Now we are going to introduce a new horizontal axis that we will call y, so that we have a 3-dimensional coordinate system (x, y, z).

Size: px
Start display at page:

Download "Now we are going to introduce a new horizontal axis that we will call y, so that we have a 3-dimensional coordinate system (x, y, z)."

Transcription

1 Example 1. A circular cone At the right is the graph of the function z = g(x) = 16 x (0 x ) Put a scale on the axes. Calculate g(2) and illustrate this on the diagram: g(2) = 8 Now we are going to introduce a new horizontal axis that we will call y, so that we have a 3-dimensional coordinate system (x, y, z). Then we rotate the graph of g about the z-axis through 360. What we get looks like a wizard s hat. Technically, it s called a cone, more precisely a circular cone because its base is a circle. This cone can be regarded as the graph of a function z = f(x, y) defined at all points (x, y) in the circular base. At any point (x, y) in the base circle, z is the height of the cone above that point. Your job is to find a formula for f(x, y). Calculate f(2,0) = 8 f(0,2) = 8 f(2,2) = 16 8 = This is often a critical breakthrough case. Students will struggle before they see the significance of the distance of the point from the origin. A critical aha! is obtained from drawing the circle through which that point rotates. See graph below right. f(1,3) = f(x, y) = 16 x 2 + y 2 z y x y Hands on! Some students have trouble visualizing the cone. I find it helps a lot to have a forked twig holding the straight part vertical and rotating the branch. Another idea is to get a piece of fairly stiff see-through plastic and make a cone. To allow the students to see the dependence of z on x and y, an effective visual is to run a thin vertical rod (e.g. a piece of spaghetti) down a small hole in the cone, onto the point (x, y). 2 2 x 1

2 Example 2. A circular paraboloid Start with a pair of z-x axes and draw the parabola z = 16 x 2. Now introduce a new horizontal y-axis so that we have a 3-D coordinate system. Rotate the parabola about the z-axis through 360. What we get is called a circular paraboloid and it is the graph of a function z = f(x, y). Your job is to find a formula for this function, that is, to find the height of the paraboloid at any point in the circular base. What is f(2, 0)? That is, how high is the paraboloid at x = 2, y = 0? f(2,0) = 16 = 12 Also calculate f(0,2) = 16 = 12 f(2,2) = 16 8 = 8 f(1,3) = = 6 f(x, y) = 16 (x 2 + y 2 ) The following exercises will use contour diagrams. An effective introduction to these is found in the Khan Academy video: 2

3 In the diagram above, the contours plots for the parabola are drawn at intervals of z = 1. They are circles and each circle corresponds to a fixed value of z (a fixed height). Label a few of them with their z-value. Discuss the significance of the fact that the outer contours are more closely spaced than the inner ones. Now draw on the contour diagram the line y = 2x Starting at (0, ) walk up the hill following the path (as if the contour diagram was the map of your route) and then down the other side until you get back to the z = 0 circle. The contour lines should give you a good sense of the nature of your walk. Figure out when you are ascending and when you are descending. Mark the point on your path when you attain your maximum height. Draw a rough graph of your elevation z against x. 3

4 Now we will use the tools of algebra to do what we did above graphically. The line y = 2x is drawn on the contour diagram. Your walk on the hill starts at (0, ) and the 2-dimensional map of your route is the diagram above. Put the equation of the line and the equation of the surface together to get an equation for z in terms of x along the line. Use this equation to draw a more accurate graph of z in terms of x and identity precisely the point of maximum elevation. Solution The equation gives us z in terms of x and y. But here we need an equation for z at each x. So what are we to take for y? Well the path we are following gives us y in terms of x. So we plug that equation into the equation of the surface. We get: Simplify: y = 2x z = 16 (x 2 + ( 2x) 2 ) z = 16 (x x + x 2 ) = 16x 5x 2 = x(16 5x) This is a parabola with zeros at x = 0 and x = 16/5 = 3.2. The max height is at its vertex which is halfway between the roots at x = 8/5 = 1.6.

5 Example 3. Another walk on the circular paraboloid (a) This time you are going to start at the bottom of the hill at (, 0, 0) and walk up the hill along a semi-circular path to the top at (0, 0, 16). On the contour diagram above draw the top half of the circle centred at (2, 0) of radius 2. This will be the route you will take. Using the information contained in the contour diagram, draw a rough graph of your height z against x. Pay attention to the spacing of the contour lines! 5

6 (b) You start at the point (, 0, 0) and walk up the hill following the semi-circle with centre (2,0) and radius 2. Find an equation for your elevation z against x and draw its graph. The circle has equation The surface has equation Solve the circle equation for y (x 2) 2 + y 2 = y 2 = (x 2) 2 and put that into the equation of the surface: z = 16 (x 2 + (x 2) 2 ) = 16 (x 2 + (x 2 x + )) = 16 (x 2 + x 2 + x )) = 16 x The graph is a straight line z = 16 x. That s a surprise! 6

7 z = 16 x (c) When we walk up the hill following the semicircular path, the graph of z against x is a straight line. That s a real surprise. In fact it s a bit hard to decide what it means in real terms graphically and physically. Graphically: How can you interpret that straight line in terms of the geometry of the contour diagram? Find a way to illustrate the straight-line behavior on the contour diagram Physically: How can you interpret that straight line in terms of your walk up the hill? Straight lines have a constant slope in what sense is the slope of your path up the hill a constant? 7

8 It s not clear to me what the students will do with this. But here are some ideas. Graphically: Interpret that straight line in terms of the geometry of the contour diagram. Well what it says is that as x increases, z will increase at a constant rate. So equal changes in x produce equal increases in elevation. In particular going from one contour line down to the next, will always correspond to the same increase in x. Okay on the interval 0 x, there are there are 16 z-intervals of size 1 (0 z 16), so each unit change in z will correspond to an x-change of /16 = 1/. We can illustrate that on the contour diagram. There is one vertical line at each contour and these lines are spaced at equal x-intervals of 1/. z = 16 x Physically: How can you interpret that straight line in terms of your walk on the hill? Straight lines have a constant slope in what sense is the slope of your path up the hill a constant? Hmm. Slope is rate of change of height, but that word rate is tricky. The constant slope of the above line is rate of change of elevation with respect to x. It might be easier to think in terms of time. Suppose you took minutes to make the walk and varied your speed around the semicircle so that you ascended 1 unit in every 15 seconds (¼ minute). Then your x-coordinate is increasing at a constant rate 1 unit/min and your elevation is increasing at a constant rate units/min. How would your speed vary? you d be going fast at the beginning and the end and more slowly in the middle. [Nice question: find a formula for your speed as a function of time.] 8

9 (d) Thinking of time I cannot resist one final question perhaps accessible only for grade 12. Suppose you travel the semicircle at constant speed, again taking minutes for the trip so that (in terms of angle) you walk at 5º/minute. Find a formula for your height z against time t, and plot its graph. y How do we go around the circle at constant speed? All students have seen the angular parameterization of the circle illustrated at the right r x = rcosθ rsin y = rsinθ x The point is that as θ changes at a constant rate, the point rcos moves around the circle at constant speed. This is a nontrivial result and relies on the symmetry of the circle. For example it is not true if the circle is replaced by an ellipse. Okay the semi-circle has radius r = 2, but its centre is not the origin, rather it is (2, 0). So x = 2 + 2cosθ y = 2sinθ Finally when θ = π we want t =, so θ = π t and we have: x = 2 + 2cos π t y = 2sin π t To get z in terms of t we put these into the equation of the surface. = 16 [(2 + 2cos π 2 t) + (2cos π 2] t) = 16 ( + 8cos π t + cos2 π t + sin2 π t) = 16 ( + 8cos π t + ) = 8 8cos π t = 8 (1 cos π t) This tells us that we should turn the cos graph upsidedown, lift it 1 unit and then rescale both axes. Since you are walking at constant horizontal speed, the slope of the z-t graph will represent the slope of the hill in the direction of your path. In particular we learn that the slope is symmetric about t = 2 and attains its maximum at t = 2, the halfway point. 9

10 Example. (Homework?) A hyperbolic paraboloid y z = x 2 y 2 y x Which is the x-axis and which is the y-axis? Take care with this. x (a) Factor the expression x 2 y 2 and hence identify and mark two lines on the contour diagram at which z = 0. z = x 2 y 2 = (x y)(x + y) = 0 Hence the zero contour is the pair of lines x = y and x = y. These are a pair of perpendicular horizontal lines that are contained in the surface. Can you find them in the diagram of the surface above? (b) The contour lines are spaced at intervals of z = 1. Mark their z-values on the contour diagram for all even integers z. (c) On the contour diagram, draw the path y = 2 x. Starting at ( 2, ) walk on the hill along that path. Using the information from the contour diagram, make a rough sketch on the pair of axes at the right of the graph of your elevation z against x. 10

11 z = x 2 y 2 The line y = 2 x is drawn on the contour diagram above. Your walk on the hill starts at ( 2, ) and the projection onto the x-y plane of your path is the line y = 2 x. Use algebra to find an equation for your elevation z at any x and draw its graph. This will provide a check for your graph on the previous page. The equation z = x 2 y 2 gives us z in terms of x and y. But here we need an equation for z at each x. Well the path we are following gives us y in terms of x. So we plug that equation into the equation of the surface. We get: Simplify: y = 2 x z = x 2 y 2 z = x 2 (2 x) 2 z = x 2 ( x + x 2 ) = x 2 + x x 2 ) = + x We get a straight line z = x. We are walking on the surface but we are walking in a straight line like walking up a ladder! That s a surprise it gives us another straight line that is contained in the surface. In fact it turns out that the surface is made up entirely of straight lines! Read more by googling ruled surfaces. 11

Chapter 3, Part 1: Intro to the Trigonometric Functions

Chapter 3, Part 1: Intro to the Trigonometric Functions Haberman MTH 11 Section I: The Trigonometric Functions Chapter 3, Part 1: Intro to the Trigonometric Functions In Example 4 in Section I: Chapter, we observed that a circle rotating about its center (i.e.,

More information

JUNIOR CERTIFICATE 2009 MARKING SCHEME TECHNICAL GRAPHICS HIGHER LEVEL

JUNIOR CERTIFICATE 2009 MARKING SCHEME TECHNICAL GRAPHICS HIGHER LEVEL . JUNIOR CERTIFICATE 2009 MARKING SCHEME TECHNICAL GRAPHICS HIGHER LEVEL Sections A and B Section A any ten questions from this section Q1 12 Four diagrams, 3 marks for each correct label. Q2 12 2 marks

More information

6.1 - Introduction to Periodic Functions

6.1 - Introduction to Periodic Functions 6.1 - Introduction to Periodic Functions Periodic Functions: Period, Midline, and Amplitude In general: A function f is periodic if its values repeat at regular intervals. Graphically, this means that

More information

Hyperbolas Graphs, Equations, and Key Characteristics of Hyperbolas Forms of Hyperbolas p. 583

Hyperbolas Graphs, Equations, and Key Characteristics of Hyperbolas Forms of Hyperbolas p. 583 C H A P T ER Hyperbolas Flashlights concentrate beams of light by bouncing the rays from a light source off a reflector. The cross-section of a reflector can be described as hyperbola with the light source

More information

Chapter 6: Periodic Functions

Chapter 6: Periodic Functions Chapter 6: Periodic Functions In the previous chapter, the trigonometric functions were introduced as ratios of sides of a right triangle, and related to points on a circle. We noticed how the x and y

More information

Unit 8 Trigonometry. Math III Mrs. Valentine

Unit 8 Trigonometry. Math III Mrs. Valentine Unit 8 Trigonometry Math III Mrs. Valentine 8A.1 Angles and Periodic Data * Identifying Cycles and Periods * A periodic function is a function that repeats a pattern of y- values (outputs) at regular intervals.

More information

1 Graphs of Sine and Cosine

1 Graphs of Sine and Cosine 1 Graphs of Sine and Cosine Exercise 1 Sketch a graph of y = cos(t). Label the multiples of π 2 and π 4 on your plot, as well as the amplitude and the period of the function. (Feel free to sketch the unit

More information

Precalculus Lesson 9.2 Graphs of Polar Equations Mrs. Snow, Instructor

Precalculus Lesson 9.2 Graphs of Polar Equations Mrs. Snow, Instructor Precalculus Lesson 9.2 Graphs of Polar Equations Mrs. Snow, Instructor As we studied last section points may be described in polar form or rectangular form. Likewise an equation may be written using either

More information

4.4 Slope and Graphs of Linear Equations. Copyright Cengage Learning. All rights reserved.

4.4 Slope and Graphs of Linear Equations. Copyright Cengage Learning. All rights reserved. 4.4 Slope and Graphs of Linear Equations Copyright Cengage Learning. All rights reserved. 1 What You Will Learn Determine the slope of a line through two points Write linear equations in slope-intercept

More information

MATH Exam 2 Solutions November 16, 2015

MATH Exam 2 Solutions November 16, 2015 MATH 1.54 Exam Solutions November 16, 15 1. Suppose f(x, y) is a differentiable function such that it and its derivatives take on the following values: (x, y) f(x, y) f x (x, y) f y (x, y) f xx (x, y)

More information

10.1 Curves defined by parametric equations

10.1 Curves defined by parametric equations Outline Section 1: Parametric Equations and Polar Coordinates 1.1 Curves defined by parametric equations 1.2 Calculus with Parametric Curves 1.3 Polar Coordinates 1.4 Areas and Lengths in Polar Coordinates

More information

A General Procedure (Solids of Revolution) Some Useful Area Formulas

A General Procedure (Solids of Revolution) Some Useful Area Formulas Goal: Given a solid described by rotating an area, compute its volume. A General Procedure (Solids of Revolution) (i) Draw a graph of the relevant functions/regions in the plane. Draw a vertical line and

More information

Math 122: Final Exam Review Sheet

Math 122: Final Exam Review Sheet Exam Information Math 1: Final Exam Review Sheet The final exam will be given on Wednesday, December 1th from 8-1 am. The exam is cumulative and will cover sections 5., 5., 5.4, 5.5, 5., 5.9,.1,.,.4,.,

More information

The Geometric Definitions for Circles and Ellipses

The Geometric Definitions for Circles and Ellipses 18 Conic Sections Concepts: The Origin of Conic Sections Equations and Graphs of Circles and Ellipses The Geometric Definitions for Circles and Ellipses (Sections 10.1-10.3) A conic section or conic is

More information

Section 8.1 Radians and Arc Length

Section 8.1 Radians and Arc Length Section 8. Radians and Arc Length Definition. An angle of radian is defined to be the angle, in the counterclockwise direction, at the center of a unit circle which spans an arc of length. Conversion Factors:

More information

C.2 Equations and Graphs of Conic Sections

C.2 Equations and Graphs of Conic Sections 0 section C C. Equations and Graphs of Conic Sections In this section, we give an overview of the main properties of the curves called conic sections. Geometrically, these curves can be defined as intersections

More information

Test Yourself. 11. The angle in degrees between u and w. 12. A vector parallel to v, but of length 2.

Test Yourself. 11. The angle in degrees between u and w. 12. A vector parallel to v, but of length 2. Test Yourself These are problems you might see in a vector calculus course. They are general questions and are meant for practice. The key follows, but only with the answers. an you fill in the blanks

More information

Solutions to Exercise problems

Solutions to Exercise problems Brief Overview on Projections of Planes: Solutions to Exercise problems By now, all of us must be aware that a plane is any D figure having an enclosed surface area. In our subject point of view, any closed

More information

SYDE 112, LECTURE 34 & 35: Optimization on Restricted Domains and Lagrange Multipliers

SYDE 112, LECTURE 34 & 35: Optimization on Restricted Domains and Lagrange Multipliers SYDE 112, LECTURE 34 & 35: Optimization on Restricted Domains and Lagrange Multipliers 1 Restricted Domains If we are asked to determine the maximal and minimal values of an arbitrary multivariable function

More information

Arkansas Tech University MATH 2924: Calculus II Dr. Marcel B. Finan. Figure 50.1

Arkansas Tech University MATH 2924: Calculus II Dr. Marcel B. Finan. Figure 50.1 50 Polar Coordinates Arkansas Tech University MATH 94: Calculus II Dr. Marcel B. Finan Up to this point we have dealt exclusively with the Cartesian coordinate system. However, as we will see, this is

More information

2016 Geometry Honors Summer Packet

2016 Geometry Honors Summer Packet Name: 2016 Geometry Honors Summer Packet This packet is due the first day of school. It will be graded for completion and effort shown. There will be an assessment on these concepts the first week of school.

More information

7.1 INTRODUCTION TO PERIODIC FUNCTIONS

7.1 INTRODUCTION TO PERIODIC FUNCTIONS 7.1 INTRODUCTION TO PERIODIC FUNCTIONS Ferris Wheel Height As a Function of Time The London Eye Ferris Wheel measures 450 feet in diameter and turns continuously, completing a single rotation once every

More information

Functions of more than one variable

Functions of more than one variable Chapter 3 Functions of more than one variable 3.1 Functions of two variables and their graphs 3.1.1 Definition A function of two variables has two ingredients: a domain and a rule. The domain of the function

More information

Discussion 8 Solution Thursday, February 10th. Consider the function f(x, y) := y 2 x 2.

Discussion 8 Solution Thursday, February 10th. Consider the function f(x, y) := y 2 x 2. Discussion 8 Solution Thursday, February 10th. 1. Consider the function f(x, y) := y 2 x 2. (a) This function is a mapping from R n to R m. Determine the values of n and m. The value of n is 2 corresponding

More information

PREREQUISITE/PRE-CALCULUS REVIEW

PREREQUISITE/PRE-CALCULUS REVIEW PREREQUISITE/PRE-CALCULUS REVIEW Introduction This review sheet is a summary of most of the main topics that you should already be familiar with from your pre-calculus and trigonometry course(s), and which

More information

Math 259 Winter Recitation Handout 6: Limits in Two Dimensions

Math 259 Winter Recitation Handout 6: Limits in Two Dimensions Math 259 Winter 2009 Recitation Handout 6: its in Two Dimensions As we have discussed in lecture, investigating the behavior of functions with two variables, f(x, y), can be more difficult than functions

More information

MATH 255 Applied Honors Calculus III Winter Homework 1. Table 1: 11.1:8 t x y

MATH 255 Applied Honors Calculus III Winter Homework 1. Table 1: 11.1:8 t x y MATH 255 Applied Honors Calculus III Winter 2 Homework Section., pg. 692: 8, 24, 43. Section.2, pg. 72:, 2 (no graph required), 32, 4. Section.3, pg. 73: 4, 2, 54, 8. Section.4, pg. 79: 6, 35, 46. Solutions.:

More information

Exam 2 Review Sheet. r(t) = x(t), y(t), z(t)

Exam 2 Review Sheet. r(t) = x(t), y(t), z(t) Exam 2 Review Sheet Joseph Breen Particle Motion Recall that a parametric curve given by: r(t) = x(t), y(t), z(t) can be interpreted as the position of a particle. Then the derivative represents the particle

More information

MAT187H1F Lec0101 Burbulla

MAT187H1F Lec0101 Burbulla Spring 17 What Is A Parametric Curve? y P(x, y) x 1. Let a point P on a curve have Cartesian coordinates (x, y). We can think of the curve as being traced out as the point P moves along it. 3. In this

More information

A Visual Display. A graph is a visual display of information or data. This is a graph that shows a girl walking her dog. Communicating with Graphs

A Visual Display. A graph is a visual display of information or data. This is a graph that shows a girl walking her dog. Communicating with Graphs A Visual Display A graph is a visual display of information or data. This is a graph that shows a girl walking her dog. A Visual Display The horizontal axis, or the x-axis, measures time. Time is the independent

More information

LINEAR EQUATIONS IN TWO VARIABLES

LINEAR EQUATIONS IN TWO VARIABLES LINEAR EQUATIONS IN TWO VARIABLES What You Should Learn Use slope to graph linear equations in two " variables. Find the slope of a line given two points on the line. Write linear equations in two variables.

More information

Section 1.3. Slope formula: If the coordinates of two points on the line are known then we can use the slope formula to find the slope of the line.

Section 1.3. Slope formula: If the coordinates of two points on the line are known then we can use the slope formula to find the slope of the line. MATH 11009: Linear Functions Section 1.3 Linear Function: A linear function is a function that can be written in the form f(x) = ax + b or y = ax + b where a and b are constants. The graph of a linear

More information

Algebra II B Review 3

Algebra II B Review 3 Algebra II B Review 3 Multiple Choice Identify the choice that best completes the statement or answers the question. Graph the equation. Describe the graph and its lines of symmetry. 1. a. c. b. graph

More information

INTEGRATION OVER NON-RECTANGULAR REGIONS. Contents 1. A slightly more general form of Fubini s Theorem

INTEGRATION OVER NON-RECTANGULAR REGIONS. Contents 1. A slightly more general form of Fubini s Theorem INTEGRATION OVER NON-RECTANGULAR REGIONS Contents 1. A slightly more general form of Fubini s Theorem 1 1. A slightly more general form of Fubini s Theorem We now want to learn how to calculate double

More information

General Functions and Graphs

General Functions and Graphs General Functions and Graphs Section 7 Functions Graphs and Symmetry Functions can be represented both as algebraic expressions and as graphs. So far we have concentrated on algebraic operations related

More information

WJEC LEVEL 2 CERTIFICATE 9550/01 ADDITIONAL MATHEMATICS

WJEC LEVEL 2 CERTIFICATE 9550/01 ADDITIONAL MATHEMATICS Surname Centre Number Candidate Number Other Names 0 WJEC LEVEL 2 CERTIFICATE 9550/01 ADDITIONAL MATHEMATICS A.M. TUESDAY, 21 June 2016 2 hours 30 minutes S16-9550-01 For s use ADDITIONAL MATERIALS A calculator

More information

(b) ( 1, s3 ) and Figure 18 shows the resulting curve. Notice that this rose has 16 loops.

(b) ( 1, s3 ) and Figure 18 shows the resulting curve. Notice that this rose has 16 loops. SECTIN. PLAR CRDINATES 67 _ and so we require that 6n5 be an even multiple of. This will first occur when n 5. Therefore we will graph the entire curve if we specify that. Switching from to t, we have

More information

Chapter 4 Trigonometric Functions

Chapter 4 Trigonometric Functions Chapter 4 Trigonometric Functions Section 1 Section 2 Section 3 Section 4 Section 5 Section 6 Section 7 Section 8 Radian and Degree Measure Trigonometric Functions: The Unit Circle Right Triangle Trigonometry

More information

10 GRAPHING LINEAR EQUATIONS

10 GRAPHING LINEAR EQUATIONS 0 GRAPHING LINEAR EQUATIONS We now expand our discussion of the single-variable equation to the linear equation in two variables, x and y. Some examples of linear equations are x+ y = 0, y = 3 x, x= 4,

More information

Technical Graphics Higher Level

Technical Graphics Higher Level Coimisiún na Scrúduithe Stáit State Examinations Commission Junior Certificate Examination 2005 Technical Graphics Higher Level Marking Scheme Sections A and B Section A Q1. 12 Four diagrams, 3 marks for

More information

Section 15.3 Partial Derivatives

Section 15.3 Partial Derivatives Section 5.3 Partial Derivatives Differentiating Functions of more than one Variable. Basic Definitions In single variable calculus, the derivative is defined to be the instantaneous rate of change of a

More information

14.1 Functions of Several Variables

14.1 Functions of Several Variables 14 Partial Derivatives 14.1 Functions of Several Variables Copyright Cengage Learning. All rights reserved. 1 Copyright Cengage Learning. All rights reserved. Functions of Several Variables In this section

More information

Conic and Quadric Surface Lab page 4. NORTHEASTERN UNIVERSITY Department of Mathematics Fall 03 Conic Sections and Quadratic Surface Lab

Conic and Quadric Surface Lab page 4. NORTHEASTERN UNIVERSITY Department of Mathematics Fall 03 Conic Sections and Quadratic Surface Lab Conic and Quadric Surface Lab page 4 NORTHEASTERN UNIVERSITY Department of Mathematics Fall 03 Conic Sections and Quadratic Surface Lab Goals By the end of this lab you should: 1.) Be familar with the

More information

This early Greek study was largely concerned with the geometric properties of conics.

This early Greek study was largely concerned with the geometric properties of conics. 4.3. Conics Objectives Recognize the four basic conics: circle, ellipse, parabola, and hyperbola. Recognize, graph, and write equations of parabolas (vertex at origin). Recognize, graph, and write equations

More information

2.3: The Human Cannonball

2.3: The Human Cannonball 2.3: The Human Cannonball Parabola Equations and Graphs As a human cannonball Rosa is shot from a special cannon. She is launched into the air by a spring. Rosa lands in a horizontal net 150 ft. from the

More information

Lecture 4 : Monday April 6th

Lecture 4 : Monday April 6th Lecture 4 : Monday April 6th jacques@ucsd.edu Key concepts : Tangent hyperplane, Gradient, Directional derivative, Level curve Know how to find equation of tangent hyperplane, gradient, directional derivatives,

More information

Examples: Find the domain and range of the function f(x, y) = 1 x y 2.

Examples: Find the domain and range of the function f(x, y) = 1 x y 2. Multivariate Functions In this chapter, we will return to scalar functions; thus the functions that we consider will output points in space as opposed to vectors. However, in contrast to the majority of

More information

You analyzed graphs of functions. (Lesson 1-5)

You analyzed graphs of functions. (Lesson 1-5) You analyzed graphs of functions. (Lesson 1-5) LEQ: How do we graph transformations of the sine and cosine functions & use sinusoidal functions to solve problems? sinusoid amplitude frequency phase shift

More information

Practice Problems: Calculus in Polar Coordinates

Practice Problems: Calculus in Polar Coordinates Practice Problems: Calculus in Polar Coordinates Answers. For these problems, I want to convert from polar form parametrized Cartesian form, then differentiate and take the ratio y over x to get the slope,

More information

Solutions to Exercises, Section 5.6

Solutions to Exercises, Section 5.6 Instructor s Solutions Manual, Section 5.6 Exercise 1 Solutions to Exercises, Section 5.6 1. For θ = 7, evaluate each of the following: (a) cos 2 θ (b) cos(θ 2 ) [Exercises 1 and 2 emphasize that cos 2

More information

JUNIOR CERTIFICATE 2008 MARKING SCHEME TECHNICAL GRAPHICS HIGHER LEVEL

JUNIOR CERTIFICATE 2008 MARKING SCHEME TECHNICAL GRAPHICS HIGHER LEVEL JUNIOR CERTIFICATE 2008 MARKING SCHEME TECHNICAL GRAPHICS HIGHER LEVEL Sections A and B Section A - any ten questions from this Section Q1 12 Four diagrams, 3 marks for each correct label. Q2 12 3 height

More information

Determine if the function is even, odd, or neither. 1) f(x) = 8x4 + 7x + 5 A) Even B) Odd C) Neither

Determine if the function is even, odd, or neither. 1) f(x) = 8x4 + 7x + 5 A) Even B) Odd C) Neither Assignment 6 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine if the function is even, odd, or neither. 1) f(x) = 8x4 + 7x + 5 1) A)

More information

The Ellipse. PF 1 + PF 2 = constant. Minor Axis. Major Axis. Focus 1 Focus 2. Point 3.4.2

The Ellipse. PF 1 + PF 2 = constant. Minor Axis. Major Axis. Focus 1 Focus 2. Point 3.4.2 Minor Axis The Ellipse An ellipse is the locus of all points in a plane such that the sum of the distances from two given points in the plane, the foci, is constant. Focus 1 Focus 2 Major Axis Point PF

More information

1.6. QUADRIC SURFACES 53. Figure 1.18: Parabola y = 2x 2. Figure 1.19: Parabola x = 2y 2

1.6. QUADRIC SURFACES 53. Figure 1.18: Parabola y = 2x 2. Figure 1.19: Parabola x = 2y 2 1.6. QUADRIC SURFACES 53 Figure 1.18: Parabola y = 2 1.6 Quadric Surfaces Figure 1.19: Parabola x = 2y 2 1.6.1 Brief review of Conic Sections You may need to review conic sections for this to make more

More information

Chapter 6: Periodic Functions

Chapter 6: Periodic Functions Chapter 6: Periodic Functions In the previous chapter, the trigonometric functions were introduced as ratios of sides of a triangle, and related to points on a circle. We noticed how the x and y values

More information

5.3 Trigonometric Graphs. Copyright Cengage Learning. All rights reserved.

5.3 Trigonometric Graphs. Copyright Cengage Learning. All rights reserved. 5.3 Trigonometric Graphs Copyright Cengage Learning. All rights reserved. Objectives Graphs of Sine and Cosine Graphs of Transformations of Sine and Cosine Using Graphing Devices to Graph Trigonometric

More information

7.1 INTRODUCTION TO PERIODIC FUNCTIONS

7.1 INTRODUCTION TO PERIODIC FUNCTIONS 7.1 INTRODUCTION TO PERIODIC FUNCTIONS *SECTION: 6.1 DCP List: periodic functions period midline amplitude Pg 247- LECTURE EXAMPLES: Ferris wheel, 14,16,20, eplain 23, 28, 32 *SECTION: 6.2 DCP List: unit

More information

10.3 Polar Coordinates

10.3 Polar Coordinates .3 Polar Coordinates Plot the points whose polar coordinates are given. Then find two other pairs of polar coordinates of this point, one with r > and one with r

More information

Determine the intercepts of the line and ellipse below: Definition: An intercept is a point of a graph on an axis. Line: x intercept(s)

Determine the intercepts of the line and ellipse below: Definition: An intercept is a point of a graph on an axis. Line: x intercept(s) Topic 1 1 Intercepts and Lines Definition: An intercept is a point of a graph on an axis. For an equation Involving ordered pairs (x, y): x intercepts (a, 0) y intercepts (0, b) where a and b are real

More information

Chapter 9 Linear equations/graphing. 1) Be able to graph points on coordinate plane 2) Determine the quadrant for a point on coordinate plane

Chapter 9 Linear equations/graphing. 1) Be able to graph points on coordinate plane 2) Determine the quadrant for a point on coordinate plane Chapter 9 Linear equations/graphing 1) Be able to graph points on coordinate plane 2) Determine the quadrant for a point on coordinate plane Rectangular Coordinate System Quadrant II (-,+) y-axis Quadrant

More information

Optimization Exploration: The Inscribed Rectangle. Learning Objectives: Materials:

Optimization Exploration: The Inscribed Rectangle. Learning Objectives: Materials: Optimization Exploration: The Inscribed Rectangle Lesson Information Written by Jonathan Schweig and Shira Sand Subject: Pre-Calculus Calculus Algebra Topic: Functions Overview: Students will explore some

More information

MAT01B1: Calculus with Polar coordinates

MAT01B1: Calculus with Polar coordinates MAT01B1: Calculus with Polar coordinates Dr Craig 23 October 2018 My details: acraig@uj.ac.za Consulting hours: Monday 14h40 15h25 Thursday 11h30 12h55 Friday (this week) 11h20 12h25 Office C-Ring 508

More information

Introduction to Trigonometry. Algebra 2

Introduction to Trigonometry. Algebra 2 Introduction to Trigonometry Algebra 2 Angle Rotation Angle formed by the starting and ending positions of a ray that rotates about its endpoint Use θ to represent the angle measure Greek letter theta

More information

MATH 105: Midterm #1 Practice Problems

MATH 105: Midterm #1 Practice Problems Name: MATH 105: Midterm #1 Practice Problems 1. TRUE or FALSE, plus explanation. Give a full-word answer TRUE or FALSE. If the statement is true, explain why, using concepts and results from class to justify

More information

How to Graph Trigonometric Functions

How to Graph Trigonometric Functions How to Graph Trigonometric Functions This handout includes instructions for graphing processes of basic, amplitude shifts, horizontal shifts, and vertical shifts of trigonometric functions. The Unit Circle

More information

Practice problems from old exams for math 233

Practice problems from old exams for math 233 Practice problems from old exams for math 233 William H. Meeks III October 26, 2012 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information

Appendix III Graphs in the Introductory Physics Laboratory

Appendix III Graphs in the Introductory Physics Laboratory Appendix III Graphs in the Introductory Physics Laboratory 1. Introduction One of the purposes of the introductory physics laboratory is to train the student in the presentation and analysis of experimental

More information

Solutions to the problems from Written assignment 2 Math 222 Winter 2015

Solutions to the problems from Written assignment 2 Math 222 Winter 2015 Solutions to the problems from Written assignment 2 Math 222 Winter 2015 1. Determine if the following limits exist, and if a limit exists, find its value. x2 y (a) The limit of f(x, y) = x 4 as (x, y)

More information

Copyrighted Material. Copyrighted Material. Copyrighted. Copyrighted. Material

Copyrighted Material. Copyrighted Material. Copyrighted. Copyrighted. Material Engineering Graphics ORTHOGRAPHIC PROJECTION People who work with drawings develop the ability to look at lines on paper or on a computer screen and "see" the shapes of the objects the lines represent.

More information

PART I: Emmett s teacher asked him to analyze the table of values of a quadratic function to find key features. The table of values is shown below:

PART I: Emmett s teacher asked him to analyze the table of values of a quadratic function to find key features. The table of values is shown below: Math (L-3a) Learning Targets: I can find the vertex from intercept solutions calculated by quadratic formula. PART I: Emmett s teacher asked him to analyze the table of values of a quadratic function to

More information

Trigonometric Equations

Trigonometric Equations Chapter Three Trigonometric Equations Solving Simple Trigonometric Equations Algebraically Solving Complicated Trigonometric Equations Algebraically Graphs of Sine and Cosine Functions Solving Trigonometric

More information

UNIT I PLANE CURVES AND FREE HAND SKETCHING CONIC SECTIONS

UNIT I PLANE CURVES AND FREE HAND SKETCHING CONIC SECTIONS UNIT I PLANE CURVES AND FREE HAND SKETCHING CONIC SECTIONS Definition: The sections obtained by the intersection of a right circular cone by a cutting plane in different positions are called conic sections

More information

3628&deployment= &UserPass=51c80c11cadbba7fdfd8ac04e92877ef

3628&deployment= &UserPass=51c80c11cadbba7fdfd8ac04e92877ef Sections 14.1 and 14.2 (1433628) Question 123456789101112131415161718192021 Due: Wed Sep 22 2010 11:59 PM PDT 1. Question DetailsSCalcET6 14.1.010. [1288541] Consider the function below. g(x, y, z) = ln(18

More information

technical drawing

technical drawing technical drawing school of art, design and architecture nust spring 2011 http://www.youtube.com/watch?v=q6mk9hpxwvo http://www.youtube.com/watch?v=bnu2gb7w4qs Objective abstraction - axonometric view

More information

Unit 5. Algebra 2. Name:

Unit 5. Algebra 2. Name: Unit 5 Algebra 2 Name: 12.1 Day 1: Trigonometric Functions in Right Triangles Vocabulary, Main Topics, and Questions Definitions, Diagrams and Examples Theta Opposite Side of an Angle Adjacent Side of

More information

2.5 Amplitude, Period and Frequency

2.5 Amplitude, Period and Frequency 2.5 Amplitude, Period and Frequency Learning Objectives Calculate the amplitude and period of a sine or cosine curve. Calculate the frequency of a sine or cosine wave. Graph transformations of sine and

More information

MTH 103 Group Activity Problems (W2B) Name: Equations of Lines Section 2.1 part 1 (Due April 13) platform. height 5 ft

MTH 103 Group Activity Problems (W2B) Name: Equations of Lines Section 2.1 part 1 (Due April 13) platform. height 5 ft MTH 103 Group Activity Problems (W2B) Name: Equations of Lines Section 2.1 part 1 (Due April 13) Learning Objectives Write the point-slope and slope-intercept forms of linear equations Write equations

More information

Unit Circle: Sine and Cosine

Unit Circle: Sine and Cosine Unit Circle: Sine and Cosine Functions By: OpenStaxCollege The Singapore Flyer is the world s tallest Ferris wheel. (credit: Vibin JK /Flickr) Looking for a thrill? Then consider a ride on the Singapore

More information

Math + 4 (Red) SEMESTER 1. { Pg. 1 } Unit 1: Whole Number Sense. Unit 2: Whole Number Operations. Unit 3: Applications of Operations

Math + 4 (Red) SEMESTER 1.  { Pg. 1 } Unit 1: Whole Number Sense. Unit 2: Whole Number Operations. Unit 3: Applications of Operations Math + 4 (Red) This research-based course focuses on computational fluency, conceptual understanding, and problem-solving. The engaging course features new graphics, learning tools, and games; adaptive

More information

Year 11 Graphing Notes

Year 11 Graphing Notes Year 11 Graphing Notes Terminology It is very important that students understand, and always use, the correct terms. Indeed, not understanding or using the correct terms is one of the main reasons students

More information

Practice problems from old exams for math 233

Practice problems from old exams for math 233 Practice problems from old exams for math 233 William H. Meeks III January 14, 2010 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information

You identified, analyzed, and graphed quadratic functions. (Lesson 1 5) Analyze and graph equations of parabolas. Write equations of parabolas.

You identified, analyzed, and graphed quadratic functions. (Lesson 1 5) Analyze and graph equations of parabolas. Write equations of parabolas. You identified, analyzed, and graphed quadratic functions. (Lesson 1 5) Analyze and graph equations of parabolas. Write equations of parabolas. conic section degenerate conic locus parabola focus directrix

More information

Solving Equations and Graphing

Solving Equations and Graphing Solving Equations and Graphing Question 1: How do you solve a linear equation? Answer 1: 1. Remove any parentheses or other grouping symbols (if necessary). 2. If the equation contains a fraction, multiply

More information

Appendix C: Graphing. How do I plot data and uncertainties? Another technique that makes data analysis easier is to record all your data in a table.

Appendix C: Graphing. How do I plot data and uncertainties? Another technique that makes data analysis easier is to record all your data in a table. Appendix C: Graphing One of the most powerful tools used for data presentation and analysis is the graph. Used properly, graphs are an important guide to understanding the results of an experiment. They

More information

5.1 Graphing Sine and Cosine Functions.notebook. Chapter 5: Trigonometric Functions and Graphs

5.1 Graphing Sine and Cosine Functions.notebook. Chapter 5: Trigonometric Functions and Graphs Chapter 5: Trigonometric Functions and Graphs 1 Chapter 5 5.1 Graphing Sine and Cosine Functions Pages 222 237 Complete the following table using your calculator. Round answers to the nearest tenth. 2

More information

ORTHOGRAPHIC PROJECTION

ORTHOGRAPHIC PROJECTION ORTHOGRAPHIC PROJECTION C H A P T E R S I X OBJECTIVES 1. Recognize and the symbol for third-angle projection. 2. List the six principal views of projection. 3. Understand which views show depth in a drawing

More information

University of California, Berkeley Department of Mathematics 5 th November, 2012, 12:10-12:55 pm MATH 53 - Test #2

University of California, Berkeley Department of Mathematics 5 th November, 2012, 12:10-12:55 pm MATH 53 - Test #2 University of California, Berkeley epartment of Mathematics 5 th November, 212, 12:1-12:55 pm MATH 53 - Test #2 Last Name: First Name: Student Number: iscussion Section: Name of GSI: Record your answers

More information

Pearson's Ramp-Up Mathematics

Pearson's Ramp-Up Mathematics Introducing Slope L E S S O N CONCEPT BOOK See pages 7 8 in the Concept Book. PURPOSE To introduce slope as a graphical form of the constant of proportionality, k. The lesson identifies k as the ratio

More information

33. Riemann Summation over Rectangular Regions

33. Riemann Summation over Rectangular Regions . iemann Summation over ectangular egions A rectangular region in the xy-plane can be defined using compound inequalities, where x and y are each bound by constants such that a x a and b y b. Let z = f(x,

More information

11.2 LIMITS AND CONTINUITY

11.2 LIMITS AND CONTINUITY 11. LIMITS AND CONTINUITY INTRODUCTION: Consider functions of one variable y = f(x). If you are told that f(x) is continuous at x = a, explain what the graph looks like near x = a. Formal definition of

More information

Exam: Friday 4 th May How to Revise. What to use to revise:

Exam: Friday 4 th May How to Revise. What to use to revise: National 5 Mathematics Exam Revision Questions Exam: Friday 4 th May 2018 How to Revise Use this booklet for homework Come to after school revision classes Come to the Easter holiday revision class There

More information

2. (8pts) If θ is an acute angle, find the values of all the trigonometric functions of θ given

2. (8pts) If θ is an acute angle, find the values of all the trigonometric functions of θ given Trigonometry Joysheet 1 MAT 145, Spring 2017 D. Ivanšić Name: Covers: 6.1, 6.2 Show all your work! 1. 8pts) If θ is an acute angle, find the values of all the trigonometric functions of θ given that sin

More information

Sect 4.5 Inequalities Involving Quadratic Function

Sect 4.5 Inequalities Involving Quadratic Function 71 Sect 4. Inequalities Involving Quadratic Function Objective #0: Solving Inequalities using a graph Use the graph to the right to find the following: Ex. 1 a) Find the intervals where f(x) > 0. b) Find

More information

7.1 Solving Quadratic Equations by Graphing

7.1 Solving Quadratic Equations by Graphing Math 2201 Date: 7.1 Solving Quadratic Equations by Graphing In Mathematics 1201, students factored difference of squares, perfect square trinomials and polynomials of the form x 2 + bx + c and ax 2 + bx

More information

Mathematics 205 HWK 19b Solutions Section 16.2 p750. (x 2 y) dy dx. 2x 2 3

Mathematics 205 HWK 19b Solutions Section 16.2 p750. (x 2 y) dy dx. 2x 2 3 Mathematics 5 HWK 9b Solutions Section 6. p75 Problem, 6., p75. Evaluate (x y) dy dx. Solution. (x y) dy dx x ( ) y dy dx [ x x dx ] [ ] y x dx Problem 9, 6., p75. For the region as shown, write f da as

More information

(3,4) focus. y=1 directrix

(3,4) focus. y=1 directrix Math 153 10.5: Conic Sections Parabolas, Ellipses, Hyperbolas Parabolas: Definition: A parabola is the set of all points in a plane such that its distance from a fixed point F (called the focus) is equal

More information

Unit 6 Test REVIEW Algebra 2 Honors

Unit 6 Test REVIEW Algebra 2 Honors Unit Test REVIEW Algebra 2 Honors Multiple Choice Portion SHOW ALL WORK! 1. How many radians are in 1800? 10 10π Name: Per: 180 180π 2. On the unit circle shown, which radian measure is located at ( 2,

More information

The Sine Function. Precalculus: Graphs of Sine and Cosine

The Sine Function. Precalculus: Graphs of Sine and Cosine Concepts: Graphs of Sine, Cosine, Sinusoids, Terminology (amplitude, period, phase shift, frequency). The Sine Function Domain: x R Range: y [ 1, 1] Continuity: continuous for all x Increasing-decreasing

More information

13.2 Define General Angles and Use Radian Measure. standard position:

13.2 Define General Angles and Use Radian Measure. standard position: 3.2 Define General Angles and Use Radian Measure standard position: Examples: Draw an angle with the given measure in standard position..) 240 o 2.) 500 o 3.) -50 o Apr 7 9:55 AM coterminal angles: Examples:

More information

Actual testimonials from people that have used the survival guide:

Actual testimonials from people that have used the survival guide: Algebra 1A Unit: Coordinate Plane Assignment Sheet Name: Period: # 1.) Page 206 #1 6 2.) Page 206 #10 26 all 3.) Worksheet (SIF/Standard) 4.) Worksheet (SIF/Standard) 5.) Worksheet (SIF/Standard) 6.) Worksheet

More information