The first topic I would like to explore is probabilistic reasoning with Bayesian

Size: px
Start display at page:

Download "The first topic I would like to explore is probabilistic reasoning with Bayesian"

Transcription

1 Michael Terry J/6.834J 2/16/05 Problem Set 1 A. Topics of Fascination The first topic I would like to explore is probabilistic reasoning with Bayesian nets. I see that reasoning under situations of uncertainty is a very important area of AI, and it is apparent that these techniques are the standard approach for effectively modeling this uncertainty. I am particularly interested in learning how to model complex relationships between variables in spite of redundant links in Bayesian Nets. Also, I would like to study to the automatic generation of Bayesian Nets from large training set. Secondly, I would like to investigate reasoning about opponents using game theory and Minimax search. Beyond the typical examples using a single opponent (ie chess), I would like to explore further the idea of reasoning in a world with potentially more than one cooperating and/or adversarial agent. Finally, I would like to explore reasoning using first order logic. As described in Russell and Norvig, these concepts and methods seem to be very refined for basic objects, their properties, and the relationships between them. This is very useful for implementation of these properties in object-oriented data structures in any artificial intelligence application.

2 B. My Cognitive Robot My cognitive robot is one that can sit down and play poker with expert-level opponents, and win the game consistently. To achieve that end, the robot must be endowed with a number of capabilities related to vision, mechanics and control, as well as a multitude of reasoning capabilities for strategy. Simple object recognition would be required of the robot. In order to assess information about the game, the robot must be able to view partially obstructed chip stacks in front of its opponents, as well as community and hole cards that are dealt. A more sophisticated vision algorithm would incorporate information from opponents mannerisms and body language. These critical pieces of information are known in the poker world as tells. In addition, the robot must be capable of stacking and counting chips in order to mange its own chip stack and place bets. To perform this function, pressure sensors and fine motor control of its hands would be required, along with the vision capabilities to determine chip denominations. These tasks are very similar to the classic AI situation of stacking blocks. Finally, good strategy would require reasoning on many levels, with various levels of certainty regarding available information. I would like to focus on a three level model. At the highest level, the robot must be able to reason about its own hand given information about the community cards and opposition. Then, it must be able to extract information about its opponents cards, given their tendencies and actions. Finally, it must make a decision about what to do regarding levels one and two. Against better opposition, the game could not be won by only thinking at two levels. For example, one must add another level of reasoning, which involves understanding what your opponent

3 thinks you have. However, I will argue that against average opposition, levels one and two are sufficient for a winning strategy. C. Game Theory and Minimax Search in a Multi-Agent Environment An ability that is critical to determining a good strategy is being able to look at future moves of opponents, to determine which move will allow the robot to maximize its Expected Value over the current round, hand, session, or lifetime. This is an extremely complex task that must be broken down into numerous subtasks. I will investigate the standard approach to performing these functions via Minimax Search. D. Multi-Agent Game Theory and Minimax: Further Investigation i.) Approximating Game-Theoretic Optimal Strategies in Full-scale Poker by Billings et. Al. This paper s main contribution is a model for reducing the search space of Poker minimax through the use of bucketing. This concept is very basic, and is used by most human players. Rather than describing a given situation using every detail, situation can be grouped into categories. You will often hear poker players describe these situations, such as I had top pair top kicker, or She turned a set on me. These situations frequently have their own notations (Top Pair Top Kicker = TPTK) in poker literature. I find that Billings et Al. have performed an appropriate grouping of situations based on a particular poker expert/writer, David Sklansky s rank of hands. However, they have oversimplified the problem to poker involving only one opponent. In real poker, you are very rarely up against one opponent, and so in some sense they ve cheated by reducing

4 the minimax search space beyond what is useful. I intend to use their bucketing system for my search without the two-agent reduction. ii.) On Pruning Techniques for Multi-Player Games by Sturtevant and Korf. The major contribution of this paper is that it shows that minimax search against multiple opponents, known as MaxN, has very limited capacity to be pruned via alphabeta and branch-and-bound pruning. Using examples from the games of Sergeant Major and Hearts, they have shown a way to turn multiplayer minimax search into a paranoid two-player situation, in which every opponent has formed a coalition against you. This is an oversimplification, probably induced by their bias toward the game of hearts. In most games, each opponent is usually out for each other as much as they are out for you. In hearts, however, when you are attempting to shoot the moon, at some point your opponents may form an explicit coalition against you. This situation is exclusive to hearts, and I cannot think of another game where this is relevant. I think their point regarding the limited utility of pruning in Multi-Player minimax is valid. However, I do not necessarily agree with the usefulness of transforming a MaxN tree into a simple two-player model. Also, in their conclusion, they allude to the fact that the incorporation of domain knowledge is key to reducing the search space. I will work to reduce this multi-player search space by incorporating deterministic and probabilistic knowledge about the game in my robot s strategies. iii.) Deep Blue by Campbell et. Al. This paper describes and evaluates some of the design decisions regarding the design of Deep Blue. I believe the major contribution of the design of this system was

5 not necessarily the intelligence (or lack thereof) behind its reasoning, but with the positive press and attention this brought to the AI community. I have mixed feelings regarding Deep Blue as an accomplishment in AI. In some sense, the fact that this machine beat a world-class player is an accomplishment in computing, but not necessarily intelligence. I liken this to a situation where our calculators reduce complex mathematical formulas in microseconds. Although this is impressive, most people do not consider this a marvel of intelligence. The common understanding is that Deep Blue was a brute force attack on the search space. As we begin to address more complex information spaces with search, it becomes increasingly important to incorporate knowledge from the particular domain to reduce that space. This is essentially the theme that I introduced in the evaluation of the previous paper, and I hope to incorporate this notion into my implementation of strategy for games. E. Simple Project: Win Small Stakes Holdem Although the challenges of playing poker in a physical world are great, the most difficult task for my robot is actually determining a winning strategy. I would like to focus on this particular task, and the multiple levels of reasoning. In particular, my goal is to be able to win Small-Stakes/Low-Limit Texas Holdem. Although this game is characterized by poor opposition making numerous mistakes, it is by no means an easy game. However, I am optimistic given the body of literature and availability of large sets of training data that this can be done in the last third of the course. The likelihood of me choosing this project is very high.

6 References [1] Billings, D., Burch, N., Davidson, A. Holte R., Schaeffer, J., Schauenberg, T., & Szafron, D. (2003).. Approximating Game-Theoretic Optimal Strategies in Full-scale Poker. In Proceedings of the 2003 International Joint Conference on Artificial Intelligence. [2] Campbell, M., Hoane, A. J., & Hsu, F. (2002). Deep Blue. Artificial Intelligence (134), pp [3] Russell, S. & Norvig, P. (2003). Artificial Intelligence A Modern Approach. Pearson Education International. [4] Sturtevant, N. R., & Korf, R. E. (2004). On Pruning Techniques for Multi-Player Games. Computer Science Department, University of California, Los Angeles.

Optimal Rhode Island Hold em Poker

Optimal Rhode Island Hold em Poker Optimal Rhode Island Hold em Poker Andrew Gilpin and Tuomas Sandholm Computer Science Department Carnegie Mellon University Pittsburgh, PA 15213 {gilpin,sandholm}@cs.cmu.edu Abstract Rhode Island Hold

More information

Texas Hold em Inference Bot Proposal. By: Brian Mihok & Michael Terry Date Due: Monday, April 11, 2005

Texas Hold em Inference Bot Proposal. By: Brian Mihok & Michael Terry Date Due: Monday, April 11, 2005 Texas Hold em Inference Bot Proposal By: Brian Mihok & Michael Terry Date Due: Monday, April 11, 2005 1 Introduction One of the key goals in Artificial Intelligence is to create cognitive systems that

More information

A Heuristic Based Approach for a Betting Strategy. in Texas Hold em Poker

A Heuristic Based Approach for a Betting Strategy. in Texas Hold em Poker DEPARTMENT OF COMPUTER SCIENCE SERIES OF PUBLICATIONS C REPORT C-2008-41 A Heuristic Based Approach for a Betting Strategy in Texas Hold em Poker Teemu Saukonoja and Tomi A. Pasanen UNIVERSITY OF HELSINKI

More information

Intelligent Gaming Techniques for Poker: An Imperfect Information Game

Intelligent Gaming Techniques for Poker: An Imperfect Information Game Intelligent Gaming Techniques for Poker: An Imperfect Information Game Samisa Abeysinghe and Ajantha S. Atukorale University of Colombo School of Computing, 35, Reid Avenue, Colombo 07, Sri Lanka Tel:

More information

Using Fictitious Play to Find Pseudo-Optimal Solutions for Full-Scale Poker

Using Fictitious Play to Find Pseudo-Optimal Solutions for Full-Scale Poker Using Fictitious Play to Find Pseudo-Optimal Solutions for Full-Scale Poker William Dudziak Department of Computer Science, University of Akron Akron, Ohio 44325-4003 Abstract A pseudo-optimal solution

More information

An Introduction to Poker Opponent Modeling

An Introduction to Poker Opponent Modeling An Introduction to Poker Opponent Modeling Peter Chapman Brielin Brown University of Virginia 1 March 2011 It is not my aim to surprise or shock you-but the simplest way I can summarize is to say that

More information

CS 2710 Foundations of AI. Lecture 9. Adversarial search. CS 2710 Foundations of AI. Game search

CS 2710 Foundations of AI. Lecture 9. Adversarial search. CS 2710 Foundations of AI. Game search CS 2710 Foundations of AI Lecture 9 Adversarial search Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square CS 2710 Foundations of AI Game search Game-playing programs developed by AI researchers since

More information

Adversarial Search. CS 486/686: Introduction to Artificial Intelligence

Adversarial Search. CS 486/686: Introduction to Artificial Intelligence Adversarial Search CS 486/686: Introduction to Artificial Intelligence 1 Introduction So far we have only been concerned with a single agent Today, we introduce an adversary! 2 Outline Games Minimax search

More information

CS 440 / ECE 448 Introduction to Artificial Intelligence Spring 2010 Lecture #5

CS 440 / ECE 448 Introduction to Artificial Intelligence Spring 2010 Lecture #5 CS 440 / ECE 448 Introduction to Artificial Intelligence Spring 2010 Lecture #5 Instructor: Eyal Amir Grad TAs: Wen Pu, Yonatan Bisk Undergrad TAs: Sam Johnson, Nikhil Johri Topics Game playing Game trees

More information

CASPER: a Case-Based Poker-Bot

CASPER: a Case-Based Poker-Bot CASPER: a Case-Based Poker-Bot Ian Watson and Jonathan Rubin Department of Computer Science University of Auckland, New Zealand ian@cs.auckland.ac.nz Abstract. This paper investigates the use of the case-based

More information

Player Profiling in Texas Holdem

Player Profiling in Texas Holdem Player Profiling in Texas Holdem Karl S. Brandt CMPS 24, Spring 24 kbrandt@cs.ucsc.edu 1 Introduction Poker is a challenging game to play by computer. Unlike many games that have traditionally caught the

More information

Artificial Intelligence. Minimax and alpha-beta pruning

Artificial Intelligence. Minimax and alpha-beta pruning Artificial Intelligence Minimax and alpha-beta pruning In which we examine the problems that arise when we try to plan ahead to get the best result in a world that includes a hostile agent (other agent

More information

Generalized Game Trees

Generalized Game Trees Generalized Game Trees Richard E. Korf Computer Science Department University of California, Los Angeles Los Angeles, Ca. 90024 Abstract We consider two generalizations of the standard two-player game

More information

Adversarial Search. CS 486/686: Introduction to Artificial Intelligence

Adversarial Search. CS 486/686: Introduction to Artificial Intelligence Adversarial Search CS 486/686: Introduction to Artificial Intelligence 1 AccessAbility Services Volunteer Notetaker Required Interested? Complete an online application using your WATIAM: https://york.accessiblelearning.com/uwaterloo/

More information

What is Artificial Intelligence? Alternate Definitions (Russell + Norvig) Human intelligence

What is Artificial Intelligence? Alternate Definitions (Russell + Norvig) Human intelligence CSE 3401: Intro to Artificial Intelligence & Logic Programming Introduction Required Readings: Russell & Norvig Chapters 1 & 2. Lecture slides adapted from those of Fahiem Bacchus. What is AI? What is

More information

CS 1571 Introduction to AI Lecture 12. Adversarial search. CS 1571 Intro to AI. Announcements

CS 1571 Introduction to AI Lecture 12. Adversarial search. CS 1571 Intro to AI. Announcements CS 171 Introduction to AI Lecture 1 Adversarial search Milos Hauskrecht milos@cs.pitt.edu 39 Sennott Square Announcements Homework assignment is out Programming and experiments Simulated annealing + Genetic

More information

Outline. Introduction to AI. Artificial Intelligence. What is an AI? What is an AI? Agents Environments

Outline. Introduction to AI. Artificial Intelligence. What is an AI? What is an AI? Agents Environments Outline Introduction to AI ECE457 Applied Artificial Intelligence Fall 2007 Lecture #1 What is an AI? Russell & Norvig, chapter 1 Agents s Russell & Norvig, chapter 2 ECE457 Applied Artificial Intelligence

More information

Search Depth. 8. Search Depth. Investing. Investing in Search. Jonathan Schaeffer

Search Depth. 8. Search Depth. Investing. Investing in Search. Jonathan Schaeffer Search Depth 8. Search Depth Jonathan Schaeffer jonathan@cs.ualberta.ca www.cs.ualberta.ca/~jonathan So far, we have always assumed that all searches are to a fixed depth Nice properties in that the search

More information

CPS331 Lecture: Search in Games last revised 2/16/10

CPS331 Lecture: Search in Games last revised 2/16/10 CPS331 Lecture: Search in Games last revised 2/16/10 Objectives: 1. To introduce mini-max search 2. To introduce the use of static evaluation functions 3. To introduce alpha-beta pruning Materials: 1.

More information

Last-Branch and Speculative Pruning Algorithms for Max"

Last-Branch and Speculative Pruning Algorithms for Max Last-Branch and Speculative Pruning Algorithms for Max" Nathan Sturtevant UCLA, Computer Science Department Los Angeles, CA 90024 nathanst@cs.ucla.edu Abstract Previous work in pruning algorithms for max"

More information

Games (adversarial search problems)

Games (adversarial search problems) Mustafa Jarrar: Lecture Notes on Games, Birzeit University, Palestine Fall Semester, 204 Artificial Intelligence Chapter 6 Games (adversarial search problems) Dr. Mustafa Jarrar Sina Institute, University

More information

CSE 40171: Artificial Intelligence. Adversarial Search: Games and Optimality

CSE 40171: Artificial Intelligence. Adversarial Search: Games and Optimality CSE 40171: Artificial Intelligence Adversarial Search: Games and Optimality 1 What is a game? Game Playing State-of-the-Art Checkers: 1950: First computer player. 1994: First computer champion: Chinook

More information

CSC384 Intro to Artificial Intelligence* *The following slides are based on Fahiem Bacchus course lecture notes.

CSC384 Intro to Artificial Intelligence* *The following slides are based on Fahiem Bacchus course lecture notes. CSC384 Intro to Artificial Intelligence* *The following slides are based on Fahiem Bacchus course lecture notes. Artificial Intelligence A branch of Computer Science. Examines how we can achieve intelligent

More information

Creating a Poker Playing Program Using Evolutionary Computation

Creating a Poker Playing Program Using Evolutionary Computation Creating a Poker Playing Program Using Evolutionary Computation Simon Olsen and Rob LeGrand, Ph.D. Abstract Artificial intelligence is a rapidly expanding technology. We are surrounded by technology that

More information

CS221 Final Project Report Learn to Play Texas hold em

CS221 Final Project Report Learn to Play Texas hold em CS221 Final Project Report Learn to Play Texas hold em Yixin Tang(yixint), Ruoyu Wang(rwang28), Chang Yue(changyue) 1 Introduction Texas hold em, one of the most popular poker games in casinos, is a variation

More information

Robust Game Play Against Unknown Opponents

Robust Game Play Against Unknown Opponents Robust Game Play Against Unknown Opponents Nathan Sturtevant Department of Computing Science University of Alberta Edmonton, Alberta, Canada T6G 2E8 nathanst@cs.ualberta.ca Michael Bowling Department of

More information

CPS331 Lecture: Agents and Robots last revised November 18, 2016

CPS331 Lecture: Agents and Robots last revised November 18, 2016 CPS331 Lecture: Agents and Robots last revised November 18, 2016 Objectives: 1. To introduce the basic notion of an agent 2. To discuss various types of agents 3. To introduce the subsumption architecture

More information

CPS331 Lecture: Intelligent Agents last revised July 25, 2018

CPS331 Lecture: Intelligent Agents last revised July 25, 2018 CPS331 Lecture: Intelligent Agents last revised July 25, 2018 Objectives: 1. To introduce the basic notion of an agent 2. To discuss various types of agents Materials: 1. Projectable of Russell and Norvig

More information

Applying Equivalence Class Methods in Contract Bridge

Applying Equivalence Class Methods in Contract Bridge Applying Equivalence Class Methods in Contract Bridge Sean Sutherland Department of Computer Science The University of British Columbia Abstract One of the challenges in analyzing the strategies in contract

More information

Artificial Intelligence: An overview

Artificial Intelligence: An overview Artificial Intelligence: An overview Thomas Trappenberg January 4, 2009 Based on the slides provided by Russell and Norvig, Chapter 1 & 2 What is AI? Systems that think like humans Systems that act like

More information

ARTIFICIAL INTELLIGENCE (CS 370D)

ARTIFICIAL INTELLIGENCE (CS 370D) Princess Nora University Faculty of Computer & Information Systems ARTIFICIAL INTELLIGENCE (CS 370D) (CHAPTER-5) ADVERSARIAL SEARCH ADVERSARIAL SEARCH Optimal decisions Min algorithm α-β pruning Imperfect,

More information

BLUFF WITH AI. CS297 Report. Presented to. Dr. Chris Pollett. Department of Computer Science. San Jose State University. In Partial Fulfillment

BLUFF WITH AI. CS297 Report. Presented to. Dr. Chris Pollett. Department of Computer Science. San Jose State University. In Partial Fulfillment BLUFF WITH AI CS297 Report Presented to Dr. Chris Pollett Department of Computer Science San Jose State University In Partial Fulfillment Of the Requirements for the Class CS 297 By Tina Philip May 2017

More information

CS 4700: Foundations of Artificial Intelligence

CS 4700: Foundations of Artificial Intelligence CS 4700: Foundations of Artificial Intelligence selman@cs.cornell.edu Module: Adversarial Search R&N: Chapter 5 1 Outline Adversarial Search Optimal decisions Minimax α-β pruning Case study: Deep Blue

More information

CPS331 Lecture: Agents and Robots last revised April 27, 2012

CPS331 Lecture: Agents and Robots last revised April 27, 2012 CPS331 Lecture: Agents and Robots last revised April 27, 2012 Objectives: 1. To introduce the basic notion of an agent 2. To discuss various types of agents 3. To introduce the subsumption architecture

More information

CS 331: Artificial Intelligence Adversarial Search II. Outline

CS 331: Artificial Intelligence Adversarial Search II. Outline CS 331: Artificial Intelligence Adversarial Search II 1 Outline 1. Evaluation Functions 2. State-of-the-art game playing programs 3. 2 player zero-sum finite stochastic games of perfect information 2 1

More information

Programming Project 1: Pacman (Due )

Programming Project 1: Pacman (Due ) Programming Project 1: Pacman (Due 8.2.18) Registration to the exams 521495A: Artificial Intelligence Adversarial Search (Min-Max) Lectured by Abdenour Hadid Adjunct Professor, CMVS, University of Oulu

More information

Adversarial Search and Game Playing

Adversarial Search and Game Playing Games Adversarial Search and Game Playing Russell and Norvig, 3 rd edition, Ch. 5 Games: multi-agent environment q What do other agents do and how do they affect our success? q Cooperative vs. competitive

More information

Comp 3211 Final Project - Poker AI

Comp 3211 Final Project - Poker AI Comp 3211 Final Project - Poker AI Introduction Poker is a game played with a standard 52 card deck, usually with 4 to 8 players per game. During each hand of poker, players are dealt two cards and must

More information

Opponent Models and Knowledge Symmetry in Game-Tree Search

Opponent Models and Knowledge Symmetry in Game-Tree Search Opponent Models and Knowledge Symmetry in Game-Tree Search Jeroen Donkers Institute for Knowlegde and Agent Technology Universiteit Maastricht, The Netherlands donkers@cs.unimaas.nl Abstract In this paper

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Jeff Clune Assistant Professor Evolving Artificial Intelligence Laboratory AI Challenge One 140 Challenge 1 grades 120 100 80 60 AI Challenge One Transform to graph Explore the

More information

Set 4: Game-Playing. ICS 271 Fall 2017 Kalev Kask

Set 4: Game-Playing. ICS 271 Fall 2017 Kalev Kask Set 4: Game-Playing ICS 271 Fall 2017 Kalev Kask Overview Computer programs that play 2-player games game-playing as search with the complication of an opponent General principles of game-playing and search

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificial Intelligence Adversarial Search Instructor: Stuart Russell University of California, Berkeley Game Playing State-of-the-Art Checkers: 1950: First computer player. 1959: Samuel s self-taught

More information

CSE 573: Artificial Intelligence Autumn 2010

CSE 573: Artificial Intelligence Autumn 2010 CSE 573: Artificial Intelligence Autumn 2010 Lecture 4: Adversarial Search 10/12/2009 Luke Zettlemoyer Based on slides from Dan Klein Many slides over the course adapted from either Stuart Russell or Andrew

More information

Elements of Artificial Intelligence and Expert Systems

Elements of Artificial Intelligence and Expert Systems Elements of Artificial Intelligence and Expert Systems Master in Data Science for Economics, Business & Finance Nicola Basilico Dipartimento di Informatica Via Comelico 39/41-20135 Milano (MI) Ufficio

More information

Module 3. Problem Solving using Search- (Two agent) Version 2 CSE IIT, Kharagpur

Module 3. Problem Solving using Search- (Two agent) Version 2 CSE IIT, Kharagpur Module 3 Problem Solving using Search- (Two agent) 3.1 Instructional Objective The students should understand the formulation of multi-agent search and in detail two-agent search. Students should b familiar

More information

CS325 Artificial Intelligence Ch. 5, Games!

CS325 Artificial Intelligence Ch. 5, Games! CS325 Artificial Intelligence Ch. 5, Games! Cengiz Günay, Emory Univ. vs. Spring 2013 Günay Ch. 5, Games! Spring 2013 1 / 19 AI in Games A lot of work is done on it. Why? Günay Ch. 5, Games! Spring 2013

More information

Towards Strategic Kriegspiel Play with Opponent Modeling

Towards Strategic Kriegspiel Play with Opponent Modeling Towards Strategic Kriegspiel Play with Opponent Modeling Antonio Del Giudice and Piotr Gmytrasiewicz Department of Computer Science, University of Illinois at Chicago Chicago, IL, 60607-7053, USA E-mail:

More information

Outline. Game Playing. Game Problems. Game Problems. Types of games Playing a perfect game. Playing an imperfect game

Outline. Game Playing. Game Problems. Game Problems. Types of games Playing a perfect game. Playing an imperfect game Outline Game Playing ECE457 Applied Artificial Intelligence Fall 2007 Lecture #5 Types of games Playing a perfect game Minimax search Alpha-beta pruning Playing an imperfect game Real-time Imperfect information

More information

Ar#ficial)Intelligence!!

Ar#ficial)Intelligence!! Introduc*on! Ar#ficial)Intelligence!! Roman Barták Department of Theoretical Computer Science and Mathematical Logic So far we assumed a single-agent environment, but what if there are more agents and

More information

CS510 \ Lecture Ariel Stolerman

CS510 \ Lecture Ariel Stolerman CS510 \ Lecture04 2012-10-15 1 Ariel Stolerman Administration Assignment 2: just a programming assignment. Midterm: posted by next week (5), will cover: o Lectures o Readings A midterm review sheet will

More information

Modeling Security Decisions as Games

Modeling Security Decisions as Games Modeling Security Decisions as Games Chris Kiekintveld University of Texas at El Paso.. and MANY Collaborators Decision Making and Games Research agenda: improve and justify decisions Automated intelligent

More information

Computer Game Programming Board Games

Computer Game Programming Board Games 1-466 Computer Game Programg Board Games Maxim Likhachev Robotics Institute Carnegie Mellon University There Are Still Board Games Maxim Likhachev Carnegie Mellon University 2 Classes of Board Games Two

More information

Simple Poker Game Design, Simulation, and Probability

Simple Poker Game Design, Simulation, and Probability Simple Poker Game Design, Simulation, and Probability Nanxiang Wang Foothill High School Pleasanton, CA 94588 nanxiang.wang309@gmail.com Mason Chen Stanford Online High School Stanford, CA, 94301, USA

More information

Adversarial Search. Read AIMA Chapter CIS 421/521 - Intro to AI 1

Adversarial Search. Read AIMA Chapter CIS 421/521 - Intro to AI 1 Adversarial Search Read AIMA Chapter 5.2-5.5 CIS 421/521 - Intro to AI 1 Adversarial Search Instructors: Dan Klein and Pieter Abbeel University of California, Berkeley [These slides were created by Dan

More information

Adversarial Search. Robert Platt Northeastern University. Some images and slides are used from: 1. CS188 UC Berkeley 2. RN, AIMA

Adversarial Search. Robert Platt Northeastern University. Some images and slides are used from: 1. CS188 UC Berkeley 2. RN, AIMA Adversarial Search Robert Platt Northeastern University Some images and slides are used from: 1. CS188 UC Berkeley 2. RN, AIMA What is adversarial search? Adversarial search: planning used to play a game

More information

4. Games and search. Lecture Artificial Intelligence (4ov / 8op)

4. Games and search. Lecture Artificial Intelligence (4ov / 8op) 4. Games and search 4.1 Search problems State space search find a (shortest) path from the initial state to the goal state. Constraint satisfaction find a value assignment to a set of variables so that

More information

Foundations of AI. 6. Adversarial Search. Search Strategies for Games, Games with Chance, State of the Art. Wolfram Burgard & Bernhard Nebel

Foundations of AI. 6. Adversarial Search. Search Strategies for Games, Games with Chance, State of the Art. Wolfram Burgard & Bernhard Nebel Foundations of AI 6. Adversarial Search Search Strategies for Games, Games with Chance, State of the Art Wolfram Burgard & Bernhard Nebel Contents Game Theory Board Games Minimax Search Alpha-Beta Search

More information

Introduction and History of AI

Introduction and History of AI 15-780 Introduction and History of AI J. Zico Kolter January 13, 2014 1 What is AI? 2 Some classic definitions Buildings computers that... Think like humans Act like humans Think rationally Act rationally

More information

Understanding the Success of Perfect Information Monte Carlo Sampling in Game Tree Search

Understanding the Success of Perfect Information Monte Carlo Sampling in Game Tree Search Understanding the Success of Perfect Information Monte Carlo Sampling in Game Tree Search Jeffrey Long and Nathan R. Sturtevant and Michael Buro and Timothy Furtak Department of Computing Science, University

More information

Artificial Intelligence. Topic 5. Game playing

Artificial Intelligence. Topic 5. Game playing Artificial Intelligence Topic 5 Game playing broadening our world view dealing with incompleteness why play games? perfect decisions the Minimax algorithm dealing with resource limits evaluation functions

More information

CS 331: Artificial Intelligence Adversarial Search. Games we will consider

CS 331: Artificial Intelligence Adversarial Search. Games we will consider CS 331: rtificial ntelligence dversarial Search 1 Games we will consider Deterministic Discrete states and decisions Finite number of states and decisions Perfect information ie. fully observable Two agents

More information

Games we will consider. CS 331: Artificial Intelligence Adversarial Search. What makes games hard? Formal Definition of a Game.

Games we will consider. CS 331: Artificial Intelligence Adversarial Search. What makes games hard? Formal Definition of a Game. Games we will consider CS 331: rtificial ntelligence dversarial Search Deterministic Discrete states and decisions Finite number of states and decisions Perfect information i.e. fully observable Two agents

More information

Adversarial Search Lecture 7

Adversarial Search Lecture 7 Lecture 7 How can we use search to plan ahead when other agents are planning against us? 1 Agenda Games: context, history Searching via Minimax Scaling α β pruning Depth-limiting Evaluation functions Handling

More information

Comparison of Monte Carlo Tree Search Methods in the Imperfect Information Card Game Cribbage

Comparison of Monte Carlo Tree Search Methods in the Imperfect Information Card Game Cribbage Comparison of Monte Carlo Tree Search Methods in the Imperfect Information Card Game Cribbage Richard Kelly and David Churchill Computer Science Faculty of Science Memorial University {richard.kelly, dchurchill}@mun.ca

More information

Automated Suicide: An Antichess Engine

Automated Suicide: An Antichess Engine Automated Suicide: An Antichess Engine Jim Andress and Prasanna Ramakrishnan 1 Introduction Antichess (also known as Suicide Chess or Loser s Chess) is a popular variant of chess where the objective of

More information

Today. Types of Game. Games and Search 1/18/2010. COMP210: Artificial Intelligence. Lecture 10. Game playing

Today. Types of Game. Games and Search 1/18/2010. COMP210: Artificial Intelligence. Lecture 10. Game playing COMP10: Artificial Intelligence Lecture 10. Game playing Trevor Bench-Capon Room 15, Ashton Building Today We will look at how search can be applied to playing games Types of Games Perfect play minimax

More information

Probabilistic State Translation in Extensive Games with Large Action Sets

Probabilistic State Translation in Extensive Games with Large Action Sets Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence (IJCAI-09) Probabilistic State Translation in Extensive Games with Large Action Sets David Schnizlein Michael Bowling

More information

6. Games. COMP9414/ 9814/ 3411: Artificial Intelligence. Outline. Mechanical Turk. Origins. origins. motivation. minimax search

6. Games. COMP9414/ 9814/ 3411: Artificial Intelligence. Outline. Mechanical Turk. Origins. origins. motivation. minimax search COMP9414/9814/3411 16s1 Games 1 COMP9414/ 9814/ 3411: Artificial Intelligence 6. Games Outline origins motivation Russell & Norvig, Chapter 5. minimax search resource limits and heuristic evaluation α-β

More information

Game Playing State-of-the-Art CSE 473: Artificial Intelligence Fall Deterministic Games. Zero-Sum Games 10/13/17. Adversarial Search

Game Playing State-of-the-Art CSE 473: Artificial Intelligence Fall Deterministic Games. Zero-Sum Games 10/13/17. Adversarial Search CSE 473: Artificial Intelligence Fall 2017 Adversarial Search Mini, pruning, Expecti Dieter Fox Based on slides adapted Luke Zettlemoyer, Dan Klein, Pieter Abbeel, Dan Weld, Stuart Russell or Andrew Moore

More information

CS 5522: Artificial Intelligence II

CS 5522: Artificial Intelligence II CS 5522: Artificial Intelligence II Adversarial Search Instructor: Alan Ritter Ohio State University [These slides were adapted from CS188 Intro to AI at UC Berkeley. All materials available at http://ai.berkeley.edu.]

More information

Games and Adversarial Search

Games and Adversarial Search 1 Games and Adversarial Search BBM 405 Fundamentals of Artificial Intelligence Pinar Duygulu Hacettepe University Slides are mostly adapted from AIMA, MIT Open Courseware and Svetlana Lazebnik (UIUC) Spring

More information

Optimal Unbiased Estimators for Evaluating Agent Performance

Optimal Unbiased Estimators for Evaluating Agent Performance Optimal Unbiased Estimators for Evaluating Agent Performance Martin Zinkevich and Michael Bowling and Nolan Bard and Morgan Kan and Darse Billings Department of Computing Science University of Alberta

More information

From: AAAI-99 Proceedings. Copyright 1999, AAAI (www.aaai.org). All rights reserved. Using Probabilistic Knowledge and Simulation to Play Poker

From: AAAI-99 Proceedings. Copyright 1999, AAAI (www.aaai.org). All rights reserved. Using Probabilistic Knowledge and Simulation to Play Poker From: AAAI-99 Proceedings. Copyright 1999, AAAI (www.aaai.org). All rights reserved. Using Probabilistic Knowledge and Simulation to Play Poker Darse Billings, Lourdes Peña, Jonathan Schaeffer, Duane Szafron

More information

Planning in autonomous mobile robotics

Planning in autonomous mobile robotics Sistemi Intelligenti Corso di Laurea in Informatica, A.A. 2017-2018 Università degli Studi di Milano Planning in autonomous mobile robotics Nicola Basilico Dipartimento di Informatica Via Comelico 39/41-20135

More information

Models of Strategic Deficiency and Poker

Models of Strategic Deficiency and Poker Models of Strategic Deficiency and Poker Gabe Chaddock, Marc Pickett, Tom Armstrong, and Tim Oates University of Maryland, Baltimore County (UMBC) Computer Science and Electrical Engineering Department

More information

CPS 570: Artificial Intelligence Two-player, zero-sum, perfect-information Games

CPS 570: Artificial Intelligence Two-player, zero-sum, perfect-information Games CPS 57: Artificial Intelligence Two-player, zero-sum, perfect-information Games Instructor: Vincent Conitzer Game playing Rich tradition of creating game-playing programs in AI Many similarities to search

More information

Artificial Intelligence Adversarial Search

Artificial Intelligence Adversarial Search Artificial Intelligence Adversarial Search Adversarial Search Adversarial search problems games They occur in multiagent competitive environments There is an opponent we can t control planning again us!

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Adversarial Search Instructors: David Suter and Qince Li Course Delivered @ Harbin Institute of Technology [Many slides adapted from those created by Dan Klein and Pieter Abbeel

More information

Adversarial Search: Game Playing. Reading: Chapter

Adversarial Search: Game Playing. Reading: Chapter Adversarial Search: Game Playing Reading: Chapter 6.5-6.8 1 Games and AI Easy to represent, abstract, precise rules One of the first tasks undertaken by AI (since 1950) Better than humans in Othello and

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificial Intelligence Adversarial Search Prof. Scott Niekum The University of Texas at Austin [These slides are based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.

More information

Adversarial Search. Human-aware Robotics. 2018/01/25 Chapter 5 in R&N 3rd Ø Announcement: Slides for this lecture are here:

Adversarial Search. Human-aware Robotics. 2018/01/25 Chapter 5 in R&N 3rd Ø Announcement: Slides for this lecture are here: Adversarial Search 2018/01/25 Chapter 5 in R&N 3rd Ø Announcement: q Slides for this lecture are here: http://www.public.asu.edu/~yzhan442/teaching/cse471/lectures/adversarial.pdf Slides are largely based

More information

A Competitive Texas Hold em Poker Player Via Automated Abstraction and Real-time Equilibrium Computation

A Competitive Texas Hold em Poker Player Via Automated Abstraction and Real-time Equilibrium Computation A Competitive Texas Hold em Poker Player Via Automated Abstraction and Real-time Equilibrium Computation Andrew Gilpin and Tuomas Sandholm Computer Science Department Carnegie Mellon University {gilpin,sandholm}@cs.cmu.edu

More information

On Pruning Techniques for Multi-Player Games

On Pruning Techniques for Multi-Player Games On Pruning Techniques f Multi-Player Games Nathan R. Sturtevant and Richard E. Kf Computer Science Department University of Califnia, Los Angeles Los Angeles, CA 90024 {nathanst, kf}@cs.ucla.edu Abstract

More information

AI in Tabletop Games. Team 13 Josh Charnetsky Zachary Koch CSE Professor Anita Wasilewska

AI in Tabletop Games. Team 13 Josh Charnetsky Zachary Koch CSE Professor Anita Wasilewska AI in Tabletop Games Team 13 Josh Charnetsky Zachary Koch CSE 352 - Professor Anita Wasilewska Works Cited Kurenkov, Andrey. a-brief-history-of-game-ai.png. 18 Apr. 2016, www.andreykurenkov.com/writing/a-brief-history-of-game-ai/

More information

Adversarial Search and Game- Playing C H A P T E R 6 C M P T : S P R I N G H A S S A N K H O S R A V I

Adversarial Search and Game- Playing C H A P T E R 6 C M P T : S P R I N G H A S S A N K H O S R A V I Adversarial Search and Game- Playing C H A P T E R 6 C M P T 3 1 0 : S P R I N G 2 0 1 1 H A S S A N K H O S R A V I Adversarial Search Examine the problems that arise when we try to plan ahead in a world

More information

Strategy Evaluation in Extensive Games with Importance Sampling

Strategy Evaluation in Extensive Games with Importance Sampling Michael Bowling BOWLING@CS.UALBERTA.CA Michael Johanson JOHANSON@CS.UALBERTA.CA Neil Burch BURCH@CS.UALBERTA.CA Duane Szafron DUANE@CS.UALBERTA.CA Department of Computing Science, University of Alberta,

More information

Can Opponent Models Aid Poker Player Evolution?

Can Opponent Models Aid Poker Player Evolution? Can Opponent Models Aid Poker Player Evolution? R.J.S.Baker, Member, IEEE, P.I.Cowling, Member, IEEE, T.W.G.Randall, Member, IEEE, and P.Jiang, Member, IEEE, Abstract We investigate the impact of Bayesian

More information

Announcements. Homework 1. Project 1. Due tonight at 11:59pm. Due Friday 2/8 at 4:00pm. Electronic HW1 Written HW1

Announcements. Homework 1. Project 1. Due tonight at 11:59pm. Due Friday 2/8 at 4:00pm. Electronic HW1 Written HW1 Announcements Homework 1 Due tonight at 11:59pm Project 1 Electronic HW1 Written HW1 Due Friday 2/8 at 4:00pm CS 188: Artificial Intelligence Adversarial Search and Game Trees Instructors: Sergey Levine

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence CS482, CS682, MW 1 2:15, SEM 201, MS 227 Prerequisites: 302, 365 Instructor: Sushil Louis, sushil@cse.unr.edu, http://www.cse.unr.edu/~sushil Games and game trees Multi-agent systems

More information

Using Sliding Windows to Generate Action Abstractions in Extensive-Form Games

Using Sliding Windows to Generate Action Abstractions in Extensive-Form Games Using Sliding Windows to Generate Action Abstractions in Extensive-Form Games John Hawkin and Robert C. Holte and Duane Szafron {hawkin, holte}@cs.ualberta.ca, dszafron@ualberta.ca Department of Computing

More information

Game playing. Chapter 5, Sections 1 6

Game playing. Chapter 5, Sections 1 6 Game playing Chapter 5, Sections 1 6 Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c Stuart Russel and Peter Norvig, 2004 Chapter 5, Sections 1 6 1 Outline Games Perfect play

More information

Algorithms for Data Structures: Search for Games. Phillip Smith 27/11/13

Algorithms for Data Structures: Search for Games. Phillip Smith 27/11/13 Algorithms for Data Structures: Search for Games Phillip Smith 27/11/13 Search for Games Following this lecture you should be able to: Understand the search process in games How an AI decides on the best

More information

Lecture 14. Questions? Friday, February 10 CS 430 Artificial Intelligence - Lecture 14 1

Lecture 14. Questions? Friday, February 10 CS 430 Artificial Intelligence - Lecture 14 1 Lecture 14 Questions? Friday, February 10 CS 430 Artificial Intelligence - Lecture 14 1 Outline Chapter 5 - Adversarial Search Alpha-Beta Pruning Imperfect Real-Time Decisions Stochastic Games Friday,

More information

Game-playing AIs: Games and Adversarial Search I AIMA

Game-playing AIs: Games and Adversarial Search I AIMA Game-playing AIs: Games and Adversarial Search I AIMA 5.1-5.2 Games: Outline of Unit Part I: Games as Search Motivation Game-playing AI successes Game Trees Evaluation Functions Part II: Adversarial Search

More information

COMP219: COMP219: Artificial Intelligence Artificial Intelligence Dr. Annabel Latham Lecture 12: Game Playing Overview Games and Search

COMP219: COMP219: Artificial Intelligence Artificial Intelligence Dr. Annabel Latham Lecture 12: Game Playing Overview Games and Search COMP19: Artificial Intelligence COMP19: Artificial Intelligence Dr. Annabel Latham Room.05 Ashton Building Department of Computer Science University of Liverpool Lecture 1: Game Playing 1 Overview Last

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence CS482, CS682, MW 1 2:15, SEM 201, MS 227 Prerequisites: 302, 365 Instructor: Sushil Louis, sushil@cse.unr.edu, http://www.cse.unr.edu/~sushil Non-classical search - Path does not

More information

Game Playing State-of-the-Art

Game Playing State-of-the-Art Adversarial Search [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.] Game Playing State-of-the-Art

More information

Fictitious Play applied on a simplified poker game

Fictitious Play applied on a simplified poker game Fictitious Play applied on a simplified poker game Ioannis Papadopoulos June 26, 2015 Abstract This paper investigates the application of fictitious play on a simplified 2-player poker game with the goal

More information

Artificial Intelligence. 4. Game Playing. Prof. Bojana Dalbelo Bašić Assoc. Prof. Jan Šnajder

Artificial Intelligence. 4. Game Playing. Prof. Bojana Dalbelo Bašić Assoc. Prof. Jan Šnajder Artificial Intelligence 4. Game Playing Prof. Bojana Dalbelo Bašić Assoc. Prof. Jan Šnajder University of Zagreb Faculty of Electrical Engineering and Computing Academic Year 2017/2018 Creative Commons

More information

Data-Starved Artificial Intelligence

Data-Starved Artificial Intelligence Data-Starved Artificial Intelligence Data-Starved Artificial Intelligence This material is based upon work supported by the Assistant Secretary of Defense for Research and Engineering under Air Force Contract

More information