# 2. The value of the middle term in a ranked data set is called: A) the mean B) the standard deviation C) the mode D) the median

Size: px
Start display at page:

Download "2. The value of the middle term in a ranked data set is called: A) the mean B) the standard deviation C) the mode D) the median"

Transcription

1 1. An outlier is a value that is: A) very small or very large relative to the majority of the values in a data set B) either 100 units smaller or 100 units larger relative to the majority of the values in a data set C) greater than the mean of a data set D) none of these 2. The value of the middle term in a ranked data set is called: A) the mean B) the standard deviation C) the mode D) the median The annual salaries of six employees of a company are as follows: \$22,000 \$35,000 \$22,000 \$46,000 \$57,000 \$72, The mean salary of these employees is: A) \$42,333 B) \$40,500 C) \$53,000 D) \$22, The median salary of these employees is: A) \$42,330 B) \$40,500 C) \$53,000 D) \$22, The mode of salaries for these employees is: A) \$42,330 B) \$40,500 C) \$53,000 D) \$22,000 Page 1

2 6. The measurement units of the variance are always: A) the same as those of the original data B) the square of the measurement units of the original data C) 50% of the measurement units of the original data D) none of these 7. The quartiles divide a ranked data set into: A) 2 equal parts B) 4 equal parts C) 100 equal parts D) 10 equal parts The waiting times (in minutes) for 11 customers at a supermarket are 13, 9, 5, 15, 4, 7, 9, 11, 14, 2, and The first quartile for these data is: A) 11 B) 5 C) 6 D) 7 9. The second quartile for these data is: A) 13 B) 11 C) 5 D) The third quartile for these data is: A) 11 B) 13 C) 9 D) The approximate value of the 60th percentile for these data is: A) 13 B) 7 C) 11 D) 9 Page 2

3 12. The percentile rank of the customer who waited six minutes is: A) B) C) D) Which of the following does a box-and-whisker plot not show? A) spread of the data B) percent of the data within two standard deviations of the mean C) center of the data set D) skewness of the data set 14. The points-per-game totals for a particular basketball league over a single season has a mean of 155 and a variance of 36. Using Chebyshev's theorem, the percentage of games in which between 143 and 167 points were scored is at least: A) 25% B) 50% C) 75% D) 100% 15. You collect the following data, which represent a bank's certificate of deposit (CD) rates in each of the last 12 weeks. 4.74% 4.68% 4.88% 4.95% 4.90% 5.01% 4.96% 4.99% 5.11% 5.08% 5.15% 5.08% What is the coefficient of variation of these data? A).417% B).029% C) 2.9% D) 1.554% 16. A compound event includes: A) at least three outcomes B) at least two outcomes C) one and only one outcome D) all outcomes of an experiment Page 3

4 17. A box contains a few red and a few white marbles. Two marbles are randomly drawn from this box and the color of these marbles is observed. The total number of outcomes for this experiment is: A) eight B) four C) six D) two 18. The numerical measure of the likelihood that a specific event will occur is called: A) the sample space B) a sample point C) an event D) the probability of an event 19. The classical probability approach is applied to an experiment that: A) cannot be repeated B) has equally likely outcomes C) does not have more than two outcomes D) has all independent outcomes 20. The conditional probability of event A given that event B has already occurred is written as: A) P(A or B) B) P(B A) C) P(A and B) D) P(A B) 21. The marginal probability is the probability of: A) a sample space B) an outcome when another outcome has already occurred C) an event without considering any other event D) an experiment calculated at the margin The following table gives the two-way classification of 500 students based on sex and whether or not they suffer from math anxiety. Page 4

5 Suffer From Math Anxiety Gender Yes No Male Female If one student is randomly selected from these 500 students, the probability that this selected student is a female is: A).480 B).653 C).520 D) If one student is randomly selected from these 500 students, the probability that this selected student suffers from math anxiety is: A).670 B).275 C).333 D) If one student is randomly selected from these 500 students, the probability that this selected student suffers from math anxiety given that he is a male is approximately: A).333 B).673 C).327 D) If one student is randomly selected from these 500 students, the probability that this selected student is a female given that she does not suffer from math anxiety is approximately: A).649 B).327 C).889 D) Events "Yes" and "No" are: A) mutually exclusive events B) mutually nonexclusive events C) subjective events D) conditional events Page 5

6 27. The joint probability of two events A and B is that: A) either event A happens or event B happens B) neither of the events A and B happens C) both events A and B happen D) none of these 28. The probability that a randomly selected college student is a part-time student is.18. The probability of the complementary event of this event is: A).18 B).64 C).82 D) cannot find 29. When rolling a pair of fair dice, what is the probability that the sum of the dice on one roll will be seven? A) 1/6 B) 1/12 C) 1/36 D) 5/ An experiment is conducted with 50 dogs. Each dog is given a dish of dry dog food and a dish of canned dog food at the same time, and the food that is eaten first is considered the "preferred" food. The dogs are classified as small (under 40 lbs.), medium ( lbs.), and large (over 100 lbs.). The results are tabulated as follows: Preferred Dry Preferred Canned Small Dogs 2 18 Medium Dogs 7 13 Large Dogs 4 6 What is the probability that a dog chosen at random from the group will be large and will prefer canned food? A) 6/10 B) 6/37 C) 4/50 D) 6/50 Page 6

7 31. Four fair dice are rolled. What is the probability that all 4 dice show the same number? A) 1/24 B) 1/216 C) 1/1296 D) 1/6 32. A boy is playing an adventure game. At one point, he has to make a decision to go right or go left. If he goes right, the probability that he will "die" is.30. If he goes left, the probability of "death" is.40. He has an equal probability of choosing either direction. What is the probability that he will "die" after making his decision? A).12 B).70 C).40 D) All 400 employees at an accounting firm are asked what size of vehicle they drive: compact car, mid-size car, large car, or truck. The following table gives a two-way classification of their responses. Compact Car Mid-Size Car Large Car Truck Male Female If one employee is selected at random, what is the most likely outcome? A) The employee is a male and drives a mid-size car B) The employee is a female and drives a mid-size car C) The employee is a male and doesn't drive a mid-size or large car D) The employee is a female and doesn't drive a compact or mid-size car 34. A game is played with a fair die and bag of marbles. The player rolls the die, and if the number on the die is above four, then the player may draw from the bag of marbles. The player wins if a black marble is drawn from the bag, which contains seven white marbles and three black marbles. If the number on the die is four or less, the player loses without drawing from the bag. What is the probability of winning the game? A).33 B).30 C).63 D).10 Page 7

8 35. The probability that a randomly selected person from a certain community has been on the Internet and can point out the location of Guinea on a world map is.08, and the probability that the person can point out Guinea given that he/she has been on the Internet is.20. What is the probability that a person in the community has been on the Internet? A).40 B).016 C).80 D) 2.50 Page 8

9 Answer Key 1. A 2. D 3. A 4. B 5. D 6. B 7. B 8. B 9. D 10. B 11. D 12. C 13. C 14. C 15. C 16. B 17. B 18. D 19. B 20. D 21. C 22. C 23. A 24. D 25. D 26. A 27. C 28. C 29. A 30. D 31. B 32. D 33. C 34. D 35. A Page 9

### , x {1, 2, k}, where k > 0. (a) Write down P(X = 2). (1) (b) Show that k = 3. (4) Find E(X). (2) (Total 7 marks)

1. The probability distribution of a discrete random variable X is given by 2 x P(X = x) = 14, x {1, 2, k}, where k > 0. Write down P(X = 2). (1) Show that k = 3. Find E(X). (Total 7 marks) 2. In a game

### Exam III Review Problems

c Kathryn Bollinger and Benjamin Aurispa, November 10, 2011 1 Exam III Review Problems Fall 2011 Note: Not every topic is covered in this review. Please also take a look at the previous Week-in-Reviews

### Math 1313 Section 6.2 Definition of Probability

Math 1313 Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability

### Chapter 3: PROBABILITY

Chapter 3 Math 3201 1 3.1 Exploring Probability: P(event) = Chapter 3: PROBABILITY number of outcomes favourable to the event total number of outcomes in the sample space An event is any collection of

### Contemporary Mathematics Math 1030 Sample Exam I Chapters Time Limit: 90 Minutes No Scratch Paper Calculator Allowed: Scientific

Contemporary Mathematics Math 1030 Sample Exam I Chapters 13-15 Time Limit: 90 Minutes No Scratch Paper Calculator Allowed: Scientific Name: The point value of each problem is in the left-hand margin.

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Practice for Final Exam Name Identify the following variable as either qualitative or quantitative and explain why. 1) The number of people on a jury A) Qualitative because it is not a measurement or a

### Math 1342 Exam 2 Review

Math 1342 Exam 2 Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) If a sportscaster makes an educated guess as to how well a team will do this

### Review Questions on Ch4 and Ch5

Review Questions on Ch4 and Ch5 1. Find the mean of the distribution shown. x 1 2 P(x) 0.40 0.60 A) 1.60 B) 0.87 C) 1.33 D) 1.09 2. A married couple has three children, find the probability they are all

### PROBABILITY. 1. Introduction. Candidates should able to:

PROBABILITY Candidates should able to: evaluate probabilities in simple cases by means of enumeration of equiprobable elementary events (e.g for the total score when two fair dice are thrown), or by calculation

### Business Statistics. Chapter 4 Using Probability and Probability Distributions QMIS 120. Dr. Mohammad Zainal

Department of Quantitative Methods & Information Systems Business Statistics Chapter 4 Using Probability and Probability Distributions QMIS 120 Dr. Mohammad Zainal Chapter Goals After completing this chapter,

### Section 6.5 Conditional Probability

Section 6.5 Conditional Probability Example 1: An urn contains 5 green marbles and 7 black marbles. Two marbles are drawn in succession and without replacement from the urn. a) What is the probability

### Name: Class: Date: 6. An event occurs, on average, every 6 out of 17 times during a simulation. The experimental probability of this event is 11

Class: Date: Sample Mastery # Multiple Choice Identify the choice that best completes the statement or answers the question.. One repetition of an experiment is known as a(n) random variable expected value

### Spring 2017 Math 54 Test #2 Name:

Spring 2017 Math 54 Test #2 Name: You may use a TI calculator and formula sheets from the textbook. Show your work neatly and systematically for full credit. Total points: 101 1. (6) Suppose P(E) = 0.37

### 1. A factory makes calculators. Over a long period, 2 % of them are found to be faulty. A random sample of 100 calculators is tested.

1. A factory makes calculators. Over a long period, 2 % of them are found to be faulty. A random sample of 0 calculators is tested. Write down the expected number of faulty calculators in the sample. Find

### THE ALGEBRA III MIDTERM EXAM REVIEW Name

THE ALGEBRA III MIDTERM EXAM REVIEW Name This review MUST be turned in when you take the midterm exam OR you will not be allowed to take the midterm and will receive a ZERO for the exam. ALG III Midterm

### Name: Class: Date: Ver: 2

Name: Class: Date: Ver: 2 Secondary Math 1 Unit 9 Review 1. A charity randomly selected 100 donors. The mean donation amount of those donors is calculated. Identify the sample and population. Describe

### Module 5: Probability and Randomness Practice exercises

Module 5: Probability and Randomness Practice exercises PART 1: Introduction to probability EXAMPLE 1: Classify each of the following statements as an example of exact (theoretical) probability, relative

### Chapter 0: Preparing for Advanced Algebra

Lesson 0-1: Representing Functions Date: Example 1: Locate Coordinates Name the quadrant in which the point is located. Example 2: Identify Domain and Range State the domain and range of each relation.

### Lecture 4: Chapter 4

Lecture 4: Chapter 4 C C Moxley UAB Mathematics 19 September 16 4.2 Basic Concepts of Probability Procedure Event Simple Event Sample Space 4.2 Basic Concepts of Probability Procedure Event Simple Event

### Algebra II- Chapter 12- Test Review

Sections: Counting Principle Permutations Combinations Probability Name Choose the letter of the term that best matches each statement or phrase. 1. An illustration used to show the total number of A.

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

6. Practice Problems Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the probability. ) A bag contains red marbles, blue marbles, and 8

### Mathematicsisliketravellingona rollercoaster.sometimesyouron. Mathematics. ahighothertimesyouronalow.ma keuseofmathsroomswhenyouro

Mathematicsisliketravellingona rollercoaster.sometimesyouron Mathematics ahighothertimesyouronalow.ma keuseofmathsroomswhenyouro Stage 6 nalowandshareyourpracticewit Handling Data hotherswhenonahigh.successwi

### Stat210 WorkSheet#2 Chapter#2

1. When rolling a die 5 times, the number of elements of the sample space equals.(ans.=7,776) 2. If an experiment consists of throwing a die and then drawing a letter at random from the English alphabet,

### The point value of each problem is in the left-hand margin. You must show your work to receive any credit, except on problems 1 & 2. Work neatly.

Introduction to Statistics Math 1040 Sample Exam II Chapters 5-7 4 Problem Pages 4 Formula/Table Pages Time Limit: 90 Minutes 1 No Scratch Paper Calculator Allowed: Scientific Name: The point value of

### Probability Test Review Math 2. a. What is? b. What is? c. ( ) d. ( )

Probability Test Review Math 2 Name 1. Use the following venn diagram to answer the question: Event A: Odd Numbers Event B: Numbers greater than 10 a. What is? b. What is? c. ( ) d. ( ) 2. In Jason's homeroom

### Instructions: Choose the best answer and shade in the corresponding letter on the answer sheet provided. Be sure to include your name and student ID.

Math 3201 Unit 3 Probability Test 1 Unit Test Name: Part 1 Selected Response: Instructions: Choose the best answer and shade in the corresponding letter on the answer sheet provided. Be sure to include

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Study Guide for Test III (MATH 1630) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the number of subsets of the set. 1) {x x is an even

### North Seattle Community College Winter ELEMENTARY STATISTICS 2617 MATH Section 05, Practice Questions for Test 2 Chapter 3 and 4

North Seattle Community College Winter 2012 ELEMENTARY STATISTICS 2617 MATH 109 - Section 05, Practice Questions for Test 2 Chapter 3 and 4 1. Classify each statement as an example of empirical probability,

### 1. For which of the following sets does the mean equal the median?

1. For which of the following sets does the mean equal the median? I. {1, 2, 3, 4, 5} II. {3, 9, 6, 15, 12} III. {13, 7, 1, 11, 9, 19} A. I only B. I and II C. I and III D. I, II, and III E. None of the

### Spring 2016 Math 54 Test #2 Name: Write your work neatly. You may use TI calculator and formula sheet. Total points: 103

Spring 2016 Math 54 Test #2 Name: Write your work neatly. You may use TI calculator and formula sheet. Total points: 103 1. (8) The following are amounts of time (minutes) spent on hygiene and grooming

### Math 3201 Unit 3: Probability Name:

Multiple Choice Math 3201 Unit 3: Probability Name: 1. Given the following probabilities, which event is most likely to occur? A. P(A) = 0.2 B. P(B) = C. P(C) = 0.3 D. P(D) = 2. Three events, A, B, and

### Algebra 2 Notes Section 10.1: Apply the Counting Principle and Permutations

Algebra 2 Notes Section 10.1: Apply the Counting Principle and Permutations Objective(s): Vocabulary: I. Fundamental Counting Principle: Two Events: Three or more Events: II. Permutation: (top of p. 684)

### PROBABILITY.0 Concept Map Contents Page. Probability Of An Event. Probability Of Two Events. 4. Probability of Mutually Exclusive Events.4 Probability

PROGRAM DIDIK CEMERLANG AKADEMIK SPM ADDITIONAL MATHEMATICS FORM MODULE PROBABILITY PROBABILITY.0 Concept Map Contents Page. Probability Of An Event. Probability Of Two Events. 4. Probability of Mutually

### Math 146 Statistics for the Health Sciences Additional Exercises on Chapter 3

Math 46 Statistics for the Health Sciences Additional Exercises on Chapter 3 Student Name: Find the indicated probability. ) If you flip a coin three times, the possible outcomes are HHH HHT HTH HTT THH

### THE ALGEBRA III MIDTERM EXAM REVIEW Name. This review MUST be turned in when you take the midterm exam

THE ALGEBRA III MIDTERM EXAM REVIEW Name This review MUST be turned in when you take the midterm exam ALG III Midterm Review Solve and graph on a number line. 1. x 6 14. 3x 1 5x 14 3. 4(x 1) (4x 3) Find

### Class XII Chapter 13 Probability Maths. Exercise 13.1

Exercise 13.1 Question 1: Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E F) = 0.2, find P (E F) and P(F E). It is given that P(E) = 0.6, P(F) = 0.3, and P(E F) = 0.2 Question 2:

### A B C. 142 D. 96

Data Displays and Analysis 1. stem leaf 900 3 3 4 5 7 9 901 1 1 1 2 4 5 6 7 8 8 8 9 9 902 1 3 3 3 4 6 8 9 9 903 1 2 2 3 3 3 4 7 8 9 904 1 1 2 4 5 6 8 8 What is the range of the data shown in the stem-and-leaf

### Instructions: Choose the best answer and shade the corresponding space on the answer sheet provide. Be sure to include your name and student numbers.

Math 3201 Unit 3 Probability Assignment 1 Unit Assignment Name: Part 1 Selected Response: Instructions: Choose the best answer and shade the corresponding space on the answer sheet provide. Be sure to

### SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Math 1342 Practice Test 2 Ch 4 & 5 Name 1) Nanette must pass through three doors as she walks from her company's foyer to her office. Each of these doors may be locked or unlocked. 1) List the outcomes

### 1. The masses, x grams, of the contents of 25 tins of Brand A anchovies are summarized by x =

P6.C1_C2.E1.Representation of Data and Probability 1. The masses, x grams, of the contents of 25 tins of Brand A anchovies are summarized by x = 1268.2 and x 2 = 64585.16. Find the mean and variance of

### Probability. Probabilty Impossibe Unlikely Equally Likely Likely Certain

PROBABILITY Probability The likelihood or chance of an event occurring If an event is IMPOSSIBLE its probability is ZERO If an event is CERTAIN its probability is ONE So all probabilities lie between 0

### Probability Rules. 2) The probability, P, of any event ranges from which of the following?

Name: WORKSHEET : Date: Answer the following questions. 1) Probability of event E occurring is... P(E) = Number of ways to get E/Total number of outcomes possible in S, the sample space....if. 2) The probability,

### Bell Work. Warm-Up Exercises. Two six-sided dice are rolled. Find the probability of each sum or 7

Warm-Up Exercises Two six-sided dice are rolled. Find the probability of each sum. 1. 7 Bell Work 2. 5 or 7 3. You toss a coin 3 times. What is the probability of getting 3 heads? Warm-Up Notes Exercises

### Name: Probability, Part 1 March 4, 2013

1) Assuming all sections are equal in size, what is the probability of the spinner below stopping on a blue section? Write the probability as a fraction. 2) A bag contains 3 red marbles, 4 blue marbles,

### MTH 103 H Final Exam. 1. I study and I pass the course is an example of a. (a) conjunction (b) disjunction. (c) conditional (d) connective

MTH 103 H Final Exam Name: 1. I study and I pass the course is an example of a (a) conjunction (b) disjunction (c) conditional (d) connective 2. Which of the following is equivalent to (p q)? (a) p q (b)

### Answer each of the following problems. Make sure to show your work.

Answer each of the following problems. Make sure to show your work. 1. A board game requires each player to roll a die. The player with the highest number wins. If a player wants to calculate his or her

### Probability Review Questions

Probability Review Questions Short Answer 1. State whether the following events are mutually exclusive and explain your reasoning. Selecting a prime number or selecting an even number from a set of 10

### INDEPENDENT AND DEPENDENT EVENTS UNIT 6: PROBABILITY DAY 2

INDEPENDENT AND DEPENDENT EVENTS UNIT 6: PROBABILITY DAY 2 WARM UP Students in a mathematics class pick a card from a standard deck of 52 cards, record the suit, and return the card to the deck. The results

### Chapter 3: Probability (Part 1)

Chapter 3: Probability (Part 1) 3.1: Basic Concepts of Probability and Counting Types of Probability There are at least three different types of probability Subjective Probability is found through people

### MATH CALCULUS & STATISTICS/BUSN - PRACTICE EXAM #2 - FALL DR. DAVID BRIDGE

MATH 2053 - CALCULUS & STATISTICS/BUSN - PRACTICE EXAM #2 - FALL 2009 - DR. DAVID BRIDGE MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the

### SALES AND MARKETING Department MATHEMATICS. Combinatorics and probabilities. Tutorials and exercises

SALES AND MARKETING Department MATHEMATICS 2 nd Semester Combinatorics and probabilities Tutorials and exercises Online document : http://jff-dut-tc.weebly.com section DUT Maths S2 IUT de Saint-Etienne

### Section 6.1 #16. Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

Section 6.1 #16 What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit? page 1 Section 6.1 #38 Two events E 1 and E 2 are called independent if p(e 1

### 2. The figure shows the face of a spinner. The numbers are all equally likely to occur.

MYP IB Review 9 Probability Name: Date: 1. For a carnival game, a jar contains 20 blue marbles and 80 red marbles. 1. Children take turns randomly selecting a marble from the jar. If a blue marble is chosen,

### Math Steven Noble. November 24th. Steven Noble Math 3790

Math 3790 Steven Noble November 24th The Rules of Craps In the game of craps you roll two dice then, if the total is 7 or 11, you win, if the total is 2, 3, or 12, you lose, In the other cases (when the

### Math 227 Elementary Statistics. Bluman 5 th edition

Math 227 Elementary Statistics Bluman 5 th edition CHAPTER 4 Probability and Counting Rules 2 Objectives Determine sample spaces and find the probability of an event using classical probability or empirical

### Section Introduction to Sets

Section 1.1 - Introduction to Sets Definition: A set is a well-defined collection of objects usually denoted by uppercase letters. Definition: The elements, or members, of a set are denoted by lowercase

### Independent Events B R Y

. Independent Events Lesson Objectives Understand independent events. Use the multiplication rule and the addition rule of probability to solve problems with independent events. Vocabulary independent

### Question 1. The following set of data gives exam scores in a class of 12 students. a) Sketch a box and whisker plot of the data.

Question 1 The following set of data gives exam scores in a class of 12 students 25, 67, 86, 72, 97, 80, 86, 55, 68, 70, 81, 12 a) Sketch a box and whisker plot of the data. b) Determine the Interquartile

### Intermediate Math Circles November 1, 2017 Probability I

Intermediate Math Circles November 1, 2017 Probability I Probability is the study of uncertain events or outcomes. Games of chance that involve rolling dice or dealing cards are one obvious area of application.

### Module 4 Project Maths Development Team Draft (Version 2)

5 Week Modular Course in Statistics & Probability Strand 1 Module 4 Set Theory and Probability It is often said that the three basic rules of probability are: 1. Draw a picture 2. Draw a picture 3. Draw

### Probability of Independent and Dependent Events. CCM2 Unit 6: Probability

Probability of Independent and Dependent Events CCM2 Unit 6: Probability Independent and Dependent Events Independent Events: two events are said to be independent when one event has no affect on the probability

### Algebra 2 P49 Pre 10 1 Measures of Central Tendency Box and Whisker Plots Variation and Outliers

Algebra 2 P49 Pre 10 1 Measures of Central Tendency Box and Whisker Plots Variation and Outliers 10 1 Sample Spaces and Probability Mean Average = 40/8 = 5 Measures of Central Tendency 2,3,3,4,5,6,8,9

### S = {(1, 1), (1, 2),, (6, 6)}

Part, MULTIPLE CHOICE, 5 Points Each An experiment consists of rolling a pair of dice and observing the uppermost faces. The sample space for this experiment consists of 6 outcomes listed as pairs of numbers:

### CHAPTER 6 PROBABILITY. Chapter 5 introduced the concepts of z scores and the normal curve. This chapter takes

CHAPTER 6 PROBABILITY Chapter 5 introduced the concepts of z scores and the normal curve. This chapter takes these two concepts a step further and explains their relationship with another statistical concept

### a) Find the probability that a visitor will visit Central Park or Times Square.

Name: Date: Unit 7 Review 1) A florist has 2 different vases that they use for floral arrangements. There are 3 different flowers that they can use in the vase, and 3 different colors of ribbon to tie

### Math 12 Academic Assignment 9: Probability Outcomes: B8, G1, G2, G3, G4, G7, G8

Math 12 Academic Assignment 9: Probability Outcomes: B8, G1, G2, G3, G4, G7, G8 Name: 45 1. A customer chooses 5 or 6 tapes from a bin of 40. What is the expression that gives the total number of possibilities?

### 2. How many different three-member teams can be formed from six students?

KCATM 2011 Probability & Statistics 1. A fair coin is thrown in the air four times. If the coin lands with the head up on the first three tosses, what is the probability that the coin will land with the

### 13-6 Probabilities of Mutually Exclusive Events

Determine whether the events are mutually exclusive or not mutually exclusive. Explain your reasoning. 1. drawing a card from a standard deck and getting a jack or a club The jack of clubs is an outcome

### 1. How to identify the sample space of a probability experiment and how to identify simple events

Statistics Chapter 3 Name: 3.1 Basic Concepts of Probability Learning objectives: 1. How to identify the sample space of a probability experiment and how to identify simple events 2. How to use the Fundamental

### Math 1313 Conditional Probability. Basic Information

Math 1313 Conditional Probability Basic Information We have already covered the basic rules of probability, and we have learned the techniques for solving problems with large sample spaces. Next we will

### Data Analysis. (1) Page #16 34 Column, Column (Skip part B), and #57 (A S/S)

H Algebra 2/Trig Unit 9 Notes Packet Name: Period: # Data Analysis (1) Page 663 664 #16 34 Column, 45 54 Column (Skip part B), and #57 (A S/S) (2) Page 663 664 #17 32 Column, 46 56 Column (Skip part B),

### Empirical (or statistical) probability) is based on. The empirical probability of an event E is the frequency of event E.

Probability and Statistics Chapter 3 Notes Section 3-1 I. Probability Experiments. A. When weather forecasters say There is a 90% chance of rain tomorrow, or a doctor says There is a 35% chance of a successful

### Name: Class: Date: ID: A

Class: Date: Chapter 0 review. A lunch menu consists of different kinds of sandwiches, different kinds of soup, and 6 different drinks. How many choices are there for ordering a sandwich, a bowl of soup,

### MATH CALCULUS & STATISTICS/BUSN - PRACTICE EXAM #1 - SPRING DR. DAVID BRIDGE

MATH 2053 - CALCULUS & STATISTICS/BUSN - PRACTICE EXAM #1 - SPRING 2009 - DR. DAVID BRIDGE MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the

### 1) What is the total area under the curve? 1) 2) What is the mean of the distribution? 2)

Math 1090 Test 2 Review Worksheet Ch5 and Ch 6 Name Use the following distribution to answer the question. 1) What is the total area under the curve? 1) 2) What is the mean of the distribution? 2) 3) Estimate

### 4.1 What is Probability?

4.1 What is Probability? between 0 and 1 to indicate the likelihood of an event. We use event is to occur. 1 use three major methods: 1) Intuition 3) Equally Likely Outcomes Intuition - prediction based

### Unit Nine Precalculus Practice Test Probability & Statistics. Name: Period: Date: NON-CALCULATOR SECTION

Name: Period: Date: NON-CALCULATOR SECTION Vocabulary: Define each word and give an example. 1. discrete mathematics 2. dependent outcomes 3. series Short Answer: 4. Describe when to use a combination.

### Probability and Counting Techniques

Probability and Counting Techniques Diana Pell (Multiplication Principle) Suppose that a task consists of t choices performed consecutively. Suppose that choice 1 can be performed in m 1 ways; for each

### 3. A box contains three blue cards and four white cards. Two cards are drawn one at a time.

MATH 310 FINAL EXAM PRACTICE QUESTIONS solutions 09/2009 A. PROBABILITY The solutions given are not the only method of solving each question. 1. A fair coin was flipped 5 times and landed heads five times.

### Basic Probability Ideas. Experiment - a situation involving chance or probability that leads to results called outcomes.

Basic Probability Ideas Experiment - a situation involving chance or probability that leads to results called outcomes. Random Experiment the process of observing the outcome of a chance event Simulation

### Section 1.5 Graphs and Describing Distributions

Section 1.5 Graphs and Describing Distributions Data can be displayed using graphs. Some of the most common graphs used in statistics are: Bar graph Pie Chart Dot plot Histogram Stem and leaf plot Box

### AP Statistics Ch In-Class Practice (Probability)

AP Statistics Ch 14-15 In-Class Practice (Probability) #1a) A batter who had failed to get a hit in seven consecutive times at bat then hits a game-winning home run. When talking to reporters afterward,

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Statistics Homework Ch 5 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide an appropriate response. 1) A coin is tossed. Find the probability

### 1. Determine whether the following experiments are binomial.

Math 141 Exam 3 Review Problem Set Note: Not every topic is covered in this review. It is more heavily weighted on 8.4-8.6. Please also take a look at the previous Week in Reviews for more practice problems

### LC OL Probability. ARNMaths.weebly.com. As part of Leaving Certificate Ordinary Level Math you should be able to complete the following.

A Ryan LC OL Probability ARNMaths.weebly.com Learning Outcomes As part of Leaving Certificate Ordinary Level Math you should be able to complete the following. Counting List outcomes of an experiment Apply

### [Independent Probability, Conditional Probability, Tree Diagrams]

Name: Year 1 Review 11-9 Topic: Probability Day 2 Use your formula booklet! Page 5 Lesson 11-8: Probability Day 1 [Independent Probability, Conditional Probability, Tree Diagrams] Read and Highlight Station

### 5.6. Independent Events. INVESTIGATE the Math. Reflecting

5.6 Independent Events YOU WILL NEED calculator EXPLORE The Fortin family has two children. Cam determines the probability that the family has two girls. Rushanna determines the probability that the family

### SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Chapter 3: Practice SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Provide an appropriate response. ) A study of 000 randomly selected flights of a major

### Chapter 6: Probability and Simulation. The study of randomness

Chapter 6: Probability and Simulation The study of randomness Introduction Probability is the study of chance. 6.1 focuses on simulation since actual observations are often not feasible. When we produce

### Name Date. Probability of Disjoint and Overlapping Events For use with Exploration 12.4

12.4 Probability of Disjoint and Overlapping Events For use with Exploration 12.4 Essential Question How can you find probabilities of disjoint and overlapping events? Two events are disjoint, or mutually

### MAT Midterm Review

MAT 120 - Midterm Review Name Identify the population and the sample. 1) When 1094 American households were surveyed, it was found that 67% of them owned two cars. Identify whether the statement describes

### Statistics ~ Business Statistics SAMPLE TEST 2: Measures of Position, Probability & the Normal Curve (Revised Spring 2017)

Statistics ~ Business Statistics SAMPLE TEST 2: Measures of Position, Probability & the Normal Curve (Revised Spring 2017) Record High Temperatures in Selected States (degrees Farenheit) (There are 20

### Study Island Statistics and Probability

Study Island Statistics and Probability Copyright 2014 Edmentum - All rights reserved. 1. An experiment is broken up into two parts. In the first part of the experiment, a six-sided die is rolled. In the

### Grade 6 Math Circles Fall Oct 14/15 Probability

1 Faculty of Mathematics Waterloo, Ontario Centre for Education in Mathematics and Computing Grade 6 Math Circles Fall 2014 - Oct 14/15 Probability Probability is the likelihood of an event occurring.

### Name. Is the game fair or not? Prove your answer with math. If the game is fair, play it 36 times and record the results.

Homework 5.1C You must complete table. Use math to decide if the game is fair or not. If Period the game is not fair, change the point system to make it fair. Game 1 Circle one: Fair or Not 2 six sided

### Section 11.4: Tree Diagrams, Tables, and Sample Spaces

Section 11.4: Tree Diagrams, Tables, and Sample Spaces Diana Pell Exercise 1. Use a tree diagram to find the sample space for the genders of three children in a family. Exercise 2. (You Try!) A soda machine

### Probability: Part 1 1/28/16

Probability: Part 1 1/28/16 The Kind of Studies We Can t Do Anymore Negative operant conditioning with a random reward system Addictive behavior under a random reward system FBJ murine osteosarcoma viral

### 2 A fair coin is flipped 8 times. What is the probability of getting more heads than tails? A. 1 2 B E. NOTA

For all questions, answer E. "NOTA" means none of the above answers is correct. Calculator use NO calculators will be permitted on any test other than the Statistics topic test. The word "deck" refers