# MITOCW watch?v=-qcpo_dwjk4

Size: px
Start display at page:

Transcription

1 MITOCW watch?v=-qcpo_dwjk4 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To make a donation or view additional materials from hundreds of MIT courses, visit MIT OpenCourseWare at ocw.mit.edu. Feel free to populate the front row. I'm not that scary. So today, we're going to look at more greedy algorithms. So I think you went over Kruskal's algorithm and how you do the sorting in the lecture. So going back to make change from last recitation, so this is sort of a variant on that. So instead of discrete coins, we now have continuous coins, in the sense so the analogy here is, let's say, you have N metals, and each of the metals has some value given by Ci dollars per kilogram, or whatever units you prefer. And you want to achieve some value T. You want to give someone T dollars worth of metal. And you want to do this while minimizing-- oh, so I should mention this. ki is the weight of every metal that you will give to the person. So you're taking ki of metal i, and you are going to-- and you have to ensure, so basically, you have to ensure that some summation of ki Ci over all i is equal to T. And in doing so you want to minimize the summation over all ki. So does that make sense? So you have a bunch of metals. Some of them are more expensive than others. And you want to measure them out and give someone a certain fixed value. So anyone have any ideas how to do this? Should be-- should be the first thing that comes to mind. So you have much of metals-- some of them with certain costs. And you're trying to create a value T. So which metal would you want to pick? So it should seem intuitive that if you want to minimize the weight of the metal, you would want to pick the-- have the most expensive one for weight. So let's start by sort by Ci. And we want to sort it in decreasing order. Does make sense? So if you have the most expensive metal, you want to use as much of that as you can, so that your weight is minimized. So once you sort by Ci, so let's say, you have your costs right now are-- let's call this one C1, C2, up to Cn. And these are in sorted order. So it's increasing this way. So you now take your

2 value T, and you look at T by C1. And that is the amount of weight you would need to generate C. So you look at how much you have here. So the amount of metal-- so a constraint I forgot to mention, you are given a limited amount of every metal. OK, that's-- it's not that trivial. So you have-- let's mention that. So you have-- is that used? No, it's not-- amount. Does that make more sense? So you look at T over Ci. And if T over Ci is greater than W of i, then you just use the amount you need to construct Wi, and you're done. Otherwise, you use all of Ci. So if it's less than Wi, in that case, you-- sorry, other way around. If it's greater than Wi, you use all of it. And then you move on to the next one, the next one, and so on. So that seems pretty intuitive. Let's actually do a formal proof of that. So how you go about proving this is that-- so let's say-- so it's what we call the current base method. So basically what you have is, let's say you're not using the most expensive metal you have at this point. So let's say your most expensive metal has cost Ci, but instead, you decide to use Cj. So let's say you decide to use some kj amount of Cj. So the value you're getting from this is Cj kj. And instead, if you use Ci, how much metal would you need to get the same value? You would need Cj kj over Ci. Does that make sense? So this is the value you would obtain by using kj kilograms of this metal. So if you instead used this one, you'd get this value. And so this is the most expensive one. And Ci is greater than Cj, this value, so this value is less than kj. So by using this metal instead of that one, you are decreasing the amount-- the weight you would need, so your minimization goes down. Make sense? So that's like a very simple greedy algorithm. And it's-- the algorithm is exactly what you'd expect, and the proof isn't very hard. So let's move on to a slightly interesting one. So this is process scheduling. So let's say you have a computer, and you're running end processes. And each of the process has a time-- t1 through tn, again processes. And you want to order them in some way. So first, you will do process p1. Then you'll process p2, and so on, and so forth. Then you'll define a completion time. So completion time is simply when does process i end.

3 So when does process i end? You just p1 plus-- it's like the time for p1 plus time for p2 up to pn. So basically, you have all your processes. So let's says this is p1, this is p2, and so on. And the completion time for a certain process in the middle is just the sum of all times before it. That's completion time. And now what you want to do is you want to minimize the average completion time, which is summation over all the completion times over n. So any ideas what an algorithm for this would look like? Essentially, you want to minimize the sum of all these times. So all these times, you want to minimize the average of these. So what do you want to do? Do you want to shift the slower-- the processes which take more time, do you want to keep them at the end, or do you want to keep them at the beginning? So if you have a bunch of small processes, what do you do with them at the end? What do you do at the beginning? Completion time is when does-- So let's say this is process pi. And completion time for process pi is like this distance. It's like, when does pi get completed? So it's summation of all the times- - so the time taken for p1, p2, up to the end, see? So you want to basically minimize the average of these values. So where do you put the smaller processes-- would you put the shorter processes at the end or the beginning? Which one would decrease your average? The beginning? Makes sense, right? So yeah, that makes sense. So you basically want to like scrunch these lines towards the beginning, so your average is smaller. Note that this total length is always the constant. It's like summation over all ti. So let's go about-- so OK, this is strategy. Again, sort by ti, and this is increasing order, and that's it basically. So this is your algorithm, sorted by tn, but use the process in that order. So let's try to prove this. So the way you prove this is a pretty generic method. It is often used to prove greedy algorithms. So let's say that this is not the optimal. Let's say someone comes up to you and tells you, OK, I have a better sequence. I have a sequence, let's say, called-- let's say I have a sequence of p1 to pn. And that sequence does better than a sorted order. So you're like, OK, so if this is not sorted, then you have some elements in the middle. Let's

4 say you call them pi is greater than pj, with i is less than j. So there's some pi here, and there's some pj here, such that this is greater than that. So it's not in sorted order. So you can always find a pair like that. So now I'm going to claim that if you swap these two values-- so you swap pi and pj-- that'll actually decrease whatever current average completion time you have. So initially, you had something like this. So-- no, let's not draw a line there. So let's say you had something like you had this process, so pi-- actually, this is the bigger process, so this is pi, and this is pj. And now I'm saying that-- and you have some stuff in the middle. And my claim is that, no, this is not optimal. You'd do much better if you moved the pj over here. So you want to go from this to this, and big process. So let's see what changes when you go from there to there. So first of all, observe that the completion times of everything behind this is the same. They all have the same completion time; nothing is affected. And you're only changing these two things. Everything after this is also the same-- has the same completion time. So the only things that are changing are this one, this one, and all the ones up to this one. Even this one has the same completion time. Make sense? So how much is this changing by? So let's define this. Delta is equal to t of pi minus t of pj-- so the difference between these two processes. So the original completion time of pi was this. And now the corresponding process down here, the completion time is decreased by delta. So completion time for us goes down like minus delta. This is a summation of completion time. This divided by n is a constant. So you just want to minimize this. So first it goes-- so this one goes down minus delta. So let's look at the next process. The next process is something like this. So again, these do not change. You're only swapping these two. So this completion time also down a minus delta, and so on, and so forth. So you just get a bunch of minus deltas, which is equal to however many processes you have. But that's not even important. What is important is that just by swapping, you're going to get at least one minus delta. And delta is positive, because assumption-- oops, sorry, t-- because assumption was that t pi minus t pj is positive. So just by swapping, you're going to always decrease it. So the claim that that sequence was an optimal solution is wrong.

5 So you can always do better by swapping two inversions. So that out of sorted order is called an inversion. So if you solve an inversion, you always get a better result. Does that proof make sense? So that's a slightly more interesting recent algorithm. So let's move on to the third one we have here. The third one is event overlap. So this is how it works. So you wake up in the morning, and you look at your calendar. And being an MIT student, your calendar looks pretty full. So let's say this is what it looks like. So these are your events. Let's use some colors, make it a little clearer possibly. And let's say you have another event over here. You have something here. You have something here. You have something here. And you have something here. So OK, let's move this down. So the problem is that you have this bunch of events planned out. Now clearly, they're overlapping, so you can't attend all of them. So the idea is you make a bunch of clones of yourself. And so in this case, look at the matching colors. So if you create clone number 1 goes here, and clone number 2 goes to red, and clone number 3 goes to blue. So then clone number 1 does this. Clone number 3 does the blue one. Clone number 2 does red. I guess, we should move the red back a little or forward a little bit just to make it clear. Yeah, there we go. And now, you could easily see that this is optimal. So you can do this with three clones and no less. So you make three clones, and then you can go off to spring break. And your schedule is fine. So now, how would you approach this problem? So what is a greedy strategy to, given a number of intervals, how do you find the minimum number of clones you need to cover your day? Any ideas? What is a naive thing you could do? When you say to cover your day, then it's like the number-- So you want to do every event. But like so this clone can't-- so clone number 1 does this event. Then he can't do this event or this event.

6 Sort of maximizing your events? You want to do all the events? You want to minimize the number of clones. [INAUDIBLE] So it's like interval scheduling. But you want to do all the intervals, but you're allowed to use multiple people to do all the intervals. Yes? Yeah? You could sort by end time. By end time, OK. What do you do after you sort by end time? And then iterate over all the intervals once they're sorted and just count how many intervals there are between the [INAUDIBLE]. That would get complicated. So you're close. So you do begin by sorting. But you can actually do it by sorting by end time. It's easier to visualize if you sort by start time. So leading from that, anyone want to top in? It's when your sorting starts, and every time you get a class, you get a new clone. So yeah, essentially, every time you can't add it to one of your current clones, you just create a new one. You could also do it by end time, because it's symmetrical, right? So if you sort by end time, then you start with the smallest-- last end time and go backwards, exactly the same thing. So let's write it down. So sort by start time, and so actually, let's work out this example. So in this case, you would go-- OK, actually, if once you sort-- so first you have 1, then you have 2, 3, 4, 5, 6. So that's sorted by start time. And then you have-- so first you go for this one. Then you go for 2, and 2 intersects with 1. So you put 2 into it. So this is clone number 1. And then you have to create a new clone for 2, so

7 you create the new clone. And there we go. So then you go to 3. 3 clashes with both 1 and 2, so you have to create a new clone again. So in that case, you go forth and create 3. Then you go to 4. Now, 4, you see, it's starts with 2 and 3, but it is good with 1. So you just put 4 over here. And if you continue like this, you essentially get this and this. Make sense? So that's how you schedule it. So does that algorithm make sense? Let's try to prove its correctness. So let's look at the instance where you're inserting the m-th clone-- so m-th clone. So when the m-th is created, you already have some values in here. So you have 1, 2, all the way up to m minus 1. So now, you bring in your interval, and you see that it collides with all of these values. So let's just draw the final interval for all these guys. So let's say the final interval for this guy was out here. Let's say the final interval for this guy was out here, and so on, and blah, blah, blah, blah, blah. And so when you create the m-th clone, you look at the start time. So what happens is that the start time is somewhere, let's say, here. And now, you know that because of this-- so you're only adding a new clone when you don't have an available slot. So that means that there is some interval here, which intersects with this guy. So how do you show that this is one interval? Well, it's like consider any level. But say there is no interval that intersects with it. So that means that there is either-- So if there were a gap here-- so let's say, at this location, this interval wasn't here. Let's say if you extrapolate this line outward-- so this is your current starting value. And let's say you look at this line. And in this segment, you can't have something which starts after this, because this is the current highest sorting starting time. So there's no interval that starts after this. So the only interval that's going to exist have already ended here. And if they're already ended here, that means you could evaluate here. Does that make sense? So basically, then you can show that, OK, so at every existing-- if you're adding a new clone, that means at every existing level, you have something which intersects. So what that means is that you have a single point of time where there are m minus 1 plus 1 intervals. That means that you absolutely need m intervals regardless of what your strategy is. So adding the m-th clone is necessary.

8 So if you go on, continue the argument-- let's say your total number of clones was m-- so you can just do this argument for m. There you will show that, oh, if I followed all these rules correctly, I can show that the start time for m intersects with m minus 1 other intervals. So there's no way I can create a scheduling with less than m clones. Did that argument make sense, or should I go over it again? So that's somewhat hand wavy, but that shouldn't be-- OK. In any case, well, that's the three problems. So I guess we can go back to this one and sort of give the motivation for this. So this could, for example, be used in scheduling processes for servers, for instance. So let's say your server gets a request to run n processes, and they have times like that. So this is like shortest time first. So you take all the short-- the smallest jobs, and you execute them in the beginning. And you wait for other jobs. And this can also be done online. So you can have an online version of this. So if you take this algorithm and you do it online-- so let's say your server is running jobs, and you get a new request. So you get a new request, so you already have some set of t1 to tn. And let's say, at the current moment, ti is your smallest job. And you're running it, and you're currently at this point. And then in the middle of running it, you can get new requests for jobs. So how would you modify this algorithm to handle that? So you still want to maintain this lowest average completion time thing. So how would you handle this situation. So let's say you're in the middle of a job and you get a bunch of new requests. So current set is all these existing jobs plus some other things you get in here. So would you consider switching to a different job here, or would you keep doing this? Let's say one of the new jobs you get is really small. So what you would do in that case is that instead of continuing with this, you would switch to current smallest job. So you would look at the remaining time, so that's important. So you could forget about the amount of time you already spent on this. You know what the remaining time is, and that is all that is relevant. So you can just consider this problem in a different framework. It's the exact same question. You just look at remaining time, instead of total time. So if you're in the middle of a job, and a new one comes in which is smaller, you just switch to that, complete that, and then look at the remaining times for everything. So at some point of time, you might have a lot of half

9 completed jobs just lying around. And for all of them, you'll update their ti values to remaining time rather than start time. And that gives you a nice way to decide which processes to do online. And that gives you-- So this is assuming that all of your tasks have equal weights. So all of them have equal reward. So obviously, that's not always the case. You might be pushing back a very long job forever, because smaller things keep coming in and that might get important. But everything is equally weighted, then this is the optimal thing you can do. And it's a very simple strategy that works. So those are the three problems I wanted to discuss. Do you guys have any other questions or comments or anything? Good? OK. We finished pretty early, so I guess, have a great spring break.

### MITOCW R3. Document Distance, Insertion and Merge Sort

MITOCW R3. Document Distance, Insertion and Merge Sort The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high-quality educational

### MITOCW R22. Dynamic Programming: Dance Dance Revolution

MITOCW R22. Dynamic Programming: Dance Dance Revolution The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational

### MITOCW watch?v=krzi60lkpek

MITOCW watch?v=krzi60lkpek The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

### MITOCW R7. Comparison Sort, Counting and Radix Sort

MITOCW R7. Comparison Sort, Counting and Radix Sort The following content is provided under a Creative Commons license. B support will help MIT OpenCourseWare continue to offer high quality educational

### MITOCW R9. Rolling Hashes, Amortized Analysis

MITOCW R9. Rolling Hashes, Amortized Analysis The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources

### MITOCW ocw f08-lec36_300k

MITOCW ocw-18-085-f08-lec36_300k The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high-quality educational resources for free.

### MITOCW R13. Breadth-First Search (BFS)

MITOCW R13. Breadth-First Search (BFS) The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources

### MITOCW 7. Counting Sort, Radix Sort, Lower Bounds for Sorting

MITOCW 7. Counting Sort, Radix Sort, Lower Bounds for Sorting The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality

### MITOCW mit_jpal_ses06_en_300k_512kb-mp4

MITOCW mit_jpal_ses06_en_300k_512kb-mp4 FEMALE SPEAKER: The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high-quality educational

### MITOCW watch?v=guny29zpu7g

MITOCW watch?v=guny29zpu7g The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

### MITOCW MITCMS_608S14_ses03_2

MITOCW MITCMS_608S14_ses03_2 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free.

### MITOCW watch?v=fp7usgx_cvm

MITOCW watch?v=fp7usgx_cvm Let's get started. So today, we're going to look at one of my favorite puzzles. I'll say right at the beginning, that the coding associated with the puzzle is fairly straightforward.

### MITOCW watch?v=6fyk-3vt4fe

MITOCW watch?v=6fyk-3vt4fe Good morning, everyone. So we come to the end-- one last lecture and puzzle. Today, we're going to look at a little coin row game and talk about, obviously, an algorithm to solve

### MITOCW watch?v=1qwm-vl90j0

MITOCW watch?v=1qwm-vl90j0 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

### MITOCW ocw lec11

MITOCW ocw-6.046-lec11 Here 2. Good morning. Today we're going to talk about augmenting data structures. That one is 23 and that is 23. And I look here. For this one, And this is a -- Normally, rather

### MITOCW watch?v=2g9osrkjuzm

MITOCW watch?v=2g9osrkjuzm The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

### MITOCW 15. Single-Source Shortest Paths Problem

MITOCW 15. Single-Source Shortest Paths Problem The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational

### MITOCW Recitation 9b: DNA Sequence Matching

MITOCW Recitation 9b: DNA Sequence Matching The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources

### MITOCW R11. Principles of Algorithm Design

MITOCW R11. Principles of Algorithm Design The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources

### MITOCW 6. AVL Trees, AVL Sort

MITOCW 6. AVL Trees, AVL Sort The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high-quality educational resources for free.

### MITOCW R18. Quiz 2 Review

MITOCW R18. Quiz 2 Review The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

### MITOCW Lec 25 MIT 6.042J Mathematics for Computer Science, Fall 2010

MITOCW Lec 25 MIT 6.042J Mathematics for Computer Science, Fall 2010 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high-quality

### MITOCW Project: Backgammon tutor MIT Multicore Programming Primer, IAP 2007

MITOCW Project: Backgammon tutor MIT 6.189 Multicore Programming Primer, IAP 2007 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue

### MITOCW 23. Computational Complexity

MITOCW 23. Computational Complexity The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for

### MITOCW watch?v=tw1k46ywn6e

MITOCW watch?v=tw1k46ywn6e The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

### MITOCW 11. Integer Arithmetic, Karatsuba Multiplication

MITOCW 11. Integer Arithmetic, Karatsuba Multiplication The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational

### MITOCW R19. Dynamic Programming: Crazy Eights, Shortest Path

MITOCW R19. Dynamic Programming: Crazy Eights, Shortest Path The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality

### MITOCW watch?v=dyuqsaqxhwu

MITOCW watch?v=dyuqsaqxhwu The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

### MITOCW watch?v=k79p8qaffb0

MITOCW watch?v=k79p8qaffb0 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

### Authors: Uptegrove, Elizabeth B. Verified: Poprik, Brad Date Transcribed: 2003 Page: 1 of 8

Page: 1 of 8 1. 00:01 Jeff: Yeah but say, all right, say we're doing five choose two, right, with this. Then we go five factorial. Which is what? 2. Michael: That'll give you all the they can put everybody

### Authors: Uptegrove, Elizabeth B. Verified: Poprik, Brad Date Transcribed: 2003 Page: 1 of 7

Page: 1 of 7 1. 00:00 R1: I remember. 2. Michael: You remember. 3. R1: I remember this. But now I don t want to think of the numbers in that triangle, I want to think of those as chooses. So for example,

### The following content is provided under a Creative Commons license. Your support

MITOCW Lecture 12 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To make a

### The following content is provided under a Creative Commons license. Your support

MITOCW Recitation 7 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high-quality educational resources for free. To make

### MITOCW watch?v=3v5von-onug

MITOCW watch?v=3v5von-onug The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

### MITOCW 22. DP IV: Guitar Fingering, Tetris, Super Mario Bros.

MITOCW 22. DP IV: Guitar Fingering, Tetris, Super Mario Bros. The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality

### MITOCW watch?v=fll99h5ja6c

MITOCW watch?v=fll99h5ja6c The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

### MITOCW 8. Hashing with Chaining

MITOCW 8. Hashing with Chaining The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free.

### MITOCW watch?v=sozv_kkax3e

MITOCW watch?v=sozv_kkax3e The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

### MITOCW watch?v=ku8i8ljnqge

MITOCW watch?v=ku8i8ljnqge The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high-quality educational resources for free. To

MITOCW watch?v=cnb2ladk3_s The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

### The following content is provided under a Creative Commons license. Your support will help

MITOCW Lecture 4 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To make a donation

### 2015 Mark Whitten DEJ Enterprises, LLC 1

All right, I'm going to move on real quick. Now, you're at the house, you get it under contract for 10,000 dollars. Let's say the next day you put up some signs, and I'm going to tell you how to find a

### MITOCW watch?v=tssndp5i6za

MITOCW watch?v=tssndp5i6za NARRATOR: The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for

### Using Google Analytics to Make Better Decisions

Using Google Analytics to Make Better Decisions This transcript was lightly edited for clarity. Hello everybody, I'm back at ACPLS 20 17, and now I'm talking with Jon Meck from LunaMetrics. Jon, welcome

### SO YOU HAVE THE DIVIDEND, THE QUOTIENT, THE DIVISOR, AND THE REMAINDER. STOP THE MADNESS WE'RE TURNING INTO MATH ZOMBIES.

SO YOU HAVE THE DIVIDEND, THE QUOTIENT, THE DIVISOR, AND THE REMAINDER. STOP THE MADNESS WE'RE TURNING INTO MATH ZOMBIES. HELLO. MY NAME IS MAX, AND THIS IS POE. WE'RE YOUR GUIDES THROUGH WHAT WE CALL,

### PROFESSOR PATRICK WINSTON: I was in Washington for most of the week prospecting for gold.

MITOCW Lec-22 PROFESSOR PATRICK WINSTON: I was in Washington for most of the week prospecting for gold. Another byproduct of that was that I forgot to arrange a substitute Bob Berwick for the Thursday

### MITOCW Mega-R4. Neural Nets

MITOCW Mega-R4. Neural Nets The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free.

### MITOCW watch?v=vyzglgzr_as

MITOCW watch?v=vyzglgzr_as The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

### MITOCW watch?v=efxjkhdbi6a

MITOCW watch?v=efxjkhdbi6a The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

### MITOCW watch?v=uk5yvoxnksk

MITOCW watch?v=uk5yvoxnksk The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

### MITOCW watch?v=zkcj6jrhgy8

MITOCW watch?v=zkcj6jrhgy8 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

### Getting Affiliates to Sell Your Stuff: What You Need To Know

Getting Affiliates to Sell Your Stuff: What You Need To Know 1 Getting affiliates to promote your products can be easier money than you could make on your own because... They attract buyers you otherwise

### Transcriber(s): Yankelewitz, Dina Verifier(s): Yedman, Madeline Date Transcribed: Spring 2009 Page: 1 of 22

Page: 1 of 22 Line Time Speaker Transcript 11.0.1 3:24 T/R 1: Well, good morning! I surprised you, I came back! Yeah! I just couldn't stay away. I heard such really wonderful things happened on Friday

### MITOCW watch?v=x05j49pc6de

MITOCW watch?v=x05j49pc6de The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

### MITOCW watch?v=ir6fuycni5a

MITOCW watch?v=ir6fuycni5a The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

### PATRICK WINSTON: It's too bad, in a way, that we can't paint everything black, because this map coloring

MITOCW Lec-08 PROF. PATRICK WINSTON: It's too bad, in a way, that we can't paint everything black, because this map coloring problem sure would be a lot easier. So I don't know what we're going to do about

### Hello and welcome to the CPA Australia podcast. Your weekly source of business, leadership, and public practice accounting information.

Intro: Hello and welcome to the CPA Australia podcast. Your weekly source of business, leadership, and public practice accounting information. In this podcast I wanted to focus on Excel s functions. Now

### The Inverting Amplifier

The Inverting Amplifier Why Do You Need To Know About Inverting Amplifiers? Analysis Of The Inverting Amplifier Connecting The Inverting Amplifier Testing The Circuit What If Questions Other Possibilities

### MITOCW Lec 22 MIT 6.042J Mathematics for Computer Science, Fall 2010

MITOCW Lec 22 MIT 6.042J Mathematics for Computer Science, Fall 2010 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high

### Instructor (Mehran Sahami):

Programming Methodology-Lecture21 Instructor (Mehran Sahami): So welcome back to the beginning of week eight. We're getting down to the end. Well, we've got a few more weeks to go. It feels like we're

### MITOCW Advanced 2. Semantic Localization

MITOCW Advanced 2. Semantic Localization The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high-quality educational resources

### MITOCW watch?v=c6ewvbncxsc

MITOCW watch?v=c6ewvbncxsc The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high-quality educational resources for free. To

### MITOCW mit-6-00-f08-lec03_300k

MITOCW mit-6-00-f08-lec03_300k The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseware continue to offer high-quality educational resources for free.

### The following content is provided under a Creative Commons license. Your support

MITOCW Lecture 18 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To make a

### The Open University xto5w_59duu

The Open University xto5w_59duu [MUSIC PLAYING] Hello, and welcome back. OK. In this session we're talking about student consultation. You're all students, and we want to hear what you think. So we have

### MITOCW watch?v=xsgorvw8j6q

MITOCW watch?v=xsgorvw8j6q The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

### MITOCW mit-6-00-f08-lec06_300k

MITOCW mit-6-00-f08-lec06_300k ANNOUNCER: Open content is provided under a creative commons license. Your support will help MIT OpenCourseWare continue to offer high-quality educational resources for free.

### Transcriber(s): Yankelewitz, Dina Verifier(s): Yedman, Madeline Date Transcribed: Spring 2009 Page: 1 of 27

Page: 1 of 27 Line Time Speaker Transcript 16.1.1 00:07 T/R 1: Now, I know Beth wasn't here, she s, she s, I I understand that umm she knows about the activities some people have shared, uhhh but uh, let

### MITOCW watch?v=kfq33hsmxr4

MITOCW watch?v=kfq33hsmxr4 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

### MITOCW MIT6_172_F10_lec13_300k-mp4

MITOCW MIT6_172_F10_lec13_300k-mp4 The following content is provided under a Creative Commons license. Your support help MIT OpenCourseWare continue to offer high quality educational resources for free.

### MITOCW watch?v=cyqzp23ybcy

MITOCW watch?v=cyqzp23ybcy The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

### Lesson 01 Notes. Machine Learning. Difference between Classification and Regression

Machine Learning Lesson 01 Notes Difference between Classification and Regression C: Today we are going to talk about supervised learning. But, in particular what we're going to talk about are two kinds

### OKAY. TODAY WE WANT TO START OFF AND TALK A LITTLE BIT ABOUT THIS MODEL THAT WE TALKED ABOUT BEFORE, BUT NOW WE'LL GIVE IT A

ECO 155 750 LECTURE FIVE 1 OKAY. TODAY WE WANT TO START OFF AND TALK A LITTLE BIT ABOUT THIS MODEL THAT WE TALKED ABOUT BEFORE, BUT NOW WE'LL GIVE IT A LITTLE BIT MORE THOROUGH TREATMENT. BUT THE PRODUCTION

### Multimedia and Arts Integration in ELA

Multimedia and Arts Integration in ELA TEACHER: There are two questions. I put the poem that we looked at on Thursday over here on the side just so you can see the actual text again as you're answering

### 6.00 Introduction to Computer Science and Programming, Fall 2008

MIT OpenCourseWare http://ocw.mit.edu 6.00 Introduction to Computer Science and Programming, Fall 2008 Please use the following citation format: Eric Grimson and John Guttag, 6.00 Introduction to Computer

### Today what I'm going to demo is your wire project, and it's called wired. You will find more details on this project on your written handout.

Fine Arts 103: Demo LOLANDA PALMER: Hi, everyone. Welcome to Visual Concepts 103 online class. Today what I'm going to demo is your wire project, and it's called wired. You will find more details on this

### 26 AdWords Mistakes: How They Are Killing Your Profits (And How To Fix Them) Contents

Contents Mistake #1: Not Separating Search Network & Display Network Campaigns... 4 Mistake #2: Not Adding Negative Keywords... 5 Mistake #3: Adding Too Many Keywords Per Ad Group... 6 Mistake #4: Not

### MITOCW Project: Battery simulation MIT Multicore Programming Primer, IAP 2007

MITOCW Project: Battery simulation MIT 6.189 Multicore Programming Primer, IAP 2007 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue

### MITOCW MITCMS_608S14_ses04

MITOCW MITCMS_608S14_ses04 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

### >> Counselor: Hi Robert. Thanks for coming today. What brings you in?

>> Counselor: Hi Robert. Thanks for coming today. What brings you in? >> Robert: Well first you can call me Bobby and I guess I'm pretty much here because my wife wants me to come here, get some help with

### SHA532 Transcripts. Transcript: Forecasting Accuracy. Transcript: Meet The Booking Curve

SHA532 Transcripts Transcript: Forecasting Accuracy Forecasting is probably the most important thing that goes into a revenue management system in particular, an accurate forecast. Just think what happens

### Autodesk University Laser-Scanning Workflow Process for Chemical Plant Using ReCap and AutoCAD Plant 3D

Autodesk University Laser-Scanning Workflow Process for Chemical Plant Using ReCap and AutoCAD Plant 3D LENNY LOUQUE: My name is Lenny Louque. I'm a senior piping and structural designer for H&K Engineering.

### ECOSYSTEM MODELS. Spatial. Tony Starfield recorded: 2005

ECOSYSTEM MODELS Spatial Tony Starfield recorded: 2005 Spatial models can be fun. And to show how much fun they can be, we're going to try to develop a very, very simple fire model. Now, there are lots

### Graphs and Charts: Creating the Football Field Valuation Graph

Graphs and Charts: Creating the Football Field Valuation Graph Hello and welcome to our next lesson in this module on graphs and charts in Excel. This time around, we're going to being going through a

### Notes for Recitation 3

6.042/18.062J Mathematics for Computer Science September 17, 2010 Tom Leighton, Marten van Dijk Notes for Recitation 3 1 State Machines Recall from Lecture 3 (9/16) that an invariant is a property of a

### The Open University SHL Open Day Online Rooms The online OU tutorial

The Open University SHL Open Day Online Rooms The online OU tutorial [MUSIC PLAYING] Hello, and welcome back to the Student Hub Live open day, here at the Open University. Sorry for that short break. We

### even describe how I feel about it.

This is episode two of the Better Than Success Podcast, where I'm going to teach you how to teach yourself the art of success, and I'm your host, Nikki Purvy. This is episode two, indeed, of the Better

### Proven Performance Inventory

Proven Performance Inventory Module 4: How to Create a Listing from Scratch 00:00 Speaker 1: Alright guys. Welcome to the next module. How to create your first listing from scratch. Really important thing

### For example, we took an element and said for the purpose of analyzing electrical properties let's lump this

MITOCW L04-6002 So today we are going to talk about another process of lumping Do you see where the problem This is my forbidden region or another process of discretization what will lead to the digital

### MITOCW watch?v=tevsxzgihaa

MITOCW watch?v=tevsxzgihaa The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

### MITOCW MITCMS_608F10lec02-mp3

MITOCW MITCMS_608F10lec02-mp3 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free.

### MITOCW ocw f _300k

MITOCW ocw-6-450-f06-2003-12-10_300k SPEAKER: The following content is provided under a Creative Commons license. Your support well help MIT OpenCourseWare continue to offer high quality educational resources

### The following content is provided under a Creative Commons license. Your support will help

MITOCW Lecture 20 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To make a

### MITOCW watch?v=jqtahck9plq

MITOCW watch?v=jqtahck9plq Hi guys. We are team TotoGro. We are Sean and Lucy. And we have one more who dropped out, but Chris made a lot of impact into this project as well. So what is TotoGro? We love

### 6.00 Introduction to Computer Science and Programming, Fall 2008

MIT OpenCourseWare http://ocw.mit.edu 6.00 Introduction to Computer Science and Programming, Fall 2008 Please use the following citation format: Eric Grimson and John Guttag, 6.00 Introduction to Computer

### MITOCW watch?v=3e1zf1l1vhy

MITOCW watch?v=3e1zf1l1vhy NARRATOR: The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for

### MITOCW watch?v=g2noqcegscm

MITOCW watch?v=g2noqcegscm The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To