Q(173)Q(177)Q(188)Q(193)Q(203)

Size: px
Start display at page:

Download "Q(173)Q(177)Q(188)Q(193)Q(203)"

Transcription

1 MATH 313: SOLUTIONS HW3 Problem 1 (a) We use the Miller-Rabin test to check if it prime. We know that the smallest number which is a strong pseudoprime both base 2 and base 3 is ; hence, if passes the test for both base 2 and base 3 it will have to be prime since < Base 2: = (mod 30941) (mod 30941) pass the test. Base 3: (mod 30941) (mod 30941) pass the test. Therefore is prime and we are done! (b) Base 2: = (mod 33919) (mod 33919). Fail the test! so is composite. {2, 3, 5, 7, 17, 19, 31, 37, 43, 47, 53}. Also note that = 184 and we find that sieving between 170 and 203 is sufficient. Q(173)Q(177)Q(188)Q(193)Q(203) = ( )( )( )( )( ) =

2 gcd(( ) ( ), 33919) = 317 gcd(( ) + ( ), 33919) = 107 Hence, = (c) Base 2: = (mod 68569) (mod 68569) (mod 68569) (mod 68569). Fail the test! so is composite. {2, 3, 5, 7, 17, 19, 23, 29, 31, 53, 61}. Also note that = 262 and we find that sieving between 242 and 282 is sufficient. Q(262)Q(263)Q(264)Q(265) = (3 5 2 )( )(7 2 23)( ) = gcd(( ) ( ), 68569) = 191 gcd(( ) ( ), 68569) = 359 Hence, = (d) Base 2: = (mod ) (mod ). Pass the test! so can be a prime.

3 Base 3: (mod ) (mod ) (mod ). Fail the test! so is a composite. {2, 3, 5, 7, 11, 13, 17, 19, 29, 31, 37}. Also note that = 916 and we find that sieving between 896 and 936 is sufficient. Q(917)Q(923) = ( )( ) = gcd(( ) ( ), ) = 397 gcd(( ) + ( ), ) = 2113 Hence, = (e) Base 2: = (mod ). Pass the test! so can be a prime. Base 3: (mod ) (mod ) (mod ) (mod ) (mod ) (mod ). Fail the test! so is a composite. {2, 5, 7, 11, 19, 29, 31, 37, 41, 3, 47, 53}.

4 Also note that = 1008 and we find that sieving between 978 and 1038 is sufficient. Q(991)Q(999)Q(1011)Q(1022) = ( )( )( )( ) = gcd(( ) ( ), ) = 4051 gcd(( ) + ( ), ) = 251 Hence, = (f) Base 2: = (mod ) (mod ). Fail the test! so is a composite. {2, 3, 13, 17, 19, 23, 41, 61, 67, 71, 73}. Also note that = 1072 and we find that sieving between 1012 and 1131 is sufficient. Q(1077)Q(1085) = ( )( ) = gcd(( ) ( ), ) = 521 gcd(( ) + ( ), ) = 2207 Hence, =

5 Problem 2 Here are 6 possible factors: (1) Q(103) Q(107) = potential factors: gcd( , 10553) gcd( , 10553) (2) Q(103) Q(110) Q(111) = potential factors: gcd( , 10553) gcd( , 10553) (3) Q(107) Q(110) Q(111) = potential factors: gcd( , 10553) gcd( , 10553) Problem 3 Note that the form p 2 k 2047q2 k = ±Q k 1 p 2 k ±Q k 1 (mod 2047). In order to use the quadratic sieve, we want the product of some (±Q k 1 ) to be a perfect square. Observe that in the Q k+1 given, we already have a perfect square when p k = 181 and Q k+1 = 3 2. Therefore, we can use this one to try to factorize Following the observation above, we have: (mod 2047). Now, we find that gcd( , 2047) = 23 and 2047/23 = 89. Hence, we get 2047 = The period is at least 5. Problem 4 Let s look at the first few convergents of Note: You were supposed to compute the convergents using the algorithm used in class. I will omit this step in the solution, but you should be able to obtain the same 6 first convergents by going through the algorithm. [Steps of the algorithm: (1) compute α i s and a i s, (2) find p i s and q i s. You now have the convergents and are able to compute Q i s.]

6 First convergent: = 757. Not a perfect square. Second convergent: = 28 = Not a perfect square and cannot get a perfect square with a product of previous convergents. Third convergent: 11003/ = 55 = Not a perfect square and cannot get a perfect square with a product of previous convergents. Fourth convergent: / = 196 = = Perfect square. We can compute the gcd to find out if it gives us a factorization: gdc( , ) = 1 and gdc( , ) = So it doesn t give us a factorization! We continue looking at convergents... Fifth convergent: / = 565 = Not a perfect square and cannot get a perfect square with a product of previous convergents. Sixth convergent: / = 49 = 7 2. Perfect square. We can compute the gcd to find out if it gives us a factorization: gdc( , ) = 503 and /503 = 307. Hence we get =

PT. Primarity Tests Given an natural number n, we want to determine if n is a prime number.

PT. Primarity Tests Given an natural number n, we want to determine if n is a prime number. PT. Primarity Tests Given an natural number n, we want to determine if n is a prime number. (PT.1) If a number m of the form m = 2 n 1, where n N, is a Mersenne number. If a Mersenne number m is also a

More information

Class 8: Factors and Multiples (Lecture Notes)

Class 8: Factors and Multiples (Lecture Notes) Class 8: Factors and Multiples (Lecture Notes) If a number a divides another number b exactly, then we say that a is a factor of b and b is a multiple of a. Factor: A factor of a number is an exact divisor

More information

6. Find an inverse of a modulo m for each of these pairs of relatively prime integers using the method

6. Find an inverse of a modulo m for each of these pairs of relatively prime integers using the method Exercises Exercises 1. Show that 15 is an inverse of 7 modulo 26. 2. Show that 937 is an inverse of 13 modulo 2436. 3. By inspection (as discussed prior to Example 1), find an inverse of 4 modulo 9. 4.

More information

Calculators will not be permitted on the exam. The numbers on the exam will be suitable for calculating by hand.

Calculators will not be permitted on the exam. The numbers on the exam will be suitable for calculating by hand. Midterm #2: practice MATH 311 Intro to Number Theory midterm: Thursday, Oct 20 Please print your name: Calculators will not be permitted on the exam. The numbers on the exam will be suitable for calculating

More information

Collection of rules, techniques and theorems for solving polynomial congruences 11 April 2012 at 22:02

Collection of rules, techniques and theorems for solving polynomial congruences 11 April 2012 at 22:02 Collection of rules, techniques and theorems for solving polynomial congruences 11 April 2012 at 22:02 Public Polynomial congruences come up constantly, even when one is dealing with much deeper problems

More information

Calculators will not be permitted on the exam. The numbers on the exam will be suitable for calculating by hand.

Calculators will not be permitted on the exam. The numbers on the exam will be suitable for calculating by hand. Midterm #: practice MATH Intro to Number Theory midterm: Thursday, Nov 7 Please print your name: Calculators will not be permitted on the exam. The numbers on the exam will be suitable for calculating

More information

Solutions for the Practice Final

Solutions for the Practice Final Solutions for the Practice Final 1. Ian and Nai play the game of todo, where at each stage one of them flips a coin and then rolls a die. The person who played gets as many points as the number rolled

More information

Problem Set 6 Solutions Math 158, Fall 2016

Problem Set 6 Solutions Math 158, Fall 2016 All exercise numbers from the textbook refer to the second edition. 1. (a) Textbook exercise 3.3 (this shows, as we mentioned in class, that RSA decryption always works when the modulus is a product of

More information

Grade 6 Math Circles. Divisibility

Grade 6 Math Circles. Divisibility Faculty of Mathematics Waterloo, Ontario N2L 3G1 Introduction Grade 6 Math Circles November 12/13, 2013 Divisibility A factor is a whole number that divides exactly into another number without a remainder.

More information

Cryptography, Number Theory, and RSA

Cryptography, Number Theory, and RSA Cryptography, Number Theory, and RSA Joan Boyar, IMADA, University of Southern Denmark November 2015 Outline Symmetric key cryptography Public key cryptography Introduction to number theory RSA Modular

More information

b) Find all positive integers smaller than 200 which leave remainder 1, 3, 4 upon division by 3, 5, 7 respectively.

b) Find all positive integers smaller than 200 which leave remainder 1, 3, 4 upon division by 3, 5, 7 respectively. Solutions to Exam 1 Problem 1. a) State Fermat s Little Theorem and Euler s Theorem. b) Let m, n be relatively prime positive integers. Prove that m φ(n) + n φ(m) 1 (mod mn). Solution: a) Fermat s Little

More information

The Sign of a Permutation Matt Baker

The Sign of a Permutation Matt Baker The Sign of a Permutation Matt Baker Let σ be a permutation of {1, 2,, n}, ie, a one-to-one and onto function from {1, 2,, n} to itself We will define what it means for σ to be even or odd, and then discuss

More information

SOLUTIONS TO PROBLEM SET 5. Section 9.1

SOLUTIONS TO PROBLEM SET 5. Section 9.1 SOLUTIONS TO PROBLEM SET 5 Section 9.1 Exercise 2. Recall that for (a, m) = 1 we have ord m a divides φ(m). a) We have φ(11) = 10 thus ord 11 3 {1, 2, 5, 10}. We check 3 1 3 (mod 11), 3 2 9 (mod 11), 3

More information

Data security (Cryptography) exercise book

Data security (Cryptography) exercise book University of Debrecen Faculty of Informatics Data security (Cryptography) exercise book 1 Contents 1 RSA 4 1.1 RSA in general.................................. 4 1.2 RSA background.................................

More information

ALGEBRA: Chapter I: QUESTION BANK

ALGEBRA: Chapter I: QUESTION BANK 1 ALGEBRA: Chapter I: QUESTION BANK Elements of Number Theory Congruence One mark questions: 1 Define divisibility 2 If a b then prove that a kb k Z 3 If a b b c then PT a/c 4 If a b are two non zero integers

More information

Number Theory - Divisibility Number Theory - Congruences. Number Theory. June 23, Number Theory

Number Theory - Divisibility Number Theory - Congruences. Number Theory. June 23, Number Theory - Divisibility - Congruences June 23, 2014 Primes - Divisibility - Congruences Definition A positive integer p is prime if p 2 and its only positive factors are itself and 1. Otherwise, if p 2, then p

More information

The Chinese Remainder Theorem

The Chinese Remainder Theorem The Chinese Remainder Theorem Theorem. Let n 1,..., n r be r positive integers relatively prime in pairs. (That is, gcd(n i, n j ) = 1 whenever 1 i < j r.) Let a 1,..., a r be any r integers. Then the

More information

The Chinese Remainder Theorem

The Chinese Remainder Theorem The Chinese Remainder Theorem Theorem. Let m and n be two relatively prime positive integers. Let a and b be any two integers. Then the two congruences x a (mod m) x b (mod n) have common solutions. Any

More information

Solutions for the Practice Questions

Solutions for the Practice Questions Solutions for the Practice Questions Question 1. Find all solutions to the congruence 13x 12 (mod 35). Also, answer the following questions about the solutions to the above congruence. Are there solutions

More information

Math 319 Problem Set #7 Solution 18 April 2002

Math 319 Problem Set #7 Solution 18 April 2002 Math 319 Problem Set #7 Solution 18 April 2002 1. ( 2.4, problem 9) Show that if x 2 1 (mod m) and x / ±1 (mod m) then 1 < (x 1, m) < m and 1 < (x + 1, m) < m. Proof: From x 2 1 (mod m) we get m (x 2 1).

More information

Constructions of Coverings of the Integers: Exploring an Erdős Problem

Constructions of Coverings of the Integers: Exploring an Erdős Problem Constructions of Coverings of the Integers: Exploring an Erdős Problem Kelly Bickel, Michael Firrisa, Juan Ortiz, and Kristen Pueschel August 20, 2008 Abstract In this paper, we study necessary conditions

More information

Number Theory. Konkreetne Matemaatika

Number Theory. Konkreetne Matemaatika ITT9131 Number Theory Konkreetne Matemaatika Chapter Four Divisibility Primes Prime examples Factorial Factors Relative primality `MOD': the Congruence Relation Independent Residues Additional Applications

More information

MA/CSSE 473 Day 9. The algorithm (modified) N 1

MA/CSSE 473 Day 9. The algorithm (modified) N 1 MA/CSSE 473 Day 9 Primality Testing Encryption Intro The algorithm (modified) To test N for primality Pick positive integers a 1, a 2,, a k < N at random For each a i, check for a N 1 i 1 (mod N) Use the

More information

MAT 302: ALGEBRAIC CRYPTOGRAPHY. Department of Mathematical and Computational Sciences University of Toronto, Mississauga.

MAT 302: ALGEBRAIC CRYPTOGRAPHY. Department of Mathematical and Computational Sciences University of Toronto, Mississauga. MAT 302: ALGEBRAIC CRYPTOGRAPHY Department of Mathematical and Computational Sciences University of Toronto, Mississauga February 27, 2013 Mid-term Exam INSTRUCTIONS: The duration of the exam is 100 minutes.

More information

Chapter 4 Number Theory

Chapter 4 Number Theory Chapter 4 Number Theory Throughout the study of numbers, students Á should identify classes of numbers and examine their properties. For example, integers that are divisible by 2 are called even numbers

More information

Goldbach conjecture (1742, june, the 7 th )

Goldbach conjecture (1742, june, the 7 th ) Goldbach conjecture (1742, june, the 7 th ) We note P the prime numbers set. P = {p 1 = 2, p 2 = 3, p 3 = 5, p 4 = 7, p 5 = 11,...} remark : 1 P Statement : Each even number greater than 2 is the sum of

More information

The Chinese Remainder Theorem

The Chinese Remainder Theorem The Chinese Remainder Theorem 8-3-2014 The Chinese Remainder Theorem gives solutions to systems of congruences with relatively prime moduli The solution to a system of congruences with relatively prime

More information

PERMUTATIONS - II JUNIOR CIRCLE 11/17/2013

PERMUTATIONS - II JUNIOR CIRCLE 11/17/2013 PERMUTATIONS - II JUNIOR CIRCLE 11/17/2013 Operations on Permutations. Among all the permutations of n objects one stands out as the simplest: all the objects stay in their places. This permutationiscalledthe

More information

MTH 3527 Number Theory Quiz 10 (Some problems that might be on the quiz and some solutions.) 1. Euler φ-function. Desribe all integers n such that:

MTH 3527 Number Theory Quiz 10 (Some problems that might be on the quiz and some solutions.) 1. Euler φ-function. Desribe all integers n such that: MTH 7 Number Theory Quiz 10 (Some roblems that might be on the quiz and some solutions.) 1. Euler φ-function. Desribe all integers n such that: (a) φ(n) = Solution: n = 4,, 6 since φ( ) = ( 1) =, φ() =

More information

MATH 135 Algebra, Solutions to Assignment 7

MATH 135 Algebra, Solutions to Assignment 7 MATH 135 Algebra, Solutions to Assignment 7 1: (a Find the smallest non-negative integer x such that x 41 (mod 9. Solution: The smallest such x is the remainder when 41 is divided by 9. We have 41 = 9

More information

Some Problems Involving Number Theory

Some Problems Involving Number Theory Math F07 Activities, page 7 Some Problems Involving Number Theory. Mrs. Trubblemacher hosted a party for her son s Boy Scout troop. She was quite flustered having a house full of enthusiastic boys, so

More information

Discrete Math Class 4 ( )

Discrete Math Class 4 ( ) Discrete Math 37110 - Class 4 (2016-10-06) 41 Division vs congruences Instructor: László Babai Notes taken by Jacob Burroughs Revised by instructor DO 41 If m ab and gcd(a, m) = 1, then m b DO 42 If gcd(a,

More information

Math 1111 Math Exam Study Guide

Math 1111 Math Exam Study Guide Math 1111 Math Exam Study Guide The math exam will cover the mathematical concepts and techniques we ve explored this semester. The exam will not involve any codebreaking, although some questions on the

More information

Zhanjiang , People s Republic of China

Zhanjiang , People s Republic of China Math. Comp. 78(2009), no. 267, 1853 1866. COVERS OF THE INTEGERS WITH ODD MODULI AND THEIR APPLICATIONS TO THE FORMS x m 2 n AND x 2 F 3n /2 Ke-Jian Wu 1 and Zhi-Wei Sun 2, 1 Department of Mathematics,

More information

To be able to determine the quadratic character of an arbitrary number mod p (p an odd prime), we. The first (and most delicate) case concerns 2

To be able to determine the quadratic character of an arbitrary number mod p (p an odd prime), we. The first (and most delicate) case concerns 2 Quadratic Reciprocity To be able to determine the quadratic character of an arbitrary number mod p (p an odd prime), we need to be able to evaluate q for any prime q. The first (and most delicate) case

More information

The congruence relation has many similarities to equality. The following theorem says that congruence, like equality, is an equivalence relation.

The congruence relation has many similarities to equality. The following theorem says that congruence, like equality, is an equivalence relation. Congruences A congruence is a statement about divisibility. It is a notation that simplifies reasoning about divisibility. It suggests proofs by its analogy to equations. Congruences are familiar to us

More information

NUMBER THEORY AMIN WITNO

NUMBER THEORY AMIN WITNO NUMBER THEORY AMIN WITNO.. w w w. w i t n o. c o m Number Theory Outlines and Problem Sets Amin Witno Preface These notes are mere outlines for the course Math 313 given at Philadelphia

More information

A4M33PAL, ZS , FEL ČVUT

A4M33PAL, ZS , FEL ČVUT Pseudorandom numbers John von Neumann: Any one who considers arithmetical methods of producing random digits is, of course, in a state of sin. For, as has been pointed out several times, there is no such

More information

Discrete Square Root. Çetin Kaya Koç Winter / 11

Discrete Square Root. Çetin Kaya Koç  Winter / 11 Discrete Square Root Çetin Kaya Koç koc@cs.ucsb.edu Çetin Kaya Koç http://koclab.cs.ucsb.edu Winter 2017 1 / 11 Discrete Square Root Problem The discrete square root problem is defined as the computation

More information

Formulas for Primes. Eric Rowland Hofstra University. Eric Rowland Formulas for Primes / 27

Formulas for Primes. Eric Rowland Hofstra University. Eric Rowland Formulas for Primes / 27 Formulas for Primes Eric Rowland Hofstra University 2018 2 14 Eric Rowland Formulas for Primes 2018 2 14 1 / 27 The sequence of primes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

More information

Sheet 1: Introduction to prime numbers.

Sheet 1: Introduction to prime numbers. Option A Hand in at least one question from at least three sheets Sheet 1: Introduction to prime numbers. [provisional date for handing in: class 2.] 1. Use Sieve of Eratosthenes to find all prime numbers

More information

Wilson s Theorem and Fermat s Theorem

Wilson s Theorem and Fermat s Theorem Wilson s Theorem and Fermat s Theorem 7-27-2006 Wilson s theorem says that p is prime if and only if (p 1)! = 1 (mod p). Fermat s theorem says that if p is prime and p a, then a p 1 = 1 (mod p). Wilson

More information

Number Theory and Public Key Cryptography Kathryn Sommers

Number Theory and Public Key Cryptography Kathryn Sommers Page!1 Math 409H Fall 2016 Texas A&M University Professor: David Larson Introduction Number Theory and Public Key Cryptography Kathryn Sommers Number theory is a very broad and encompassing subject. At

More information

Lecture 8. Outline. 1. Modular Arithmetic. Clock Math!!! 2. Inverses for Modular Arithmetic: Greatest Common Divisor. 3. Euclid s GCD Algorithm

Lecture 8. Outline. 1. Modular Arithmetic. Clock Math!!! 2. Inverses for Modular Arithmetic: Greatest Common Divisor. 3. Euclid s GCD Algorithm Lecture 8. Outline. 1. Modular Arithmetic. Clock Math!!! 2. Inverses for Modular Arithmetic: Greatest Common Divisor. 3. Euclid s GCD Algorithm Clock Math If it is 1:00 now. What time is it in 5 hours?

More information

SOLUTIONS FOR PROBLEM SET 4

SOLUTIONS FOR PROBLEM SET 4 SOLUTIONS FOR PROBLEM SET 4 A. A certain integer a gives a remainder of 1 when divided by 2. What can you say about the remainder that a gives when divided by 8? SOLUTION. Let r be the remainder that a

More information

Introduction to Fractions

Introduction to Fractions DELTA MATH SCIENCE PARTNERSHIP INITIATIVE M 3 Summer Institutes (Math, Middle School, MS Common Core) Introduction to Fractions Hook Problem: How can you share 4 pizzas among 6 people? Final Answer: Goals:

More information

Cryptography CS 555. Topic 20: Other Public Key Encryption Schemes. CS555 Topic 20 1

Cryptography CS 555. Topic 20: Other Public Key Encryption Schemes. CS555 Topic 20 1 Cryptography CS 555 Topic 20: Other Public Key Encryption Schemes Topic 20 1 Outline and Readings Outline Quadratic Residue Rabin encryption Goldwasser-Micali Commutative encryption Homomorphic encryption

More information

CS101 Lecture 28: Sorting Algorithms. What You ll Learn Today

CS101 Lecture 28: Sorting Algorithms. What You ll Learn Today CS101 Lecture 28: Sorting Algorithms Selection Sort Bubble Sort Aaron Stevens (azs@bu.edu) 18 April 2013 What You ll Learn Today What is sorting? Why does sorting matter? How is sorting accomplished? Why

More information

Solutions to Problem Set 6 - Fall 2008 Due Tuesday, Oct. 21 at 1:00

Solutions to Problem Set 6 - Fall 2008 Due Tuesday, Oct. 21 at 1:00 18.781 Solutions to Problem Set 6 - Fall 008 Due Tuesday, Oct. 1 at 1:00 1. (Niven.8.7) If p 3 is prime, how many solutions are there to x p 1 1 (mod p)? How many solutions are there to x p 1 (mod p)?

More information

lecture notes September 2, Batcher s Algorithm

lecture notes September 2, Batcher s Algorithm 18.310 lecture notes September 2, 2013 Batcher s Algorithm Lecturer: Michel Goemans Perhaps the most restrictive version of the sorting problem requires not only no motion of the keys beyond compare-and-switches,

More information

Equivalent Fractions

Equivalent Fractions Grade 6 Ch 4 Notes Equivalent Fractions Have you ever noticed that not everyone describes the same things in the same way. For instance, a mother might say her baby is twelve months old. The father might

More information

Dijkstra s Algorithm (5/9/2013)

Dijkstra s Algorithm (5/9/2013) Dijkstra s Algorithm (5/9/2013) www.alevelmathsng.co.uk (Shortest Path Problem) The aim is to find the shortest path between two specified nodes. The idea with this algorithm is to attach to each node

More information

Math 10 Lesson 1-1 Factors, primes, composites and multiples

Math 10 Lesson 1-1 Factors, primes, composites and multiples Math 10 Lesson 1-1 Factors, primes, composites and multiples I. Factors and common factors Problem: If you were asked to arrange 12 chairs in a classroom, how many different arrangements of the chairs

More information

Launchpad Maths. Arithmetic II

Launchpad Maths. Arithmetic II Launchpad Maths. Arithmetic II LAW OF DISTRIBUTION The Law of Distribution exploits the symmetries 1 of addition and multiplication to tell of how those operations behave when working together. Consider

More information

Rational Points On Elliptic Curves - Solutions. (i) Throughout, we ve been looking at elliptic curves in the general form. y 2 = x 3 + Ax + B

Rational Points On Elliptic Curves - Solutions. (i) Throughout, we ve been looking at elliptic curves in the general form. y 2 = x 3 + Ax + B Rational Points On Elliptic Curves - Solutions (Send corrections to cbruni@uwaterloo.ca) (i) Throughout, we ve been looking at elliptic curves in the general form y 2 = x 3 + Ax + B However we did claim

More information

Assignment 2. Due: Monday Oct. 15, :59pm

Assignment 2. Due: Monday Oct. 15, :59pm Introduction To Discrete Math Due: Monday Oct. 15, 2012. 11:59pm Assignment 2 Instructor: Mohamed Omar Math 6a For all problems on assignments, you are allowed to use the textbook, class notes, and other

More information

Study Material. For. Shortcut Maths

Study Material. For. Shortcut Maths N ew Shortcut Maths Edition 2015 Study Material For Shortcut Maths Regd. Office :- A-202, Shanti Enclave, Opp.Railway Station, Mira Road(E), Mumbai. bankpo@laqshya.in (Not For Sale) (For Private Circulation

More information

Carmen s Core Concepts (Math 135)

Carmen s Core Concepts (Math 135) Carmen s Core Concepts (Math 135) Carmen Bruni University of Waterloo Week 7 1 Congruence Definition 2 Congruence is an Equivalence Relation (CER) 3 Properties of Congruence (PC) 4 Example 5 Congruences

More information

DUBLIN CITY UNIVERSITY

DUBLIN CITY UNIVERSITY DUBLIN CITY UNIVERSITY SEMESTER ONE EXAMINATIONS 2013 MODULE: (Title & Code) CA642 Cryptography and Number Theory COURSE: M.Sc. in Security and Forensic Computing YEAR: 1 EXAMINERS: (Including Telephone

More information

MATH 324 Elementary Number Theory Solutions to Practice Problems for Final Examination Monday August 8, 2005

MATH 324 Elementary Number Theory Solutions to Practice Problems for Final Examination Monday August 8, 2005 MATH 324 Elementary Number Theory Solutions to Practice Problems for Final Examination Monday August 8, 2005 Deartment of Mathematical and Statistical Sciences University of Alberta Question 1. Find integers

More information

Number Theory/Cryptography (part 1 of CSC 282)

Number Theory/Cryptography (part 1 of CSC 282) Number Theory/Cryptography (part 1 of CSC 282) http://www.cs.rochester.edu/~stefanko/teaching/11cs282 1 Schedule The homework is due Sep 8 Graded homework will be available at noon Sep 9, noon. EXAM #1

More information

Lecture 32. Handout or Document Camera or Class Exercise. Which of the following is equal to [53] [5] 1 in Z 7? (Do not use a calculator.

Lecture 32. Handout or Document Camera or Class Exercise. Which of the following is equal to [53] [5] 1 in Z 7? (Do not use a calculator. Lecture 32 Instructor s Comments: This is a make up lecture. You can choose to cover many extra problems if you wish or head towards cryptography. I will probably include the square and multiply algorithm

More information

University of British Columbia. Math 312, Midterm, 6th of June 2017

University of British Columbia. Math 312, Midterm, 6th of June 2017 University of British Columbia Math 312, Midterm, 6th of June 2017 Name (please be legible) Signature Student number Duration: 90 minutes INSTRUCTIONS This test has 7 problems for a total of 100 points.

More information

Overview. The Big Picture... CSC 580 Cryptography and Computer Security. January 25, Math Basics for Cryptography

Overview. The Big Picture... CSC 580 Cryptography and Computer Security. January 25, Math Basics for Cryptography CSC 580 Cryptography and Computer Security Math Basics for Cryptography January 25, 2018 Overview Today: Math basics (Sections 2.1-2.3) To do before Tuesday: Complete HW1 problems Read Sections 3.1, 3.2

More information

created by: The Curriculum Corner

created by: The Curriculum Corner created by: The Curriculum Corner I can understand fractions. I can show and understand that fractions represent equal parts of a whole, where the top number is the part and the bottom number is the total

More information

The covering congruences of Paul Erdős. Carl Pomerance Dartmouth College

The covering congruences of Paul Erdős. Carl Pomerance Dartmouth College The covering congruences of Paul Erdős Carl Pomerance Dartmouth College Conjecture (Erdős, 1950): For each number B, one can cover Z with finitely many congruences to distinct moduli all > B. Erdős (1995):

More information

FACTORS AND PRIMES IN TWO SMARANDACHE SEQUENCES RALF W. STEPHAN Abstract. Using a personal computer and freely available software, the author factored

FACTORS AND PRIMES IN TWO SMARANDACHE SEQUENCES RALF W. STEPHAN Abstract. Using a personal computer and freely available software, the author factored FACTORS AND PRIMES IN TWO SMARANDACHE SEQUENCES RALF W. STEPHAN Abstract. Using a personal computer and freely available software, the author factored some members of the Smarandache consecutive sequence

More information

Page Solve all cards in library pocket. 2.Complete Multiple Representations of Number Puzzle (in front pocket)

Page Solve all cards in library pocket. 2.Complete Multiple Representations of Number Puzzle (in front pocket) Page 1 1. Solve all cards in library pocket 2.Complete Multiple Representations of Number Puzzle (in front pocket) Page 2 1. Write name of symbols under flaps on Comparison Symbols foldable 2. Cards in

More information

Fermat s little theorem. RSA.

Fermat s little theorem. RSA. .. Computing large numbers modulo n (a) In modulo arithmetic, you can always reduce a large number to its remainder a a rem n (mod n). (b) Addition, subtraction, and multiplication preserve congruence:

More information

Olympiad Combinatorics. Pranav A. Sriram

Olympiad Combinatorics. Pranav A. Sriram Olympiad Combinatorics Pranav A. Sriram August 2014 Chapter 2: Algorithms - Part II 1 Copyright notices All USAMO and USA Team Selection Test problems in this chapter are copyrighted by the Mathematical

More information

A REMARK ON A PAPER OF LUCA AND WALSH 1. Zhao-Jun Li Department of Mathematics, Anhui Normal University, Wuhu, China. Min Tang 2.

A REMARK ON A PAPER OF LUCA AND WALSH 1. Zhao-Jun Li Department of Mathematics, Anhui Normal University, Wuhu, China. Min Tang 2. #A40 INTEGERS 11 (2011) A REMARK ON A PAPER OF LUCA AND WALSH 1 Zhao-Jun Li Department of Mathematics, Anhui Normal University, Wuhu, China Min Tang 2 Department of Mathematics, Anhui Normal University,

More information

Two congruences involving 4-cores

Two congruences involving 4-cores Two congruences involving 4-cores ABSTRACT. The goal of this paper is to prove two new congruences involving 4- cores using elementary techniques; namely, if a 4 (n) denotes the number of 4-cores of n,

More information

LUCAS-SIERPIŃSKI AND LUCAS-RIESEL NUMBERS

LUCAS-SIERPIŃSKI AND LUCAS-RIESEL NUMBERS LUCAS-SIERPIŃSKI AND LUCAS-RIESEL NUMBERS DANIEL BACZKOWSKI, OLAOLU FASORANTI, AND CARRIE E. FINCH Abstract. In this paper, we show that there are infinitely many Sierpiński numbers in the sequence of

More information

Math 1111 Math Exam Study Guide

Math 1111 Math Exam Study Guide Math 1111 Math Exam Study Guide The math exam will cover the mathematical concepts and techniques we ve explored this semester. The exam will not involve any codebreaking, although some questions on the

More information

Discrete Mathematics & Mathematical Reasoning Multiplicative Inverses and Some Cryptography

Discrete Mathematics & Mathematical Reasoning Multiplicative Inverses and Some Cryptography Discrete Mathematics & Mathematical Reasoning Multiplicative Inverses and Some Cryptography Colin Stirling Informatics Some slides based on ones by Myrto Arapinis Colin Stirling (Informatics) Discrete

More information

Cards. There are many possibilities that arise with a deck of cards. S. Brent Morris

Cards. There are many possibilities that arise with a deck of cards. S. Brent Morris Cripe 1 Aaron Cripe Professor Rich Discrete Math 25 April 2005 Cards There are many possibilities that arise with a deck of cards. S. Brent Morris emphasizes a few of those possibilities in his book Magic

More information

CS1800 Discrete Structures Fall 2016 Profs. Aslam, Gold, Ossowski, Pavlu, & Sprague 7 November, CS1800 Discrete Structures Midterm Version C

CS1800 Discrete Structures Fall 2016 Profs. Aslam, Gold, Ossowski, Pavlu, & Sprague 7 November, CS1800 Discrete Structures Midterm Version C CS1800 Discrete Structures Fall 2016 Profs. Aslam, Gold, Ossowski, Pavlu, & Sprague 7 November, 2016 CS1800 Discrete Structures Midterm Version C Instructions: 1. The exam is closed book and closed notes.

More information

Kenken For Teachers. Tom Davis January 8, Abstract

Kenken For Teachers. Tom Davis   January 8, Abstract Kenken For Teachers Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles January 8, 00 Abstract Kenken is a puzzle whose solution requires a combination of logic and simple arithmetic

More information

LESSON 2: THE INCLUSION-EXCLUSION PRINCIPLE

LESSON 2: THE INCLUSION-EXCLUSION PRINCIPLE LESSON 2: THE INCLUSION-EXCLUSION PRINCIPLE The inclusion-exclusion principle (also known as the sieve principle) is an extended version of the rule of the sum. It states that, for two (finite) sets, A

More information

Cryptography Math 1580 Silverman First Hour Exam Mon Oct 2, 2017

Cryptography Math 1580 Silverman First Hour Exam Mon Oct 2, 2017 Name: Cryptography Math 1580 Silverman First Hour Exam Mon Oct 2, 2017 INSTRUCTIONS Read Carefully Time: 50 minutes There are 5 problems. Write your name legibly at the top of this page. No calculators

More information

Math Kangaroo Practice

Math Kangaroo Practice Math Kangaroo Practice March 9, 2014 1. In how many ways can 5 people be arranged to sit at 5 desks (so that only one person sits at a desk)? 2. A large cube with side length 4 cm is made with small cubes

More information

Intermediate Math Circles October 8, 2008 Number Theory I

Intermediate Math Circles October 8, 2008 Number Theory I 1 University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Intermediate Math Circles October 8, 2008 Number Theory I Opening Problem I Suppose that you are given

More information

An interesting class of problems of a computational nature ask for the standard residue of a power of a number, e.g.,

An interesting class of problems of a computational nature ask for the standard residue of a power of a number, e.g., Binary exponentiation An interesting class of problems of a computational nature ask for the standard residue of a power of a number, e.g., What are the last two digits of the number 2 284? In the absence

More information

Distribution of Primes

Distribution of Primes Distribution of Primes Definition. For positive real numbers x, let π(x) be the number of prime numbers less than or equal to x. For example, π(1) = 0, π(10) = 4 and π(100) = 25. To use some ciphers, we

More information

The Strong Finiteness of Double Mersenne Primes and the Infinity of Root Mersenne Primes and Near-square Primes of Mersenne Primes

The Strong Finiteness of Double Mersenne Primes and the Infinity of Root Mersenne Primes and Near-square Primes of Mersenne Primes The Strong Finiteness of Double Mersenne Primes and the Infinity of Root Mersenne Primes and Near-square Primes of Mersenne Primes Pingyuan Zhou E-mail:zhoupingyuan49@hotmail.com Abstract In this paper

More information

1999 Mathcounts National Sprint Round Solutions

1999 Mathcounts National Sprint Round Solutions 999 Mathcounts National Sprint Round Solutions. Solution: 5. A -digit number is divisible by if the sum of its digits is divisible by. The first digit cannot be 0, so we have the following four groups

More information

GCSE Maths Revision Factors and Multiples

GCSE Maths Revision Factors and Multiples GCSE Maths Revision Factors and Multiples Adam Mlynarczyk www.mathstutor4you.com 1 Factors and Multiples Key Facts: Factors of a number divide into it exactly. Multiples of a number can be divided by it

More information

Cryptography. 2. decoding is extremely difficult (for protection against eavesdroppers);

Cryptography. 2. decoding is extremely difficult (for protection against eavesdroppers); 18.310 lecture notes September 2, 2013 Cryptography Lecturer: Michel Goemans 1 Public Key Cryptosystems In these notes, we will be concerned with constructing secret codes. A sender would like to encrypt

More information

Adding Fractions with Different Denominators. Subtracting Fractions with Different Denominators

Adding Fractions with Different Denominators. Subtracting Fractions with Different Denominators Adding Fractions with Different Denominators How to Add Fractions with different denominators: Find the Least Common Denominator (LCD) of the fractions Rename the fractions to have the LCD Add the numerators

More information

Primitive Roots. Chapter Orders and Primitive Roots

Primitive Roots. Chapter Orders and Primitive Roots Chapter 5 Primitive Roots The name primitive root applies to a number a whose powers can be used to represent a reduced residue system modulo n. Primitive roots are therefore generators in that sense,

More information

MATH 13150: Freshman Seminar Unit 15

MATH 13150: Freshman Seminar Unit 15 MATH 1310: Freshman Seminar Unit 1 1. Powers in mod m arithmetic In this chapter, we ll learn an analogous result to Fermat s theorem. Fermat s theorem told us that if p is prime and p does not divide

More information

TOPOLOGY, LIMITS OF COMPLEX NUMBERS. Contents 1. Topology and limits of complex numbers 1

TOPOLOGY, LIMITS OF COMPLEX NUMBERS. Contents 1. Topology and limits of complex numbers 1 TOPOLOGY, LIMITS OF COMPLEX NUMBERS Contents 1. Topology and limits of complex numbers 1 1. Topology and limits of complex numbers Since we will be doing calculus on complex numbers, not only do we need

More information

Understanding relationships between numbers can save you time when making

Understanding relationships between numbers can save you time when making Divisibility Rules! Investigating Divisibility Rules Learning Goals In this lesson, you will: Formulate divisibility rules based on patterns seen in factors. Use factors to help you develop divisibility

More information

Outline Introduction Big Problems that Brun s Sieve Attacks Conclusions. Brun s Sieve. Joe Fields. November 8, 2007

Outline Introduction Big Problems that Brun s Sieve Attacks Conclusions. Brun s Sieve. Joe Fields. November 8, 2007 Big Problems that Attacks November 8, 2007 Big Problems that Attacks The Sieve of Eratosthenes The Chinese Remainder Theorem picture Big Problems that Attacks Big Problems that Attacks Eratosthene s Sieve

More information

Self-Inverse Interleavers for Turbo Codes

Self-Inverse Interleavers for Turbo Codes Department of Mathematics and Computer Science Amirkabir University of Technology amin@math.carleton.ca [Joint work with D. Panario, M. R. Sadeghi and N. Eshghi] Finite Fields Workshop, July 2010 Turbo

More information

MATH LEVEL 2 LESSON PLAN 3 FACTORING Copyright Vinay Agarwala, Checked: 1/19/18

MATH LEVEL 2 LESSON PLAN 3 FACTORING Copyright Vinay Agarwala, Checked: 1/19/18 MATH LEVEL 2 LESSON PLAN 3 FACTORING 2018 Copyright Vinay Agarwala, Checked: 1/19/18 Section 1: Exact Division & Factors 1. In exact division there is no remainder. Both Divisor and quotient are factors

More information

HB17 fourth suit forcing

HB17 fourth suit forcing HB17 fourth suit forcing A Q 10 65 984 A Q 32 10 932 Q J 4 842 K 97 A J 763 Q 5 K J 10 764 A K 765 K 10 2 985 10 932 8432 J 64 K 5 A K 765 J A Q 10 65 A K Q 73 10 9 98 A Q 432 Q J 4 K 97 852 J 10 76 K

More information

3.1 Factors & Multiples of Whole Numbers.

3.1 Factors & Multiples of Whole Numbers. NC 3.1 Concepts: #1,2,4 PreAP Foundations & Pre-Calculus Math 10 Outcome FP10.1 (3.1, 3.2) 3.1 Factors & Multiples of Whole Numbers. FP 10.1 Part A: Students will demonstrate understanding of factors of

More information

Chapter 4 Cyclotomic Cosets, the Mattson Solomon Polynomial, Idempotents and Cyclic Codes

Chapter 4 Cyclotomic Cosets, the Mattson Solomon Polynomial, Idempotents and Cyclic Codes Chapter 4 Cyclotomic Cosets, the Mattson Solomon Polynomial, Idempotents and Cyclic Codes 4.1 Introduction Much of the pioneering research on cyclic codes was carried out by Prange [5]inthe 1950s and considerably

More information

Table of Contents. Table of Contents 1

Table of Contents. Table of Contents 1 Table of Contents 1) The Factor Game a) Investigation b) Rules c) Game Boards d) Game Table- Possible First Moves 2) Toying with Tiles a) Introduction b) Tiles 1-10 c) Tiles 11-16 d) Tiles 17-20 e) Tiles

More information