Example: Modulo 11: Since Z p is cyclic, there is a generator. Let g be a generator of Z p.

Size: px
Start display at page:

Download "Example: Modulo 11: Since Z p is cyclic, there is a generator. Let g be a generator of Z p."

Transcription

1 Qudrtic Residues Defiitio: The umbers 0, 1,,, ( mod, re clled udrtic residues modulo Numbers which re ot udrtic residues modulo re clled udrtic o-residues modulo Exmle: Modulo 11: Itroductio to Number Theory i i mod There re six udrtic residues modulo 11: 0, 1, 3, 4, 5, d 9 There re five udrtic o-residues modulo 11:, 6, 7,, 10 c Eli Bihm - My 3, Itroductio to Number Theory (1 c Eli Bihm - My 3, Itroductio to Number Theory (1 Qudrtic Residues (cot Lemm: Let be rime Exctly hlf of the umbers i Z re udrtic residues With 0, exctly +1 umbers i Z re udrtic residues There re t most +1 udrtic residues, sice 0 1 ( 1 (mod ( (mod i ( i (mod i Thus, ll the elemets i Z s t most +1 udrtic residues There re t lest +1 udrtic residues, otherwise, for some i j / it holds tht i ( i j ( j, i cotrst to Lgrge theorem tht sttes tht the eutio x i 0 hs t most two solutios (mod Qudrtic Residues (cot Sice Z is cyclic, there is geertor Let g be geertor of Z 1 g is udrtic o-residue modulo, sice otherwise there is some b such tht b g (mod Clerly, b 1 (mod, d thus g b 1 (mod However, the order of g is 1 Cotrdictio QED g, g 4,, g ( mod re udrtic residues, d re distict, therefore, there re t lest udrtic residues 3 g, g 3, g 5,, g ( mod re udrtic o-residues, sice if y of them is udrtic residue, g is lso udrtic residue c Eli Bihm - My 3, Itroductio to Number Theory (1 c Eli Bihm - My 3, Itroductio to Number Theory (1

2 Euler s Criterio Theorem: Let be rime, d let Z The, is udrtic residue modulo iff 1 (mod ( If is udrtic residue, there is some b such tht b Thus, (b b 1 (mod (mod Euler s Criterio (cot ( If is udrtic o-residue: For y r there is uiue s such tht rs (mod, ie, s r, d there is o r r such tht s r Sice is udrtic o-residue, r s (mod Thus, the umbers 1,, 3,, 1 re divided ito distict irs (r 1, s 1, (r, s,, (r, s, such tht r i s i, d we get r 1 s 1 r s r s 1 ( 1 (mod by Wilso s theorem QED c Eli Bihm - My 3, Itroductio to Number Theory (1 c Eli Bihm - My 3, Itroductio to Number Theory (1 Qudrtic Residues Modulo Let d be lrge rimes d let (s i RSA Theorem: Let m Z If m is udrtic residue modulo, the m hs exctly four sure roots modulo i Z Assume α m (mod The gcd(m, 1 gcd(α, 1 gcd(α, 1 α Z d sice the m α (mod m α (mod m α (mod m hs two sure roots modulo (α mod d α mod d two sure roots modulo (α mod d α mod Qudrtic Residues Modulo (cot Look t the systems of eutios x ±α (mod x ±α (mod which rereset four systems (oe of ech ossible choice of ± Ech system hs uiue solutio modulo which stisfies d thus stisfies x m (mod x m (mod x m (mod All the four solutios re roots of m modulo These re ll the roots Otherwise there must be more th two roots either modulo or modulo QED c Eli Bihm - My 3, Itroductio to Number Theory (1 c Eli Bihm - My 3, Itroductio to Number Theory (1

3 Qudrtic Residues Modulo (cot Coclusio: Exctly urter of the umbers i Z re udrtic residues modulo Legedre s Symbol Defiitio: Let be rime such tht Legedre s symbol of over is +1, if is udrtic residue modulo ;, if is udrtic o-residue modulo By Euler: (mod c Eli Bihm - My 3, Itroductio to Number Theory (1 c Eli Bihm - My 3, Itroductio to Number Theory (1 Legedre s Symbol (cot Proerties of Legedre s symbol: 1 (mod ( ( 1 ( c 1 c ( 3 ( 1, if 4k + 1;, if 4k + 3 ( (mod ( 4k+1 ( 4k+3 ( k 1, if 4k + 1; ( k+1, if 4k ( ( (give without roof 5 ( ( ( b b Legedre s Symbol (cot Let g be geertor modulo The, i, g i (mod d j, b g j (mod is udrtic residue iff i is eve, b is udrtic residue iff j is eve, d b is udrtic residue iff i + j is eve Thus, by Euler: b ( i+j ( i ( j b (mod c Eli Bihm - My 3, Itroductio to Number Theory (1 c Eli Bihm - My 3, Itroductio to Number Theory (1

4 Legedre s Symbol (cot 6 The recirocity lw: if re both odd rimes the Jcobi s Symbol Jcobi s symbol is geerliztio of Legedre s symbol to comosite umbers (give without roof ( Defiitio: Let be odd, d let 1,,, k be the rime fctors of (ot ecessrily distict such tht 1 k Let be corime to Jcobi s symbol of over is 1 k I rticulr, for c Eli Bihm - My 3, Itroductio to Number Theory (1 c Eli Bihm - My 3, Itroductio to Number Theory (1 Remrks: Jcobi s Symbol (cot 1 Z is udrtic residue modulo iff the Legedre s symbols over ll the rime fctors re 1 Whe Jcobi s symbol is 1, is ot ecessrily udrtic residue 3 Whe Jcobi s symbol is -1, is ecessrily udrtic o-residue Proerties of Jcobi s symbol: Jcobi s Symbol (cot Let m d be itegers, d let d b be corime to m d Assume tht is odd d tht the fctoriztio of is 1 k 1 b (mod ( ( b ( 1 1 (1 is udrtic residue modulo y 3 ( ( 1 k (( (( (( k oeig retheses: ( i 1 i S S {1,,,k} c Eli Bihm - My 3, Itroductio to Number Theory (1 c Eli Bihm - My 3, Itroductio to Number Theory (1

5 Jcobi s Symbol (cot S {1,,,k} S i S ( i 1 + i {1,,,k} ( i [( 1 1( 1 ( k 1 + ] + ( ( ( k where ll the terms with S (i the brckets re multiles of four, d ll the i 1 re eve Thus, d 1 ( ( 1 k + + ( k 1 (mod, ( ( 1/ ( ( / ( ( k/ ( ( 1/+( /++( k / ( (/ c Eli Bihm - My 3, Itroductio to Number Theory (1 Jcobi s Symbol (cot 4 ( ( We sw tht ( (, thus: 1 It remis to show tht ( 1 k k k (mod 1 (1 + ( 1 1(1 + ( ( ( 1 + ( 1 1( 1 But ( 1 1 d ( 1, thus 64 ( 1 1( 1 Therefore, ( ( 1 (mod 16 c Eli Bihm - My 3, Itroductio to Number Theory (1 Ad, Jcobi s Symbol (cot 1 3 (1 + ( 1 1(1 + ( 1(1 + ( 3 1 (mod ( ( 1 + ( 3 1 (mod 16 etc, thus, 1 + ( ( ( k 1 (mod 16 Jcobi s Symbol (cot 5 The first multilictio roerty: ( ( ( m m (if is corime to m it is corime to m d to ; the rest is derived directly from the defiitio 6 The secod multilictio roerty: ( ( ( b b (if b is corime to, the both d b re corime to ; the rest is derived sice this roerty holds for Legedre s symbol k 1 (mod c Eli Bihm - My 3, Itroductio to Number Theory (1 c Eli Bihm - My 3, Itroductio to Number Theory (1

6 Jcobi s Symbol (cot 7 The recirocity lw: if m, re corime d odd the m ( m First ssume tht m is rime, thus, 1 m k By the recirocity lw of Legedre s symbol we kow tht Thus, i ( ( i i ( 1 ++ k 1 }{{ k } c Eli Bihm - My 3, Itroductio to Number Theory (1 ( We sw i roerty 3 tht, thus, 1 Jcobi s Symbol (cot ( 1 1 Now for y odd m: QED m ( 1 ( ( m + + ( k 1 l l m ( ( 1 ++ l (mod, c Eli Bihm - My 3, Itroductio to Number Theory (1 Alictio of Jcobi s Symbol: Jcobi s Symbol (cot Usig the roerties of Jcobi s symbol, it is esy to clculte Legedre s symbols i olyomil time Exmle: ( 37 7 (( ((+1 3 (( is rime, therefore ( c lso be comuted by: (mod Comlexity: Jcobi s Symbol (cot The oly reuired rithmetic oertios re modulr reductios d divisio by owers of two Clerly, divisio (rule 6 reduces the umertor by fctor of two A modulr reductio (usig rule 7 d the rule 1, reduces the umber by t lest two: s if > b the b + r b + r > r + r, thus r < /, ie, mod b < / Therefore, t most O(log modulr reductios/divisios re erformed, ech of which tkes O((log time This shows tht the comlexity is O((log 3, which is olyomil i log A more recise lysis of this lgorithm shows tht the comlexity c be reduced to O((log c Eli Bihm - My 3, Itroductio to Number Theory (1 c Eli Bihm - My 3, Itroductio to Number Theory (1

Introduction to Number Theory 2. c Eli Biham - November 5, Introduction to Number Theory 2 (12)

Introduction to Number Theory 2. c Eli Biham - November 5, Introduction to Number Theory 2 (12) Introduction to Number Theory c Eli Biham - November 5, 006 345 Introduction to Number Theory (1) Quadratic Residues Definition: The numbers 0, 1,,...,(n 1) mod n, are called uadratic residues modulo n.

More information

LECTURE 9: QUADRATIC RESIDUES AND THE LAW OF QUADRATIC RECIPROCITY

LECTURE 9: QUADRATIC RESIDUES AND THE LAW OF QUADRATIC RECIPROCITY LECTURE 9: QUADRATIC RESIDUES AND THE LAW OF QUADRATIC RECIPROCITY 1. Bsic roerties of qudrtic residues We now investigte residues with secil roerties of lgebric tye. Definition 1.1. (i) When (, m) 1 nd

More information

MATH 118 PROBLEM SET 6

MATH 118 PROBLEM SET 6 MATH 118 PROBLEM SET 6 WASEEM LUTFI, GABRIEL MATSON, AND AMY PIRCHER Section 1 #16: Show tht if is qudrtic residue modulo m, nd b 1 (mod m, then b is lso qudrtic residue Then rove tht the roduct of the

More information

Solutions to Exam 1. Problem 1. a) State Fermat s Little Theorem and Euler s Theorem. b) Let m, n be relatively prime positive integers.

Solutions to Exam 1. Problem 1. a) State Fermat s Little Theorem and Euler s Theorem. b) Let m, n be relatively prime positive integers. Solutions to Exam 1 Problem 1. a) State Fermat s Little Theorem and Euler s Theorem. b) Let m, n be relatively rime ositive integers. Prove that m φ(n) + n φ(m) 1 (mod mn). c) Find the remainder of 1 008

More information

Some Connections Between Primitive Roots and Quadratic Non-Residues Modulo a Prime

Some Connections Between Primitive Roots and Quadratic Non-Residues Modulo a Prime Some Connections Between Primitive Roots nd Qudrtic Non-Residues Modulo Prime Sorin Iftene Dertment of Comuter Science Al. I. Cuz University Isi, Romni Emil: siftene@info.uic.ro Abstrct In this er we resent

More information

AQA Level 2 Further mathematics Further algebra. Section 3: Inequalities and indices

AQA Level 2 Further mathematics Further algebra. Section 3: Inequalities and indices AQA Level Further mthemtics Further lgebr Sectio : Iequlities d idices Notes d Emples These otes coti subsectios o Iequlities Lier iequlities Qudrtic iequlities Multiplyig epressios The rules of idices

More information

MATH 324 Elementary Number Theory Solutions to Practice Problems for Final Examination Monday August 8, 2005

MATH 324 Elementary Number Theory Solutions to Practice Problems for Final Examination Monday August 8, 2005 MATH 324 Elementary Number Theory Solutions to Practice Problems for Final Examination Monday August 8, 2005 Deartment of Mathematical and Statistical Sciences University of Alberta Question 1. Find integers

More information

Shuli s Math Problem Solving Column

Shuli s Math Problem Solving Column Shuli s Mth Problem Solvig Colum Volume, Issue Jue, 9 Edited d Authored by Shuli Sog Colordo Sprigs, Colordo shuli_sog@yhoocom Cotets Mth Trick: Metl Clcultio: b cd Mth Competitio Skill: Divisibility by

More information

MTH 3527 Number Theory Quiz 10 (Some problems that might be on the quiz and some solutions.) 1. Euler φ-function. Desribe all integers n such that:

MTH 3527 Number Theory Quiz 10 (Some problems that might be on the quiz and some solutions.) 1. Euler φ-function. Desribe all integers n such that: MTH 7 Number Theory Quiz 10 (Some roblems that might be on the quiz and some solutions.) 1. Euler φ-function. Desribe all integers n such that: (a) φ(n) = Solution: n = 4,, 6 since φ( ) = ( 1) =, φ() =

More information

NUMBER THEORY Amin Witno

NUMBER THEORY Amin Witno WON Series in Discrete Mthemtics nd Modern Algebr Volume 2 NUMBER THEORY Amin Witno Prefce Written t Phildelphi University, Jordn for Mth 313, these notes 1 were used first time in the Fll 2005 semester.

More information

Math 124 Homework 5 Solutions

Math 124 Homework 5 Solutions Math 12 Homework 5 Solutions by Luke Gustafson Fall 2003 1. 163 1 2 (mod 2 gives = 2 the smallest rime. 2a. First, consider = 2. We know 2 is not a uadratic residue if and only if 3, 5 (mod 8. By Dirichlet

More information

Logarithms APPENDIX IV. 265 Appendix

Logarithms APPENDIX IV. 265 Appendix APPENDIX IV Logarithms Sometimes, a umerical expressio may ivolve multiplicatio, divisio or ratioal powers of large umbers. For such calculatios, logarithms are very useful. They help us i makig difficult

More information

Quadratic Residues. Legendre symbols provide a computational tool for determining whether a quadratic congruence has a solution. = a (p 1)/2 (mod p).

Quadratic Residues. Legendre symbols provide a computational tool for determining whether a quadratic congruence has a solution. = a (p 1)/2 (mod p). Quadratic Residues 4--015 a is a quadratic residue mod m if x = a (mod m). Otherwise, a is a quadratic nonresidue. Quadratic Recirocity relates the solvability of the congruence x = (mod q) to the solvability

More information

MT 430 Intro to Number Theory MIDTERM 2 PRACTICE

MT 430 Intro to Number Theory MIDTERM 2 PRACTICE MT 40 Intro to Number Theory MIDTERM 2 PRACTICE Material covered Midterm 2 is comrehensive but will focus on the material of all the lectures from February 9 u to Aril 4 Please review the following toics

More information

Exam 1 7 = = 49 2 ( ) = = 7 ( ) =

Exam 1 7 = = 49 2 ( ) = = 7 ( ) = Exam 1 Problem 1. a) Define gcd(a, b). Using Euclid s algorithm comute gcd(889, 168). Then find x, y Z such that gcd(889, 168) = x 889 + y 168 (check your answer!). b) Let a be an integer. Prove that gcd(3a

More information

Is 1 a Square Modulo p? Is 2?

Is 1 a Square Modulo p? Is 2? Chater 21 Is 1 a Square Modulo? Is 2? In the revious chater we took various rimes and looked at the a s that were quadratic residues and the a s that were nonresidues. For examle, we made a table of squares

More information

x y z HD(x, y) + HD(y, z) HD(x, z)

x y z HD(x, y) + HD(y, z) HD(x, z) Massachusetts Istitute of Techology Departmet of Electrical Egieerig ad Computer Sciece 6.02 Solutios to Chapter 5 Updated: February 16, 2012 Please sed iformatio about errors or omissios to hari; questios

More information

CS 135: Computer Architecture I. Boolean Algebra. Basic Logic Gates

CS 135: Computer Architecture I. Boolean Algebra. Basic Logic Gates Bsic Logic Gtes : Computer Architecture I Boolen Algebr Instructor: Prof. Bhgi Nrhri Dept. of Computer Science Course URL: www.ses.gwu.edu/~bhgiweb/cs35/ Digitl Logic Circuits We sw how we cn build the

More information

BOUNDS FOR OUT DEGREE EQUITABLE DOMINATION NUMBERS IN GRAPHS

BOUNDS FOR OUT DEGREE EQUITABLE DOMINATION NUMBERS IN GRAPHS BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN 2303-4874 (p), ISSN (o) 2303-4955 www.imvibl.org/bulletin Vol. 3(2013), 149-154 Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA

More information

3. Error Correcting Codes

3. Error Correcting Codes 3. Error Correctig Codes Refereces V. Bhargava, Forward Error Correctio Schemes for Digital Commuicatios, IEEE Commuicatios Magazie, Vol 21 No1 11 19, Jauary 1983 Mischa Schwartz, Iformatio Trasmissio

More information

Foundations of Cryptography

Foundations of Cryptography Foundations of Cryptography Ville Junnila viljun@utu.fi Department of Mathematics and Statistics University of Turku 2015 Ville Junnila viljun@utu.fi Lecture 10 1 of 17 The order of a number (mod n) Definition

More information

Revision: June 10, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: June 10, E Main Suite D Pullman, WA (509) Voice and Fax 1.8.0: Ideal Oeratioal Amlifiers Revisio: Jue 10, 2010 215 E Mai Suite D Pullma, WA 99163 (509) 334 6306 Voice ad Fax Overview Oeratioal amlifiers (commoly abbreviated as o-ams) are extremely useful electroic

More information

SIZE OF THE SET OF RESIDUES OF INTEGER POWERS OF FIXED EXPONENT

SIZE OF THE SET OF RESIDUES OF INTEGER POWERS OF FIXED EXPONENT SIZE OF THE SET OF RESIDUES OF INTEGER POWERS OF FIXED EXPONENT RICHARD J. MATHAR Abstract. The ositive integers corime to some integer m generate the abelian grou (Z/nZ) of multilication modulo m. Admitting

More information

POWERS OF 3RD ORDER MAGIC SQUARES

POWERS OF 3RD ORDER MAGIC SQUARES Fuzzy Sets, Rough Sets ad Multivalued Operatios ad Applicatios, Vol. 4, No. 1, (Jauary-Jue 01): 37 43 Iteratioal Sciece Press POWERS OF 3RD ORDER MAGIC SQUARES Sreerajii K.S. 1 ad V. Madhukar Mallayya

More information

CS3203 #5. 6/9/04 Janak J Parekh

CS3203 #5. 6/9/04 Janak J Parekh CS3203 #5 6/9/04 Jaak J Parekh Admiistrivia Exam o Moday All slides should be up We ll try ad have solutios for HWs #1 ad #2 out by Friday I kow the HW is due o the same day; ot much I ca do, uless you

More information

THE LUCAS TRIANGLE RECOUNTED. Arthur T. Benjamin Dept. of Mathematics, Harvey Mudd College, Claremont, CA Introduction

THE LUCAS TRIANGLE RECOUNTED. Arthur T. Benjamin Dept. of Mathematics, Harvey Mudd College, Claremont, CA Introduction THE LUCAS TRIANLE RECOUNTED Arthur T Bejami Dept of Mathematics, Harvey Mudd College, Claremot, CA 91711 bejami@hmcedu 1 Itroductio I 2], Neville Robbis explores may properties of the Lucas triagle, a

More information

The Solution of the More General Traveling Salesman Problem

The Solution of the More General Traveling Salesman Problem AMSE JOURNALS 04-Series: Adces A; Vol. ; N ; pp -40 Submitted No. 0; Reised Dec., 0; Accepted July 0, 04 The Solutio of the More Geerl Trelig Slesm Problem C. Feg, J. Lig,.Deprtmet of Bsic Scieces d Applied

More information

Discrete Square Root. Çetin Kaya Koç Winter / 11

Discrete Square Root. Çetin Kaya Koç  Winter / 11 Discrete Square Root Çetin Kaya Koç koc@cs.ucsb.edu Çetin Kaya Koç http://koclab.cs.ucsb.edu Winter 2017 1 / 11 Discrete Square Root Problem The discrete square root problem is defined as the computation

More information

On the Fibonacci Sequence. By: Syrous Marivani LSUA. Mathematics Department. Alexandria, LA 71302

On the Fibonacci Sequence. By: Syrous Marivani LSUA. Mathematics Department. Alexandria, LA 71302 On the Fibonacci Sequence By: Syrous Marivani LSUA Mathematics Deartment Alexandria, LA 70 The so-called Fibonacci sequence {(n)} n 0 given by: (n) = (n ) + (n ), () where (0) = 0, and () =. The ollowing

More information

Alignment in linear space

Alignment in linear space Sequece Aligmet: Liear Space Aligmet i liear space Chapter 7 of Joes ad Pevzer Q. Ca we avoid usig quadratic space? Easy. Optimal value i O(m + ) space ad O(m) time. Compute OPT(i, ) from OPT(i-1, ). No

More information

30 HWASIN PARK, JOONGSOO PARK AND DAEYEOUL KIM Lemma 1.1. Let =2 k q +1, k 2 Z +. Then the set of rimitive roots modulo is the set of quadratic non-re

30 HWASIN PARK, JOONGSOO PARK AND DAEYEOUL KIM Lemma 1.1. Let =2 k q +1, k 2 Z +. Then the set of rimitive roots modulo is the set of quadratic non-re J. KSIAM Vol.4, No.1, 29-38, 2000 A CRITERION ON PRIMITIVE ROOTS MODULO Hwasin Park, Joongsoo Park and Daeyeoul Kim Abstract. In this aer, we consider a criterion on rimitive roots modulo where is the

More information

To be able to determine the quadratic character of an arbitrary number mod p (p an odd prime), we. The first (and most delicate) case concerns 2

To be able to determine the quadratic character of an arbitrary number mod p (p an odd prime), we. The first (and most delicate) case concerns 2 Quadratic Reciprocity To be able to determine the quadratic character of an arbitrary number mod p (p an odd prime), we need to be able to evaluate q for any prime q. The first (and most delicate) case

More information

PERMUTATIONS AND COMBINATIONS

PERMUTATIONS AND COMBINATIONS www.sakshieducatio.com PERMUTATIONS AND COMBINATIONS OBJECTIVE PROBLEMS. There are parcels ad 5 post-offices. I how may differet ways the registratio of parcel ca be made 5 (a) 0 (b) 5 (c) 5 (d) 5. I how

More information

Collection of rules, techniques and theorems for solving polynomial congruences 11 April 2012 at 22:02

Collection of rules, techniques and theorems for solving polynomial congruences 11 April 2012 at 22:02 Collection of rules, techniques and theorems for solving polynomial congruences 11 April 2012 at 22:02 Public Polynomial congruences come up constantly, even when one is dealing with much deeper problems

More information

Chapter (6) Discrete Probability Distributions Examples

Chapter (6) Discrete Probability Distributions Examples hapter () Discrete robability Distributios Eamples Eample () Two balaced dice are rolled. Let X be the sum of the two dice. Obtai the probability distributio of X. Solutio Whe the two balaced dice are

More information

arxiv: v2 [math.co] 15 Oct 2018

arxiv: v2 [math.co] 15 Oct 2018 THE 21 CARD TRICK AND IT GENERALIZATION DIBYAJYOTI DEB arxiv:1809.04072v2 [math.co] 15 Oct 2018 Abstract. The 21 card trick is well kow. It was recetly show i a episode of the popular YouTube chael Numberphile.

More information

UNIVERSITY OF MANITOBA DATE: December 7, FINAL EXAMINATION TITLE PAGE TIME: 3 hours EXAMINER: M. Davidson

UNIVERSITY OF MANITOBA DATE: December 7, FINAL EXAMINATION TITLE PAGE TIME: 3 hours EXAMINER: M. Davidson TITLE PAGE FAMILY NAME: (Print in ink) GIVEN NAME(S): (Print in ink) STUDENT NUMBER: SEAT NUMBER: SIGNATURE: (in ink) (I understand that cheating is a serious offense) INSTRUCTIONS TO STUDENTS: This is

More information

Permutation Enumeration

Permutation Enumeration RMT 2012 Power Roud Rubric February 18, 2012 Permutatio Eumeratio 1 (a List all permutatios of {1, 2, 3} (b Give a expressio for the umber of permutatios of {1, 2, 3,, } i terms of Compute the umber for

More information

TR : Optimal Reversible Quantum Circuit for Multiplication

TR : Optimal Reversible Quantum Circuit for Multiplication City University of New York (CUNY) CUNY Acdemic Works Comuter Science Technicl Reorts Grdute Center 24 TR-24: Otiml Reversile Quntum Circuit for Multiliction Anh Quoc Nguyen Follow this nd dditionl works

More information

Combinatorics. Chapter Permutations. Reading questions. Counting Problems. Counting Technique: The Product Rule

Combinatorics. Chapter Permutations. Reading questions. Counting Problems. Counting Technique: The Product Rule Chapter 3 Combiatorics 3.1 Permutatios Readig questios 1. Defie what a permutatio is i your ow words. 2. What is a fixed poit i a permutatio? 3. What do we assume about mutual disjoitedess whe creatig

More information

Math Circles Finite Automata Question Sheet 3 (Solutions)

Math Circles Finite Automata Question Sheet 3 (Solutions) Mth Circles Finite Automt Question Sheet 3 (Solutions) Nickols Rollick nrollick@uwterloo.c Novemer 2, 28 Note: These solutions my give you the nswers to ll the prolems, ut they usully won t tell you how

More information

L29&30 - RSA Cryptography

L29&30 - RSA Cryptography L29&30 - RSA Cryptography CSci/Math 2112 20&22 July 2015 1 / 13 Notation We write a mod n for the integer b such that 0 b < n and a b (mod n). 2 / 13 Calculating Large Powers Modulo n Example 1 What is

More information

AMC AMS AMR ACS ACR ASR MSR MCR MCS CRS

AMC AMS AMR ACS ACR ASR MSR MCR MCS CRS Sectio 6.5: Combiatios Example Recall our five frieds, Ala, Cassie, Maggie, Seth ad Roger from the example at the begiig of the previous sectio. The have wo tickets for a cocert i Chicago ad everybody

More information

1. How many possible ways are there to form five-letter words using only the letters A H? How many such words consist of five distinct letters?

1. How many possible ways are there to form five-letter words using only the letters A H? How many such words consist of five distinct letters? COMBINATORICS EXERCISES Stepha Wager 1. How may possible ways are there to form five-letter words usig oly the letters A H? How may such words cosist of five distict letters? 2. How may differet umber

More information

On the Binomial Coefficients and their Interpolation *

On the Binomial Coefficients and their Interpolation * O the Bioial Coefficiets ad their Iterolatio * Leohard Euler Let us rereset the exasio of the ower + x i the followig aer by eas of aroriate characters: + x + x + x + x 3 + etc 3 such that the characters

More information

On the Binomial Coefficients and their Interpolation *

On the Binomial Coefficients and their Interpolation * O the Bioial Coefficiets ad their Iterolatio * Leohard Euler Let us rereset the exasio of the ower + x i the followig aer by eas of aroriate characters: + x + x + x + x 3 + etc 3 such that the characters

More information

AMC AMS AMR ACS ACR ASR MSR MCR MCS CRS

AMC AMS AMR ACS ACR ASR MSR MCR MCS CRS Sectio 6.5: Combiatios Example Recall our five frieds, Ala, Cassie, Maggie, Seth ad Roger from the example at the begiig of the previous sectio. The have wo tickets for a cocert i Chicago ad everybody

More information

Mod. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Mod. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values Mod Notatios Traditioal ae Cogruece fuctio Traditioal otatio od Matheatica StadardFor otatio Mod, Priary defiitio 04.06.0.0001.01 od od is the reaider o divisio of by. The sig of od for real, is always

More information

Domination and Independence on Square Chessboard

Domination and Independence on Square Chessboard Engineering nd Technology Journl Vol. 5, Prt, No. 1, 017 A.A. Omrn Deprtment of Mthemtics, College of Eduction for Pure Science, University of bylon, bylon, Irq pure.hmed.omrn@uobby lon.edu.iq Domintion

More information

CDS 270-2: Lecture 6-3 Optimum Receiver Design for Estimation over Wireless Links

CDS 270-2: Lecture 6-3 Optimum Receiver Design for Estimation over Wireless Links CDS 70-: Lecture 6-3 Otimum Receiver Desig for stimatio over Wireless Lis Goals: Yasami Mostofi May 5, 006 To uderstad imact of wireless commuicatio imairmets o estimatio over wireless To lear o-traditioal

More information

Unit 1: Chapter 4 Roots & Powers

Unit 1: Chapter 4 Roots & Powers Unit 1: Chpter 4 Roots & Powers Big Ides Any number tht cn be written s the frction mm, nn 0, where m nd n re integers, is nn rtionl. Eponents cn be used to represent roots nd reciprocls of rtionl numbers.

More information

Example. Check that the Jacobian of the transformation to spherical coordinates is

Example. Check that the Jacobian of the transformation to spherical coordinates is lss, given on Feb 3, 2, for Mth 3, Winter 2 Recll tht the fctor which ppers in chnge of vrible formul when integrting is the Jcobin, which is the determinnt of mtrix of first order prtil derivtives. Exmple.

More information

Unit 5: Estimating with Confidence

Unit 5: Estimating with Confidence Uit 5: Estimatig with Cofidece Sectio 8.2 The Practice of Statistics, 4 th editio For AP* STARNES, YATES, MOORE Uit 5 Estimatig with Cofidece 8.1 8.2 8.3 Cofidece Itervals: The Basics Estimatig a Populatio

More information

4.3 COLLEGE ALGEBRA. Logarithms. Logarithms. Logarithms 11/5/2015. Logarithmic Functions

4.3 COLLEGE ALGEBRA. Logarithms. Logarithms. Logarithms 11/5/2015. Logarithmic Functions 0 TH EDITION COLLEGE ALGEBRA 4. Logarithic Fuctios Logarithic Equatios Logarithic Fuctios Properties of LIAL HORNSBY SCHNEIDER 4. - 4. - The previous sectio dealt with epoetial fuctios of the for y = a

More information

GENERATE AND MEASURE STANDING SOUND WAVES IN KUNDT S TUBE.

GENERATE AND MEASURE STANDING SOUND WAVES IN KUNDT S TUBE. Acoustics Wavelegth ad speed of soud Speed of Soud i Air GENERATE AND MEASURE STANDING SOUND WAVES IN KUNDT S TUBE. Geerate stadig waves i Kudt s tube with both eds closed off. Measure the fudametal frequecy

More information

On Parity based Divide and Conquer Recursive Functions

On Parity based Divide and Conquer Recursive Functions O Parity based Divide ad Coquer Recursive Fuctios Sug-Hyu Cha Abstract The parity based divide ad coquer recursio trees are itroduced where the sizes of the tree do ot grow mootoically as grows. These

More information

8. Combinatorial Structures

8. Combinatorial Structures Virtual Laboratories > 0. Foudatios > 1 2 3 4 5 6 7 8 9 8. Combiatorial Structures The purpose of this sectio is to study several combiatorial structures that are of basic importace i probability. Permutatios

More information

Enhanced LUT For Modified Distributed Arithematic Architecture - FIR Filter

Enhanced LUT For Modified Distributed Arithematic Architecture - FIR Filter N Vivek et al It. Joural of Egieerig Research ad Alics RESEARCH ARTICLE OPEN ACCESS Ehaced LT For Modified Distributed Arithematic Architecture - FIR Filter N Vivek*, Prof K Ausudha** *(Deartmet of Electroics

More information

PRACTICAL FILTER DESIGN & IMPLEMENTATION LAB

PRACTICAL FILTER DESIGN & IMPLEMENTATION LAB 1 of 7 PRACTICAL FILTER DESIGN & IMPLEMENTATION LAB BEFORE YOU BEGIN PREREQUISITE LABS Itroductio to Oscilloscope Itroductio to Arbitrary/Fuctio Geerator EXPECTED KNOWLEDGE Uderstadig of LTI systems. Laplace

More information

b) Find all positive integers smaller than 200 which leave remainder 1, 3, 4 upon division by 3, 5, 7 respectively.

b) Find all positive integers smaller than 200 which leave remainder 1, 3, 4 upon division by 3, 5, 7 respectively. Solutions to Exam 1 Problem 1. a) State Fermat s Little Theorem and Euler s Theorem. b) Let m, n be relatively prime positive integers. Prove that m φ(n) + n φ(m) 1 (mod mn). Solution: a) Fermat s Little

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 3 Sigals & Systems Prof. Mark Fowler Note Set #6 D-T Systems: DTFT Aalysis of DT Systems Readig Assigmet: Sectios 5.5 & 5.6 of Kame ad Heck / Course Flow Diagram The arrows here show coceptual flow

More information

MAXIMUM FLOWS IN FUZZY NETWORKS WITH FUNNEL-SHAPED NODES

MAXIMUM FLOWS IN FUZZY NETWORKS WITH FUNNEL-SHAPED NODES MAXIMUM FLOWS IN FUZZY NETWORKS WITH FUNNEL-SHAPED NODES Romn V. Tyshchuk Informtion Systems Deprtment, AMI corportion, Donetsk, Ukrine E-mil: rt_science@hotmil.com 1 INTRODUCTION During the considertion

More information

Fingerprint Classification Based on Directional Image Constructed Using Wavelet Transform Domains

Fingerprint Classification Based on Directional Image Constructed Using Wavelet Transform Domains 7 Figerprit Classificatio Based o Directioal Image Costructed Usig Wavelet Trasform Domais Musa Mohd Mokji, Syed Abd. Rahma Syed Abu Bakar, Zuwairie Ibrahim 3 Departmet of Microelectroic ad Computer Egieerig

More information

We often find the probability of an event by counting the number of elements in a simple sample space.

We often find the probability of an event by counting the number of elements in a simple sample space. outig Methods We ofte fid the probability of a evet by coutig the umber of elemets i a simple sample space. Basic methods of coutig are: Permutatios ombiatios Permutatio A arragemet of objects i a defiite

More information

Counting on r-fibonacci Numbers

Counting on r-fibonacci Numbers Claremot Colleges Scholarship @ Claremot All HMC Faculty Publicatios ad Research HMC Faculty Scholarship 5-1-2015 Coutig o r-fiboacci Numbers Arthur Bejami Harvey Mudd College Curtis Heberle Harvey Mudd

More information

Counting and Probability CMSC 250

Counting and Probability CMSC 250 Coutig ad Probabilit CMSC 50 1 Coutig Coutig elemets i a list: how ma itegers i the list from 1 to 10? how ma itegers i the list from m to? assumig m CMSC 50 How Ma i a List? How ma positive three-digit

More information

Francis Gaspalou Second edition of February 10, 2012 (First edition on January 28, 2012) HOW MANY SQUARES ARE THERE, Mr TARRY?

Francis Gaspalou Second edition of February 10, 2012 (First edition on January 28, 2012) HOW MANY SQUARES ARE THERE, Mr TARRY? Frncis Gslou Second edition of Ferury 10, 2012 (First edition on Jnury 28, 2012) HOW MANY SQUARES ARE THERE, Mr TARRY? ABSTRACT In this er, I enumerte ll the 8x8 imgic sures given y the Trry s ttern. This

More information

PERMUTATION AND COMBINATION

PERMUTATION AND COMBINATION MPC 1 PERMUTATION AND COMBINATION Syllabus : Fudametal priciples of coutig; Permutatio as a arragemet ad combiatio as selectio, Meaig of P(, r) ad C(, r). Simple applicatios. Permutatios are arragemets

More information

General Model :Algorithms in the Real World. Applications. Block Codes

General Model :Algorithms in the Real World. Applications. Block Codes Geeral Model 5-853:Algorithms i the Real World Error Correctig Codes I Overview Hammig Codes Liear Codes 5-853 Page message (m) coder codeword (c) oisy chael decoder codeword (c ) message or error Errors

More information

Western Number Theory Problems, 17 & 19 Dec 2016

Western Number Theory Problems, 17 & 19 Dec 2016 Wester Number Theory Problems, 7 & 9 Dec 6 for distributio prior to 7 (Pacific Grove) meetig Edited by Gerry Myerso based o otes by Kjell Woodig Summary of earlier meetigs & problem sets with old (pre

More information

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 12

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 12 EECS 70 Discrete Mathematics ad Probability Theory Sprig 204 Aat Sahai Note 2 Probability Examples Based o Coutig We will ow look at examples of radom experimets ad their correspodig sample spaces, alog

More information

On Decidability of LTL Model Checking for Process Rewrite Systems

On Decidability of LTL Model Checking for Process Rewrite Systems On Decidbility of LTL Model Checking for Process Rewrite Systems Lur Bozzelli 1, Mojmír Křetínský 2, Vojtěch Řehák 2, nd Jn Strejček 2 1 Diprtimento di Mtemtic e Aplliczioni, Università degli Studi di

More information

CHAPTER 5 A NEAR-LOSSLESS RUN-LENGTH CODER

CHAPTER 5 A NEAR-LOSSLESS RUN-LENGTH CODER 95 CHAPTER 5 A NEAR-LOSSLESS RUN-LENGTH CODER 5.1 GENERAL Ru-legth codig is a lossless image compressio techique, which produces modest compressio ratios. Oe way of icreasig the compressio ratio of a ru-legth

More information

Section 17.2: Line Integrals. 1 Objectives. 2 Assignments. 3 Maple Commands. 1. Compute line integrals in IR 2 and IR Read Section 17.

Section 17.2: Line Integrals. 1 Objectives. 2 Assignments. 3 Maple Commands. 1. Compute line integrals in IR 2 and IR Read Section 17. Section 7.: Line Integrls Objectives. ompute line integrls in IR nd IR 3. Assignments. Red Section 7.. Problems:,5,9,,3,7,,4 3. hllenge: 6,3,37 4. Red Section 7.3 3 Mple ommnds Mple cn ctully evlute line

More information

信號與系統 Signals and Systems

信號與系統 Signals and Systems Sprig 2 信號與系統 Sigals ad Systems Chapter SS- Sigals ad Systems Feg-Li Lia NTU-EE Feb Ju Figures ad images used i these lecture otes are adopted from Sigals & Systems by Ala V. Oppeheim ad Ala S. Willsky,

More information

Public-Key Cryptosystem Based on Composite Degree Residuosity Classes. Paillier Cryptosystem. Harmeet Singh

Public-Key Cryptosystem Based on Composite Degree Residuosity Classes. Paillier Cryptosystem. Harmeet Singh Public-Key Cryptosystem Based on Composite Degree Residuosity Classes aka Paillier Cryptosystem Harmeet Singh Harmeet Singh Winter 2018 1 / 26 Background s Background Foundation of public-key encryption

More information

(CATALYST GROUP) B"sic Electric"l Engineering

(CATALYST GROUP) Bsic Electricl Engineering (CATALYST GROUP) B"sic Electric"l Engineering 1. Kirchhoff s current l"w st"tes th"t (") net current flow "t the junction is positive (b) Hebr"ic sum of the currents meeting "t the junction is zero (c)

More information

信號與系統 Signals and Systems

信號與系統 Signals and Systems Sprig 24 信號與系統 Sigals ad Systems Chapter SS- Sigals ad Systems Feg-Li Lia NTU-EE Feb4 Ju4 Figures ad images used i these lecture otes are adopted from Sigals & Systems by Ala V. Oppeheim ad Ala S. Willsky,

More information

Conjectures and Results on Super Congruences

Conjectures and Results on Super Congruences Conjectures and Results on Suer Congruences Zhi-Wei Sun Nanjing University Nanjing 210093, P. R. China zwsun@nju.edu.cn htt://math.nju.edu.cn/ zwsun Feb. 8, 2010 Part A. Previous Wor by Others What are

More information

Cross-Layer Performance of a Distributed Real-Time MAC Protocol Supporting Variable Bit Rate Multiclass Services in WPANs

Cross-Layer Performance of a Distributed Real-Time MAC Protocol Supporting Variable Bit Rate Multiclass Services in WPANs Cross-Layer Performace of a Distributed Real-Time MAC Protocol Supportig Variable Bit Rate Multiclass Services i WPANs David Tug Chog Wog, Jo W. Ma, ad ee Chaig Chua 3 Istitute for Ifocomm Research, Heg

More information

EE Controls Lab #2: Implementing State-Transition Logic on a PLC

EE Controls Lab #2: Implementing State-Transition Logic on a PLC Objective: EE 44 - Controls Lb #2: Implementing Stte-rnsition Logic on PLC ssuming tht speed is not of essence, PLC's cn be used to implement stte trnsition logic. he dvntge of using PLC over using hrdwre

More information

An Application of Assignment Problem in Laptop Selection Problem Using MATLAB

An Application of Assignment Problem in Laptop Selection Problem Using MATLAB Applied themtics d Scieces: A Itertiol Jourl (thsj ), Vol., No., rch 05 A Applictio of Assigmet Problem i ptop Selectio Problem Usig ATAB ABSTRAT Ghdle Kirtiwt P, uley Yogesh The ssigmet selectio problem

More information

Procedia - Social and Behavioral Sciences 128 ( 2014 ) EPC-TKS 2013

Procedia - Social and Behavioral Sciences 128 ( 2014 ) EPC-TKS 2013 Available olie at www.sciecedirect.com ScieceDirect Procedia - Social ad Behavioral Scieces 18 ( 014 ) 399 405 EPC-TKS 013 Iductive derivatio of formulae by a computer Sava Grozdev a *, Veseli Nekov b

More information

Lecture 29: Diode connected devices, mirrors, cascode connections. Context

Lecture 29: Diode connected devices, mirrors, cascode connections. Context Lecture 9: Diode coected devices, mirrors, cascode coectios Prof J. S. Smith Cotext Today we will be lookig at more sigle trasistor active circuits ad example problems, ad the startig multi-stage amplifiers

More information

Laboratory Exercise 3: Dynamic System Response Laboratory Handout AME 250: Fundamentals of Measurements and Data Analysis

Laboratory Exercise 3: Dynamic System Response Laboratory Handout AME 250: Fundamentals of Measurements and Data Analysis Laboratory Exercise 3: Dyamic System Respose Laboratory Hadout AME 50: Fudametals of Measuremets ad Data Aalysis Prepared by: Matthew Beigto Date exercises to be performed: Deliverables: Part I 1) Usig

More information

Stability A Simple Example

Stability A Simple Example Stbility A Simple Exmple We wt the m to ty t x, but wid gve ome iitil peed (f(t) ). Wht will hppe? f (t) x( ) F( ) x(t) f (t) x(t) x( ) F( ) B f (t) x( ) F( ) x(t) B B f (t) x( ) F( ) x(t) B How to chrcterize

More information

}, how many different strings of length n 1 exist? }, how many different strings of length n 2 exist that contain at least one a 1

}, how many different strings of length n 1 exist? }, how many different strings of length n 2 exist that contain at least one a 1 1. [5] Give sets A ad B, each of cardiality 1, how may fuctios map A i a oe-tooe fashio oto B? 2. [5] a. Give the set of r symbols { a 1, a 2,..., a r }, how may differet strigs of legth 1 exist? [5]b.

More information

Number Theory/Cryptography (part 1 of CSC 282)

Number Theory/Cryptography (part 1 of CSC 282) Number Theory/Cryptography (part 1 of CSC 282) http://www.cs.rochester.edu/~stefanko/teaching/11cs282 1 Schedule The homework is due Sep 8 Graded homework will be available at noon Sep 9, noon. EXAM #1

More information

Theme: Don t get mad. Learn mod.

Theme: Don t get mad. Learn mod. FERURY When 1 is divided by 5, the reminder is. nother wy to sy this is opyright 015 The Ntionl ouncil of Techers of Mthemtics, Inc. www.nctm.org. ll rights reserved. This mteril my not be copied or distributed

More information

GENERALIZED FORM OF A 4X4 STRONGLY MAGIC SQUARE

GENERALIZED FORM OF A 4X4 STRONGLY MAGIC SQUARE IJMMS, Vol. 1, No. Geeralized 1, (Jauary-Jue Form 016):87-9 of A 4x4 Strogly Magic Square Serials Publicatios 87 ISSN: 0973-339 GENERALIZED FORM OF A 4X4 STRONGLY MAGIC SQUARE Neeradha. C. K, ad Dr. V.

More information

20. CONFIDENCE INTERVALS FOR THE MEAN, UNKNOWN VARIANCE

20. CONFIDENCE INTERVALS FOR THE MEAN, UNKNOWN VARIANCE 20. CONFIDENCE INTERVALS FOR THE MEAN, UNKNOWN VARIANCE If the populatio tadard deviatio σ i ukow, a it uually will be i practice, we will have to etimate it by the ample tadard deviatio. Sice σ i ukow,

More information

7. Counting Measure. Definitions and Basic Properties

7. Counting Measure. Definitions and Basic Properties Virtual Laboratories > 0. Foudatios > 1 2 3 4 5 6 7 8 9 7. Coutig Measure Defiitios ad Basic Properties Suppose that S is a fiite set. If A S the the cardiality of A is the umber of elemets i A, ad is

More information

Ch 9 Sequences, Series, and Probability

Ch 9 Sequences, Series, and Probability Ch 9 Sequeces, Series, ad Probability Have you ever bee to a casio ad played blackjack? It is the oly game i the casio that you ca wi based o the Law of large umbers. I the early 1990s a group of math

More information

Module 9. DC Machines. Version 2 EE IIT, Kharagpur

Module 9. DC Machines. Version 2 EE IIT, Kharagpur Module 9 DC Mchines Version EE IIT, Khrgpur esson 40 osses, Efficiency nd Testing of D.C. Mchines Version EE IIT, Khrgpur Contents 40 osses, efficiency nd testing of D.C. mchines (esson-40) 4 40.1 Gols

More information

DUBLIN CITY UNIVERSITY

DUBLIN CITY UNIVERSITY DUBLIN CITY UNIVERSITY SEMESTER ONE EXAMINATIONS 2013 MODULE: (Title & Code) CA642 Cryptography and Number Theory COURSE: M.Sc. in Security and Forensic Computing YEAR: 1 EXAMINERS: (Including Telephone

More information

Technical Explanation for Counters

Technical Explanation for Counters Techical Explaatio for ers CSM_er_TG_E Itroductio What Is a er? A er is a device that couts the umber of objects or the umber of operatios. It is called a er because it couts the umber of ON/OFF sigals

More information

Network reliability analysis for 3G cellular topology design

Network reliability analysis for 3G cellular topology design Soglaaari J. Sci. Techol. 3 (3, 63-69, May - Ju. 00 Origial Article Networ reliability aalysis for 3G cellular toology desig Chutima Promma* ad Ealu Esoo School of Telecommuicatio Egieerig Suraaree Uiversity

More information

PERMUTATIONS AND COMBINATIONS

PERMUTATIONS AND COMBINATIONS Chapter 7 PERMUTATIONS AND COMBINATIONS Every body of discovery is mathematical i form because there is o other guidace we ca have DARWIN 7.1 Itroductio Suppose you have a suitcase with a umber lock. The

More information

The Chinese Remainder Theorem

The Chinese Remainder Theorem The Chinese Remainder Theorem Theorem. Let n 1,..., n r be r positive integers relatively prime in pairs. (That is, gcd(n i, n j ) = 1 whenever 1 i < j r.) Let a 1,..., a r be any r integers. Then the

More information

Skills Practice Skills Practice for Lesson 4.1

Skills Practice Skills Practice for Lesson 4.1 Skills Prctice Skills Prctice for Lesson.1 Nme Dte Tiling Bthroom Wll Simplifying Squre Root Expressions Vocbulry Mtch ech definition to its corresponding term. 1. n expression tht involves root. rdicnd

More information