D Advanced Tokamak Plasmas M. Okabayashi 1), I.N. Bogatu 2), T. Bolzonella 3) M.S. Chance 1), M.S. Chu 4), A.M. Garofalo 4), R. Hatcher 1), Y. In 2),

More information

Overview and Initial Results of the ETE Spherical Tokamak

Overview and Initial Results of the ETE Spherical Tokamak Overview and Initial Results of the ETE Spherical Tokamak L.A. Berni, E. Del Bosco, J.G. Ferreira, G.O. Ludwig, R.M. Oliveira, C.S. Shibata, L.F.F.P.W. Barbosa, W.A. Vilela Instituto Nacional de Pesquisas

More information

Conceptual Design of Magnetic Island Divertor in the J-TEXT tokamak

Conceptual Design of Magnetic Island Divertor in the J-TEXT tokamak The 2 nd IAEA Technical Meeting on Divertor Concepts, 13 to 16 November, 2017, Suzhou China Conceptual Design of Magnetic Island Divertor in the J-TEXT tokamak Bo Rao 1, Yonghua Ding 1, Song Zhou 1, Nengchao

More information

Non-inductive Production of Extremely Overdense Spherical Tokamak Plasma by Electron Bernstein Wave Excited via O-X-B Method in LATE

Non-inductive Production of Extremely Overdense Spherical Tokamak Plasma by Electron Bernstein Wave Excited via O-X-B Method in LATE 1 EXW/P4-4 Non-inductive Production of Extremely Overdense Spherical Tokamak Plasma by Electron Bernstein Wave Excited via O-X-B Method in LATE H. Tanaka, M. Uchida, T. Maekawa, K. Kuroda, Y. Nozawa, A.

More information

Supported by. Overview of Transient CHI Plasma Start-up in NSTX. Roger Raman University of Washington

Supported by. Overview of Transient CHI Plasma Start-up in NSTX. Roger Raman University of Washington NSTX Supported by Overview of Transient CHI Plasma Start-up in NSTX College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U

More information

Contributions of Advanced Design Activities to Fusion Research

Contributions of Advanced Design Activities to Fusion Research Contributions of Advanced Design Activities to Fusion Research Farrokh Najmabadi University of California San Diego Presentation to: VLT PAC Meeting February 24, 2003 General Atomics Electronic copy: http://aries.ucsd.edu/najmabadi/talks/

More information

Compact Torus Injection for Fuelling* C. Xiao, A. Hirose, STOR-M team Plasma Physics Laboratory University of Saskatchewan

Compact Torus Injection for Fuelling* C. Xiao, A. Hirose, STOR-M team Plasma Physics Laboratory University of Saskatchewan Compact Torus Injection for Fuelling* C. Xiao, A. Hirose, STOR-M team (chijin.xiao@usask.ca) Plasma Physics Laboratory University of Saskatchewan 1 \ STOR-M Experiments Improved confinement induced by

More information

Precision Metrology of NSTX Surfaces Using Coherent Laser Radar Ranging. by H.W. Kugel, D. Loesser, A.L. Roquemore, M.M. Menon, and R.E.

Precision Metrology of NSTX Surfaces Using Coherent Laser Radar Ranging. by H.W. Kugel, D. Loesser, A.L. Roquemore, M.M. Menon, and R.E. PPPL-3467 UC-70 PPPL-3467 Precision Metrology of NSTX Surfaces Using Coherent Laser Radar Ranging by H.W. Kugel, D. Loesser, A.L. Roquemore, M.M. Menon, and R.E. Berry July 2000 PPPL Reports Disclaimer

More information

2. Composing and characteristics of EAST

2. Composing and characteristics of EAST Overview Progress and Future Plan of EAST project Yuanxi Wan, Jiangang Li, Peide Weng and EAST, GA, PPPL team Institute of Plasma Physics, Chinese Academy of Sciences P. O. Box 1126 Hefei Anhui 230031

More information

Testing of the Toroidal Field Model Coil (TFMC)

Testing of the Toroidal Field Model Coil (TFMC) 1 CT/P 14 Testing of the Toroidal Field Model Coil (TFMC) E. Salpietro on behalf of the ITER-TFMC Team EFDA-CSU, Garching,, Germany ettore.salpietro@tech.efda.org Abstract The paper shortly describes the

More information

Sustainment and Additional Heating of High-Beta Field-Reversed Configuration Plasmas

Sustainment and Additional Heating of High-Beta Field-Reversed Configuration Plasmas 1 Sustainment and Additional Heating of High-Beta Field-Reversed Configuration Plasmas S. Okada, T. Fukuda, K. Kitano, H. Sumikura, T. Higashikozono, M. Inomoto, S. Yoshimura, M. Ohta and S. Goto Science

More information

GA A25780 STABILIZATION OF NEOCLASSICAL TEARING MODES IN TOKAMAKS BY RADIO FREQUENCY CURRENT DRIVE

GA A25780 STABILIZATION OF NEOCLASSICAL TEARING MODES IN TOKAMAKS BY RADIO FREQUENCY CURRENT DRIVE GA A25780 STABILIZATION OF NEOCLASSICAL TEARING MODES IN TOKAMAKS by R.J. LA HAYE MAY 2007 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government.

More information

Locked-mode avoidance and recovery without external momentum input using Ion Cyclotron Resonance Heating

Locked-mode avoidance and recovery without external momentum input using Ion Cyclotron Resonance Heating 1 EX/P4-39 Locked-mode avoidance and recovery without external momentum input using Ion Cyclotron Resonance Heating L. F. Delgado-Aparicio 1, J. E. Rice 2, E. Edlund 2, I. Cziegler 3, L. Sugiyama 4, D.

More information

DEVELOPMENT OF MULTIVARIABLE CONTROL TECHNIQUES FOR USE WITH THE DIII D PLASMA CONTROL SYSTEM

DEVELOPMENT OF MULTIVARIABLE CONTROL TECHNIQUES FOR USE WITH THE DIII D PLASMA CONTROL SYSTEM GA A23151 DEVELOPMENT OF MULTIVARIABLE CONTROL TECHNIQUES FOR USE WITH THE DIII D PLASMA CONTROL SYSTEM MILESTONE NO. 127 by M.L. WALKER, D.A. HUMPHREYS, J.A. LEUER, and J.R. FERRON JUNE 1999 This report

More information

NTM Suppression and Avoidance at DIII-D Using Real-time Mirror Steering of ECCD

NTM Suppression and Avoidance at DIII-D Using Real-time Mirror Steering of ECCD NTM Suppression and Avoidance at DIII-D Using Real-time Mirror Steering of ECCD Egemen Kolemen 1, N.W. Eidietis 2, R. Ellis 1, D.A. Humphreys 2, R.J. La Haye 2, J. Lohr 2, S. Noraky 2, B.G. Penaflor 2,

More information

JT-60SA Magnet System Status

JT-60SA Magnet System Status 1 JT-60SA Magnet System Status S. Davis, W. Abdel Maksoud, P. Barabaschi, A. Cucchiaro, P. Decool, E. Di Pietro, G. Disset, N. Hajnal, K. Kizu, C. Mayri, K. Masaki, J.L. Marechal, H. Murakami, G.M. Polli,

More information

DIII D Quiescent H-Mode Experiments with Co Plus Counter Neutral Beam Injection

DIII D Quiescent H-Mode Experiments with Co Plus Counter Neutral Beam Injection Quiescent H-Mode Experiments with Co Plus Counter Neutral Beam Injection by K.H. Burrell for W.P. West, M.E. Fenstermacher, P. Gohil, P.B. Snyder, T.H. Osborne, W.M. Solomon* Lawrence Livermore National

More information

Developing Disruption Warning Algorithms Using Large Databases on Alcator C-Mod and EAST Tokamaks

Developing Disruption Warning Algorithms Using Large Databases on Alcator C-Mod and EAST Tokamaks Developing Disruption Warning Algorithms Using Large Databases on Alcator C-Mod and EAST Tokamaks R. Granetz 1, A. Tinguely 1, B. Wang 2, C. Rea 1, B. Xiao 2, Z.P. Luo 2 1) MIT Plasma Science and Fusion

More information

Co-current toroidal rotation driven and turbulent stresses with. resonant magnetic perturbations in the edge plasmas of the J-TEXT.

Co-current toroidal rotation driven and turbulent stresses with. resonant magnetic perturbations in the edge plasmas of the J-TEXT. Co-current toroidal rotation driven and turbulent stresses with resonant magnetic perturbations in the edge plasmas of the J-TEXT tokamak K. J. Zhao, 1 Y. J. Shi, H. Liu, P. H. Diamond, 3 F. M. Li, J.

More information

TOROIDAL ALFVÉN EIGENMODES

TOROIDAL ALFVÉN EIGENMODES TOROIDAL ALFVÉN EIGENMODES S.E. Sharapov Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB, UK OUTLINE OF LECTURE 4 Toroidicity induced frequency gaps and Toroidal

More information

Investigation of ion toroidal rotation induced by Lower Hybrid waves in Alcator C-Mod * using integrated numerical codes

Investigation of ion toroidal rotation induced by Lower Hybrid waves in Alcator C-Mod * using integrated numerical codes Investigation of ion toroidal rotation induced by Lower Hybrid waves in Alcator C-Mod * using integrated numerical codes J.P. Lee 1, J.C. Wright 1, P.T. Bonoli 1, R.R. Parker 1, P.J. Catto 1, Y. Podpaly

More information

Local Helicity Injection Startup and Edge Stability Studies in the Pegasus Toroidal Experiment

Local Helicity Injection Startup and Edge Stability Studies in the Pegasus Toroidal Experiment 1 EX/P4-36 Local Helicity Injection Startup and Edge Stability Studies in the Pegasus Toroidal Experiment A.J. Redd, J.L. Barr, M.W. Bongard, M.G. Burke, R.J. Fonck, E.T. Hinson, D.J. Schlossberg, and

More information

Profile Scan Studies on the Levitated Dipole Experiment

Profile Scan Studies on the Levitated Dipole Experiment Profile Scan Studies on the Levitated Dipole Experiment Columbia University A.K. Hansen, D.T. Garnier, M.E. Mauel, E.E. Ortiz Columbia University J. Kesner, A.C. Boxer, J.E. Ellsworth, I. Karim, S. Mahar,

More information

Optimization of the ITER EC H&CD Functional Capabilities while Relaxing the Engineering Constraints

Optimization of the ITER EC H&CD Functional Capabilities while Relaxing the Engineering Constraints Optimization of the ITER EC H&CD Functional Capabilities while Relaxing the Engineering Constraints D. Farina, M. Henderson, L. Figini, G. Saibene, T. Goodman, K. Kajiwara, T. Omori, E. Poli, D. Strauss

More information

NTM control in ITER. M. Maraschek for H. Zohm. MPI für Plasmaphysik, D Garching, Germany, EURATOM Association

NTM control in ITER. M. Maraschek for H. Zohm. MPI für Plasmaphysik, D Garching, Germany, EURATOM Association NTM control in ITER M. Maraschek for H. Zohm MPI für Plasmaphysik, D-85748 Garching, Germany, EURATOM Association ECRH in ITER physics of the NTM stabilisation efficiency of the stabilisation gain in plasma

More information

Full-wave feasibility study of magnetic diagnostic based on O-X mode conversion and oblique reflectometry imaging

Full-wave feasibility study of magnetic diagnostic based on O-X mode conversion and oblique reflectometry imaging Full-wave feasibility study of magnetic diagnostic based on O-X mode conversion and oblique reflectometry imaging 20 th topical conference on radio frequency power in plasmas Orso Meneghini, M. Choi #,

More information

Workshop on Active control of MHD Stability, Princeton, NJ, 6-8 Nov., RWM control in T2R. Per Brunsell

Workshop on Active control of MHD Stability, Princeton, NJ, 6-8 Nov., RWM control in T2R. Per Brunsell Workshop on Active control of MHD Stability, Princeton, NJ, 6-8 Nov., 2006 RWM control in T2R Per Brunsell P. R. Brunsell 1, J. R. Drake 1, D. Yadikin 1, D. Gregoratto 2, R. Paccagnella 2, Y. Q. Liu 3,

More information

Abstract. PEGASUS Toroidal Experiment University of Wisconsin-Madison

Abstract. PEGASUS Toroidal Experiment University of Wisconsin-Madison Abstract Extensive new capabilities have been installed on the Pegasus ST facility. The laboratory has been completely reconfigured to separate all power systems from the main hall. Data acquisition, control,

More information

KSTAR Construction and Commissioning

KSTAR Construction and Commissioning KSTAR Construction and Commissioning H. L. Yang, J. S. Bak, Y. S. Kim, Y. K. Oh, I. S. Whang, Y. S. Bae, Y. M. Park, K. W. Cho, Y. J. Kim, K. R. Park, W. C. Kim, M. K. Park, T. H. Ha and the KSTAR Team

More information

A Modular Commercial Tokamak Reactor with Day Long Pulses

A Modular Commercial Tokamak Reactor with Day Long Pulses PFC/JA-82-217 A Modular Commercial Tokamak Reactor with Day Long Pulses L. Bromberg, D.R. Cohn, and J.E. C. Williams Massachusetts Institute of Technology Cambridge, Massachusetts 02139 Journal of Fusion

More information

Radio Frequency Current Drive for Small Aspect Ratio Tori

Radio Frequency Current Drive for Small Aspect Ratio Tori (?onlf-970+/0a- Radio Frequency Current Drive for Small Aspect Ratio Tori M.D. Carter, E.F. Jaeger, D.B. Batchelor, D.J. S&cMer, R. Majeski" Oak Ridge National Laboratoly, Oak Ridge, Tennessee 378314071

More information

DEMO-EUROFusion Tokamak, Design of TF Coil Inter-layer Splice Joint

DEMO-EUROFusion Tokamak, Design of TF Coil Inter-layer Splice Joint EUROFUSION WPMAG-CP(16) 15675 B Stepanov et al. DEMO-EUROFusion Tokamak, Design of TF Coil Inter-layer Splice Joint Preprint of Paper to be submitted for publication in Proceedings of 29th Symposium on

More information

3.4 Poloidal Field Power Supply Systems for the EAST Steady State Superconducting Tokamak

3.4 Poloidal Field Power Supply Systems for the EAST Steady State Superconducting Tokamak 3.4 Poloidal Field Power Supply Systems for the EAST Steady State Superconducting Tokamak FU Peng 3.4.1 Introduction The EAST superconducting tokamak is an advanced steady state experimental device being

More information

The Results of the KSTAR Superconducting Coil Test

The Results of the KSTAR Superconducting Coil Test K orea S uperconducting T okamak A dvanced R esearch The Results of the KSTAR Superconducting Coil Test Nov. 5 2004 Presented by Yeong-KooK Oh Y. K. Oh, Y. Chu, S. Lee, S. J. Lee, S. Baek, J. S. Kim, K.

More information

Design of the COMPASS Upgrade Tokamak

Design of the COMPASS Upgrade Tokamak Design of the COMPASS Upgrade Tokamak R. Panek, P. Cahyna, R. Dejarnac, J. Havlicek, J. Horacek, M. Hron, M. Imrisek, P. Junek, M. Komm, T. Markovic, J. Urban, J. Varju, V. Weinzettl, J. Adamek, P. Bilkova,

More information

EXW/10-2Ra. Avoidance of Disruptions at High β N in ASDEX Upgrade with Off-Axis ECRH

EXW/10-2Ra. Avoidance of Disruptions at High β N in ASDEX Upgrade with Off-Axis ECRH 1 EXW/1-2Ra Avoidance of Disruptions at High β N in ASDEX Upgrade with Off-Axis ECRH B. Esposito 1), G. Granucci 2), M. Maraschek 3), S. Nowak 2), A. Gude 3), V. Igochine 3), R. McDermott 3), E. oli 3),

More information

Tutorial: designing a converging-beam electron gun and focusing solenoid with Trak and PerMag

Tutorial: designing a converging-beam electron gun and focusing solenoid with Trak and PerMag Tutorial: designing a converging-beam electron gun and focusing solenoid with Trak and PerMag Stanley Humphries, Copyright 2012 Field Precision PO Box 13595, Albuquerque, NM 87192 U.S.A. Telephone: +1-505-220-3975

More information

Progress in controlling tearing modes in RFX-mod

Progress in controlling tearing modes in RFX-mod Progress in controlling tearing modes in RFX-mod L. Marrelli A.Alfier,T.Bolzonella, F.Bonomo, L.Frassinetti, M.Gobbin, S.C.Guo, P.Franz, A.Luchetta, G.Manduchi, G.Marchiori, P.Martin, S.Martini, P.Piovesan,

More information

Use of inductive heating for superconducting magnet protection*

Use of inductive heating for superconducting magnet protection* PSFC/JA-11-26 Use of inductive heating for superconducting magnet protection* L. Bromberg, J. V. Minervini, J.H. Schultz, T. Antaya and L. Myatt** MIT Plasma Science and Fusion Center November 4, 2011

More information

ECRH Beam Optics Optimization for ITER Upper Port Launcher

ECRH Beam Optics Optimization for ITER Upper Port Launcher ECRH Beam Optics Optimization for ITER Upper Port Launcher H. Shidara 1, M.A. Henderson 1, R. Chavan 1, D. Farina 2, E. Poli 3, G. Ramponi 2 1: CRPP, EURATOM Confédération Suisse, EPFL, CH-1015 Lausanne,

More information

Advanced Density Profile Reflectometry; the State-of-the-Art and Measurement Prospects for ITER

Advanced Density Profile Reflectometry; the State-of-the-Art and Measurement Prospects for ITER Advanced Density Profile Reflectometry; the State-of-the-Art and Measurement Prospects for ITER by E.J. Doyle With W.A. Peebles, L. Zeng, P.-A. Gourdain, T.L. Rhodes, S. Kubota and G. Wang Dept. of Electrical

More information

Advanced Tokamak Program and Lower Hybrid Experiment. Ron Parker MIT Plasma Science and Fusion Center

Advanced Tokamak Program and Lower Hybrid Experiment. Ron Parker MIT Plasma Science and Fusion Center Advanced Tokamak Program and Lower Hybrid Experiment Ron Parker MIT Plasma Science and Fusion Center Alcator C-Mod Program Advisory Meeting 23-24 February 2004 Main Goals of the Alcator C-Mod AT Program

More information

Status of the KSTAR Superconducting Magnet System Development

Status of the KSTAR Superconducting Magnet System Development Status of the KSTAR Superconducting Magnet System Development K. Kim, H. K. Park, K. R. Park, B. S. Lim, S. I. Lee, Y. Chu, W. H. Chung, Y. K. Oh, S. H. Baek, S. J. Lee, H. Yonekawa, J. S. Kim, C. S. Kim,

More information

Observation of Toroidal Flow on LHD

Observation of Toroidal Flow on LHD 17 th International Toki conference / 16 th International Stellarator/Heliotron Workshop 27 Observation of Toroidal Flow on LHD M. Yoshinuma, K. Ida, M. Yokoyama, K. Nagaoka, M. Osakabe and the LHD Experimental

More information

CHAPTER 2 ELECTROMAGNETIC FORCE AND DEFORMATION

CHAPTER 2 ELECTROMAGNETIC FORCE AND DEFORMATION 18 CHAPTER 2 ELECTROMAGNETIC FORCE AND DEFORMATION 2.1 INTRODUCTION Transformers are subjected to a variety of electrical, mechanical and thermal stresses during normal life time and they fail when these

More information

Toroidal Rotation and Ion Temperature Validations in KSTAR Plasmas

Toroidal Rotation and Ion Temperature Validations in KSTAR Plasmas Toroidal Rotation and Ion Temperature Validations in KSTAR Plasmas S. G. Lee 1, H. H. Lee 1, W. H. Ko 1, J. W. Yoo 2, on behalf of the KSTAR team and collaborators 1 NFRI, Daejeon, Korea 2 UST, Daejeon,

More information

GA A26865 PEDESTAL TURBULENCE DYNAMICS IN ELMING AND ELM-FREE H-MODE PLASMAS

GA A26865 PEDESTAL TURBULENCE DYNAMICS IN ELMING AND ELM-FREE H-MODE PLASMAS GA A26865 PEDESTAL TURBULENCE DYNAMICS IN ELMING AND ELM-FREE H-MODE PLASMAS by Z. YAN, G.R. McKEE, R.J. GROEBNER, P.B. SNYDER, T.H. OSBORNE, M.N.A. BEURSKENS, K.H. BURRELL, T.E. EVANS, R.A. MOYER, H.

More information

Assessing the Merits of Resonant Magnetic Perturbations with Different toroidal Mode Numbers for Controlling Edge Localised Modes

Assessing the Merits of Resonant Magnetic Perturbations with Different toroidal Mode Numbers for Controlling Edge Localised Modes CCFE-PR(14)29 I.T. Chapman, A. Kirk, R.J. Akers, C.J. Ham, J.R. Harrison, J. Hawke, Y.Q. Liu, K.G. McClements, S. Pamela, S. Saarelma, R. Scannell, A.J. Thornton and the MAST Team Assessing the Merits

More information