Basic Concepts of Probability and Counting Section 3.1


 Eugene Bridges
 4 years ago
 Views:
Transcription
1 Basic Concepts of Probability and Counting Section 3.1 Summer Math 1040 June 17 (1040) M June 17 1 / 12
2 Roadmap Basic Concepts of Probability and Counting Pages Counting events, and The Fundamental Counting Principle Theoretical probability and statistical probability This section introduces the concept of a sample space, a list of all possible outcomes of a probability experiment. Counting these events allow us to find the probability of an event. (1040) M June 17 2 / 12
3 Sample Spaces A sample space develops by listing all possible results from a random experiment. (1040) M June 17 3 / 12
4 Sample Spaces A sample space develops by listing all possible results from a random experiment. Example Rolling a 4sided die s sample space is {1, 2, 3, 4}. Example A coin flip s outcome is {H, T } for heads and tails. Example Possible answer s to, Do you want kids? is a sample space: {Yes, No, Maybe}. (1040) M June 17 3 / 12
5 Events Particular outcomes is called an event. Example: We roll a 4sided die. Here are some possible events: You roll less than a 4. (1040) M June 17 4 / 12
6 Events Particular outcomes is called an event. Example: We roll a 4sided die. Here are some possible events: You roll less than a 4. {1, 2, 3} There are 3 ways. (1040) M June 17 4 / 12
7 Events Particular outcomes is called an event. Example: We roll a 4sided die. Here are some possible events: You roll less than a 4. {1, 2, 3} There are 3 ways. You roll an odd number. (1040) M June 17 4 / 12
8 Events Particular outcomes is called an event. Example: We roll a 4sided die. Here are some possible events: You roll less than a 4. {1, 2, 3} There are 3 ways. You roll an odd number. {1, 3} There are 2 ways. (1040) M June 17 4 / 12
9 Events Particular outcomes is called an event. Example: We roll a 4sided die. Here are some possible events: You roll less than a 4. {1, 2, 3} There are 3 ways. You roll an odd number. {1, 3} There are 2 ways. You roll a prime number. (1040) M June 17 4 / 12
10 Events Particular outcomes is called an event. Example: We roll a 4sided die. Here are some possible events: You roll less than a 4. {1, 2, 3} There are 3 ways. You roll an odd number. {1, 3} There are 2 ways. You roll a prime number. {2, 3} There are 2 ways. (1040) M June 17 4 / 12
11 Fundamental Counting Principle If we combine two (or more) basic types of experiments, counting the possible number of outcomes is found by multiplying the number of outcomes in each sample space. Example Rolling a 4sided die and flipping a coin s sample space has 4 2 = 8 outcomes: {1H, 2H, 3H, 4H, 1T, 2T, 3T, 4T } (1040) M June 17 5 / 12
12 Fundamental Counting Principle If we combine two (or more) basic types of experiments, counting the possible number of outcomes is found by multiplying the number of outcomes in each sample space. Example Rolling a 4sided die and flipping a coin s sample space has 4 2 = 8 outcomes: {1H, 2H, 3H, 4H, 1T, 2T, 3T, 4T } For an event, the rule is the same. Multiply the number of ways to do the first event with the number of ways to do the next event. (1040) M June 17 5 / 12
13 Fundamental Counting Principle Example A restaurant offers four different main dishes and 3 different desserts. If a meal comes with a main dish and a dessert, how many different means can be made? (1040) M June 17 6 / 12
14 Fundamental Counting Principle Example A restaurant offers four different main dishes and 3 different desserts. If a meal comes with a main dish and a dessert, how many different means can be made? Answer 4 3 = 12 many meals. (1040) M June 17 6 / 12
15 Fundamental Counting Principle Example A restaurant offers four different main dishes and 3 different desserts. If a meal comes with a main dish and a dessert, how many different means can be made? Answer 4 3 = 12 many meals. Example How many 4character liceanse plates can be made from 26 letters and 10 digits (zero through nine)? (1040) M June 17 6 / 12
16 Fundamental Counting Principle Example A restaurant offers four different main dishes and 3 different desserts. If a meal comes with a main dish and a dessert, how many different means can be made? Answer 4 3 = 12 many meals. Example How many 4character liceanse plates can be made from 26 letters and 10 digits (zero through nine)? Answer There are 36 different characters each time = 36 4 = 1, 679, 616 many ways. (1040) M June 17 6 / 12
17 Fundamental Counting Principle Example A restaurant offers four different main dishes and 3 different desserts. If a meal comes with a main dish and a dessert, how many different means can be made? Answer 4 3 = 12 many meals. Example How many 4character liceanse plates can be made from 26 letters and 10 digits (zero through nine)? Answer There are 36 different characters each time = 36 4 = 1, 679, 616 many ways. This is the fundamental counting principle: The number of ways two events can occur in sequence is m n, the product of the number of ways m the first and the number of ways n the second can occur. This extends to more than two events. (1040) M June 17 6 / 12
18 Classical / Theoretical Probability The probability an event E will occur is denoted P(E) and said, the probability of event E. Classical or theoretical probability is used when each outcome in a sample space is equally likely to occur. The probability of an event E is then Number of outcomes in E P(E) = Total outcomes in the sample space (1040) M June 17 7 / 12
19 Classical / Theoretical Probability The probability an event E will occur is denoted P(E) and said, the probability of event E. Classical or theoretical probability is used when each outcome in a sample space is equally likely to occur. The probability of an event E is then Number of outcomes in E P(E) = Total outcomes in the sample space Example For a coin flip, the sample space is {H, T }. The event E : coin flip results in a heads is 1 2. (1040) M June 17 7 / 12
20 Classical / Theoretical Probability Example A card is drawn from a standard deck of playing cards. What is the probability that the card drawn is a heart? (1040) M June 17 8 / 12
21 Classical / Theoretical Probability Example A card is drawn from a standard deck of playing cards. What is the probability that the card drawn is a heart? P(E) = = 1 4 = (1040) M June 17 8 / 12
22 Classical / Theoretical Probability Example A card is drawn from a standard deck of playing cards. What is the probability that the card drawn is a heart? P(E) = = 1 4 = What is the probability the card is a face card? (A jack, queen, king, or ace) (1040) M June 17 8 / 12
23 Classical / Theoretical Probability Example A card is drawn from a standard deck of playing cards. What is the probability that the card drawn is a heart? P(E) = = 1 4 = What is the probability the card is a face card? (A jack, queen, king, or ace) There are four suits (heart, diamond, club, spade) and four face cards. P(E) = = (1040) M June 17 8 / 12
24 Empirical / Statistical Probability Empirical or statistical probabilities are based on observations. These are always relative frequencies. P(E) = f n = Frequency of the event Frequency total (1040) M June 17 9 / 12
25 Classical / Theoretical Probability Example Here is the toy dog breed data from the American Kennel Society (registered number of dogs in thousands) Chihuahua 23 Maltese 13 Pomeranian 18 Poodle 30 Pug 20 Shih Tzu 27 Yorkshire Terrier 48 Σf = 179 What is the probability the next dog registered is a poodle? (1040) M June / 12
26 Classical / Theoretical Probability Example Here is the toy dog breed data from the American Kennel Society (registered number of dogs in thousands) Chihuahua 23 Maltese 13 Pomeranian 18 Poodle 30 Pug 20 Shih Tzu 27 Yorkshire Terrier 48 Σf = 179 What is the probability the next dog registered is a poodle? P(E) = (1040) M June / 12
27 Complementary Events Because probabiity must be a number between 0 and 1, we can use this fact to find the probabiliy of the complement of E, or all the events not in E. This is done by P(E ) = 1 P(E) (1040) M June / 12
28 Complementary Events Because probabiity must be a number between 0 and 1, we can use this fact to find the probabiliy of the complement of E, or all the events not in E. This is done by P(E ) = 1 P(E) Example What is the probability that a card drawn from a standard deck is not a heart? (1040) M June / 12
29 Complementary Events Because probabiity must be a number between 0 and 1, we can use this fact to find the probabiliy of the complement of E, or all the events not in E. This is done by P(E ) = 1 P(E) Example What is the probability that a card drawn from a standard deck is not a heart? Let E be the card is a heart. (1040) M June / 12
30 Complementary Events Because probabiity must be a number between 0 and 1, we can use this fact to find the probabiliy of the complement of E, or all the events not in E. This is done by P(E ) = 1 P(E) Example What is the probability that a card drawn from a standard deck is not a heart? Let E be the card is a heart. P(E ) = 1 P(E) = = (1040) M June / 12
31 Complementary Events Because probabiity must be a number between 0 and 1, we can use this fact to find the probabiliy of the complement of E, or all the events not in E. This is done by P(E ) = 1 P(E) Example What is the probability that a card drawn from a standard deck is not a heart? Let E be the card is a heart. P(E ) = 1 P(E) = = What is the probabiliy that a card drawn is not a face card? (1040) M June / 12
32 Complementary Events Because probabiity must be a number between 0 and 1, we can use this fact to find the probabiliy of the complement of E, or all the events not in E. This is done by P(E ) = 1 P(E) Example What is the probability that a card drawn from a standard deck is not a heart? Let E be the card is a heart. P(E ) = 1 P(E) = = What is the probabiliy that a card drawn is not a face card? Let E be the card is a face card. (1040) M June / 12
33 Complementary Events Because probabiity must be a number between 0 and 1, we can use this fact to find the probabiliy of the complement of E, or all the events not in E. This is done by P(E ) = 1 P(E) Example What is the probability that a card drawn from a standard deck is not a heart? Let E be the card is a heart. P(E ) = 1 P(E) = = What is the probabiliy that a card drawn is not a face card? Let E be the card is a face card. P(E ) = 1 P(E) = (1040) M June / 12
34 Assignments Assignment: 1. Summarize this section. 2. Read pages Page 138, 173 odd 4. Try It Yourself exercises 1, 3, 4, 5, 7, 9 Vocabulary: sample space, event, the fundamental counting principle, theoretical probability, statistical probability, complementary events Understand: Write out a list of all possilbe outcomes of an experiment. This is the sample space. Count these events, and add up these events. This way you can compute probabilites. Use techniques such as the fundamental counting principle and the complement rule. (1040) M June / 12
Classical vs. Empirical Probability Activity
Name: Date: Hour : Classical vs. Empirical Probability Activity (100 Formative Points) For this activity, you will be taking part in 5 different probability experiments: Rolling dice, drawing cards, drawing
More information4.1 Sample Spaces and Events
4.1 Sample Spaces and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment is called an
More informationUnit 9: Probability Assignments
Unit 9: Probability Assignments #1: Basic Probability In each of exercises 1 & 2, find the probability that the spinner shown would land on (a) red, (b) yellow, (c) blue. 1. 2. Y B B Y B R Y Y B R 3. Suppose
More informationMore Probability: Poker Hands and some issues in Counting
More Probability: Poker Hands and some issues in Counting Data From Thursday Everybody flipped a pair of coins and recorded how many times they got two heads, two tails, or one of each. We saw that the
More informationIntermediate Math Circles November 1, 2017 Probability I
Intermediate Math Circles November 1, 2017 Probability I Probability is the study of uncertain events or outcomes. Games of chance that involve rolling dice or dealing cards are one obvious area of application.
More informationKey Concepts. Theoretical Probability. Terminology. Lesson 111
Key Concepts Theoretical Probability Lesson  Objective Teach students the terminology used in probability theory, and how to make calculations pertaining to experiments where all outcomes are equally
More information4.3 Rules of Probability
4.3 Rules of Probability If a probability distribution is not uniform, to find the probability of a given event, add up the probabilities of all the individual outcomes that make up the event. Example:
More information7.1 Experiments, Sample Spaces, and Events
7.1 Experiments, Sample Spaces, and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment
More informationProbability. The MEnTe Program Math Enrichment through Technology. Title V East Los Angeles College
Probability The MEnTe Program Math Enrichment through Technology Title V East Los Angeles College 2003 East Los Angeles College. All rights reserved. Topics Introduction Empirical Probability Theoretical
More information1. How to identify the sample space of a probability experiment and how to identify simple events
Statistics Chapter 3 Name: 3.1 Basic Concepts of Probability Learning objectives: 1. How to identify the sample space of a probability experiment and how to identify simple events 2. How to use the Fundamental
More informationSTANDARD COMPETENCY : 1. To use the statistics rules, the rules of counting, and the characteristic of probability in problem solving.
Worksheet 4 th Topic : PROBABILITY TIME : 4 X 45 minutes STANDARD COMPETENCY : 1. To use the statistics rules, the rules of counting, and the characteristic of probability in problem solving. BASIC COMPETENCY:
More informationProbability is the likelihood that an event will occur.
Section 3.1 Basic Concepts of is the likelihood that an event will occur. In Chapters 3 and 4, we will discuss basic concepts of probability and find the probability of a given event occurring. Our main
More informationChapter 4: Probability and Counting Rules
Chapter 4: Probability and Counting Rules Before we can move from descriptive statistics to inferential statistics, we need to have some understanding of probability: Ch4: Probability and Counting Rules
More informationChapter 1: Sets and Probability
Chapter 1: Sets and Probability Section 1.31.5 Recap: Sample Spaces and Events An is an activity that has observable results. An is the result of an experiment. Example 1 Examples of experiments: Flipping
More informationPROBABILITY Case of cards
WORKSHEET NO1 PROBABILITY Case of cards WORKSHEET NO2 Case of two die Case of coins WORKSHEET NO3 1) Fill in the blanks: A. The probability of an impossible event is B. The probability of a sure
More informationDefine and Diagram Outcomes (Subsets) of the Sample Space (Universal Set)
12.3 and 12.4 Notes Geometry 1 Diagramming the Sample Space using Venn Diagrams A sample space represents all things that could occur for a given event. In set theory language this would be known as the
More informationReview. Natural Numbers: Whole Numbers: Integers: Rational Numbers: Outline Sec Comparing Rational Numbers
FOUNDATIONS Outline Sec. 31 Gallo Name: Date: Review Natural Numbers: Whole Numbers: Integers: Rational Numbers: Comparing Rational Numbers Fractions: A way of representing a division of a whole into
More informationFundamentals of Probability
Fundamentals of Probability Introduction Probability is the likelihood that an event will occur under a set of given conditions. The probability of an event occurring has a value between 0 and 1. An impossible
More information1. Theoretical probability is what should happen (based on math), while probability is what actually happens.
Name: Date: / / QUIZ DAY! FillintheBlanks: 1. Theoretical probability is what should happen (based on math), while probability is what actually happens. 2. As the number of trials increase, the experimental
More informationChapter 1. Probability
Chapter 1. Probability 1.1 Basic Concepts Scientific method a. For a given problem, we define measures that explains the problem well. b. Data is collected with observation and the measures are calculated.
More informationIf you roll a die, what is the probability you get a four OR a five? What is the General Education Statistics
If you roll a die, what is the probability you get a four OR a five? What is the General Education Statistics probability that you get neither? Class Notes The Addition Rule (for OR events) and Complements
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
6.1 Practice Problems Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Answer the question. 1) The probability of rolling an even number on a
More informationDef: The intersection of A and B is the set of all elements common to both set A and set B
Def: Sample Space the set of all possible outcomes Def: Element an item in the set Ex: The number "3" is an element of the "rolling a die" sample space Main concept write in Interactive Notebook Intersection:
More informationProbability of Independent and Dependent Events. CCM2 Unit 6: Probability
Probability of Independent and Dependent Events CCM2 Unit 6: Probability Independent and Dependent Events Independent Events: two events are said to be independent when one event has no affect on the probability
More informationChapter 1. Probability
Chapter 1. Probability 1.1 Basic Concepts Scientific method a. For a given problem, we define measures that explains the problem well. b. Data is collected with observation and the measures are calculated.
More informationObjective 1: Simple Probability
Objective : Simple Probability To find the probability of event E, P(E) number of ways event E can occur total number of outcomes in sample space Example : In a pet store, there are 5 puppies, 22 kittens,
More informationI. WHAT IS PROBABILITY?
C HAPTER 3 PROAILITY Random Experiments I. WHAT IS PROAILITY? The weatherman on 10 o clock news program states that there is a 20% chance that it will snow tomorrow, a 65% chance that it will rain and
More information7 5 Compound Events. March 23, Alg2 7.5B Notes on Monday.notebook
7 5 Compound Events At a juice bottling factory, quality control technicians randomly select bottles and mark them pass or fail. The manager randomly selects the results of 50 tests and organizes the data
More informationChapter 4: Introduction to Probability
MTH 243 Chapter 4: Introduction to Probability Suppose that we found that one of our pieces of data was unusual. For example suppose our pack of M&M s only had 30 and that was 3.1 standard deviations below
More informationMath 227 Elementary Statistics. Bluman 5 th edition
Math 227 Elementary Statistics Bluman 5 th edition CHAPTER 4 Probability and Counting Rules 2 Objectives Determine sample spaces and find the probability of an event using classical probability or empirical
More informationImportant Distributions 7/17/2006
Important Distributions 7/17/2006 Discrete Uniform Distribution All outcomes of an experiment are equally likely. If X is a random variable which represents the outcome of an experiment of this type, then
More informationMaking Predictions with Theoretical Probability
? LESSON 6.3 Making Predictions with Theoretical Probability ESSENTIAL QUESTION Proportionality 7.6.H Solve problems using qualitative and quantitative predictions and comparisons from simple experiments.
More informationSimple Probability. Arthur White. 28th September 2016
Simple Probability Arthur White 28th September 2016 Probabilities are a mathematical way to describe an uncertain outcome. For eample, suppose a physicist disintegrates 10,000 atoms of an element A, and
More informationIndependent and Mutually Exclusive Events
Independent and Mutually Exclusive Events By: OpenStaxCollege Independent and mutually exclusive do not mean the same thing. Independent Events Two events are independent if the following are true: P(A
More informationSection 7.1 Experiments, Sample Spaces, and Events
Section 7.1 Experiments, Sample Spaces, and Events Experiments An experiment is an activity with observable results. 1. Which of the follow are experiments? (a) Going into a room and turning on a light.
More informationBefore giving a formal definition of probability, we explain some terms related to probability.
probability 22 INTRODUCTION In our daytoday life, we come across statements such as: (i) It may rain today. (ii) Probably Rajesh will top his class. (iii) I doubt she will pass the test. (iv) It is unlikely
More informationEmpirical (or statistical) probability) is based on. The empirical probability of an event E is the frequency of event E.
Probability and Statistics Chapter 3 Notes Section 31 I. Probability Experiments. A. When weather forecasters say There is a 90% chance of rain tomorrow, or a doctor says There is a 35% chance of a successful
More informationCHAPTERS 14 & 15 PROBABILITY STAT 203
CHAPTERS 14 & 15 PROBABILITY STAT 203 Where this fits in 2 Up to now, we ve mostly discussed how to handle data (descriptive statistics) and how to collect data. Regression has been the only form of statistical
More informationMAT104: Fundamentals of Mathematics II Counting Techniques Class Exercises Solutions
MAT104: Fundamentals of Mathematics II Counting Techniques Class Exercises Solutions 1. Appetizers: Salads: Entrées: Desserts: 2. Letters: (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U,
More information(a) Suppose you flip a coin and roll a die. Are the events obtain a head and roll a 5 dependent or independent events?
Unit 6 Probability Name: Date: Hour: Multiplication Rule of Probability By the end of this lesson, you will be able to Understand Independence Use the Multiplication Rule for independent events Independent
More informationMaking Predictions with Theoretical Probability. ESSENTIAL QUESTION How do you make predictions using theoretical probability?
L E S S O N 13.3 Making Predictions with Theoretical Probability 7.SP.3.6 predict the approximate relative frequency given the probability. Also 7.SP.3.7a ESSENTIAL QUESTION How do you make predictions
More informationActivity 1: Play comparison games involving fractions, decimals and/or integers.
Students will be able to: Lesson Fractions, Decimals, Percents and Integers. Play comparison games involving fractions, decimals and/or integers,. Complete percent increase and decrease problems, and.
More informationc. If you roll the die six times what are your chances of getting at least one d. roll.
1. Find the area under the normal curve: a. To the right of 1.25 (10078.87)/2=10.565 b. To the left of 0.40 (10031.08)/2=34.46 c. To the left of 0.80 (10057.63)/2=21.185 d. Between 0.40 and 1.30 for
More informationSuch a description is the basis for a probability model. Here is the basic vocabulary we use.
5.2.1 Probability Models When we toss a coin, we can t know the outcome in advance. What do we know? We are willing to say that the outcome will be either heads or tails. We believe that each of these
More informationUnit 11 Probability. Round 1 Round 2 Round 3 Round 4
Study Notes 11.1 Intro to Probability Unit 11 Probability Many events can t be predicted with total certainty. The best thing we can do is say how likely they are to happen, using the idea of probability.
More informationINDEPENDENT AND DEPENDENT EVENTS UNIT 6: PROBABILITY DAY 2
INDEPENDENT AND DEPENDENT EVENTS UNIT 6: PROBABILITY DAY 2 WARM UP Students in a mathematics class pick a card from a standard deck of 52 cards, record the suit, and return the card to the deck. The results
More informationn(s)=the number of ways an event can occur, assuming all ways are equally likely to occur. p(e) = n(e) n(s)
The following story, taken from the book by Polya, Patterns of Plausible Inference, Vol. II, Princeton Univ. Press, 1954, p.101, is also quoted in the book by Szekely, Classical paradoxes of probability
More informationWhen a number cube is rolled once, the possible numbers that could show face up are
C3 Chapter 12 Understanding Probability Essential question: How can you describe the likelihood of an event? Example 1 Likelihood of an Event When a number cube is rolled once, the possible numbers that
More informationProbability MAT230. Fall Discrete Mathematics. MAT230 (Discrete Math) Probability Fall / 37
Probability MAT230 Discrete Mathematics Fall 2018 MAT230 (Discrete Math) Probability Fall 2018 1 / 37 Outline 1 Discrete Probability 2 Sum and Product Rules for Probability 3 Expected Value MAT230 (Discrete
More informationMath 1313 Section 6.2 Definition of Probability
Math 1313 Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability
More informationUnit 7 Central Tendency and Probability
Name: Block: 7.1 Central Tendency 7.2 Introduction to Probability 7.3 Independent Events 7.4 Dependent Events 7.1 Central Tendency A central tendency is a central or value in a data set. We will look at
More informationDependence. Math Circle. October 15, 2016
Dependence Math Circle October 15, 2016 1 Warm up games 1. Flip a coin and take it if the side of coin facing the table is a head. Otherwise, you will need to pay one. Will you play the game? Why? 2. If
More informationOutcomes: The outcomes of this experiment are yellow, blue, red and green.
(Adapted from http://www.mathgoodies.com/) 1. Sample Space The sample space of an experiment is the set of all possible outcomes of that experiment. The sum of the probabilities of the distinct outcomes
More informationIntro to Probability
Intro to Probability Random Experiment A experiment is random if: 1) the outcome depends on chance. In other words, the outcome cannot be predicted with certainty (can t know 100%). 2) the set of all possible
More informationProbability Test Review Math 2. a. What is? b. What is? c. ( ) d. ( )
Probability Test Review Math 2 Name 1. Use the following venn diagram to answer the question: Event A: Odd Numbers Event B: Numbers greater than 10 a. What is? b. What is? c. ( ) d. ( ) 2. In Jason's homeroom
More informationProbability  Chapter 4
Probability  Chapter 4 In this chapter, you will learn about probability its meaning, how it is computed, and how to evaluate it in terms of the likelihood of an event actually happening. A cynical person
More informationUnit 14 Probability. Target 3 Calculate the probability of independent and dependent events (compound) AND/THEN statements
Target 1 Calculate the probability of an event Unit 14 Probability Target 2 Calculate a sample space 14.2a Tree Diagrams, Factorials, and Permutations 14.2b Combinations Target 3 Calculate the probability
More informationIf a regular sixsided die is rolled, the possible outcomes can be listed as {1, 2, 3, 4, 5, 6} there are 6 outcomes.
Section 11.1: The Counting Principle 1. Combinatorics is the study of counting the different outcomes of some task. For example If a coin is flipped, the side facing upward will be a head or a tail the
More informationSection Introduction to Sets
Section 1.1  Introduction to Sets Definition: A set is a welldefined collection of objects usually denoted by uppercase letters. Definition: The elements, or members, of a set are denoted by lowercase
More informationGrade 8 Math Assignment: Probability
Grade 8 Math Assignment: Probability Part 1: Rock, Paper, Scissors  The Study of Chance Purpose An introduction of the basic information on probability and statistics Materials: Two sets of hands Paper
More informationObjective: Determine empirical probability based on specific sample data. (AA21)
Do Now: What is an experiment? List some experiments. What types of things does one take a "chance" on? Mar 1 3:33 PM Date: Probability  Empirical  By Experiment Objective: Determine empirical probability
More informationProbability. Ms. Weinstein Probability & Statistics
Probability Ms. Weinstein Probability & Statistics Definitions Sample Space The sample space, S, of a random phenomenon is the set of all possible outcomes. Event An event is a set of outcomes of a random
More informationIndependence Is The Word
Problem 1 Simulating Independent Events Describe two different events that are independent. Describe two different events that are not independent. The probability of obtaining a tail with a coin toss
More informationSection : Combinations and Permutations
Section 11.111.2: Combinations and Permutations Diana Pell A construction crew has three members. A team of two must be chosen for a particular job. In how many ways can the team be chosen? How many words
More information19.4 Mutually Exclusive and Overlapping Events
Name Class Date 19.4 Mutually Exclusive and Overlapping Events Essential Question: How are probabilities affected when events are mutually exclusive or overlapping? Resource Locker Explore 1 Finding the
More informationName Instructor: Uli Walther
Name Instructor: Uli Walther Math 416 Fall 2016 Practice Exam Questions You are not allowed to use books or notes. Calculators are permitted. Full credit is given for complete correct solutions. Please
More informationQuestion of the Day. Key Concepts. Vocabulary. Mathematical Ideas. QuestionofDay
QuestionofDay Question of the Day There are 31 educators from the state of Nebraska currently enrolled in Experimentation, Conjecture, and Reasoning. What is the probability that two participants in our
More informationProbability and Statistics. Copyright Cengage Learning. All rights reserved.
Probability and Statistics Copyright Cengage Learning. All rights reserved. 14.2 Probability Copyright Cengage Learning. All rights reserved. Objectives What Is Probability? Calculating Probability by
More informationFall (b) Find the event, E, that a number less than 3 is rolled. (c) Find the event, F, that a green marble is selected.
Fall 2018 Math 140 WeekinReview #6 Exam 2 Review courtesy: Kendra Kilmer (covering Sections 3.13.4, 4.14.4) (Please note that this review is not all inclusive) 1. An experiment consists of rolling
More informationName Date. Sample Spaces and Probability For use with Exploration 12.1
. Sample Spaces and Probability For use with Exploration. Essential Question How can you list the possible outcomes in the sample space of an experiment? The sample space of an experiment is the set of
More informationSection 5.4 Permutations and Combinations
Section 5.4 Permutations and Combinations Definition: nfactorial For any natural number n, n! n( n 1)( n 2) 3 2 1. 0! = 1 A combination of a set is arranging the elements of the set without regard to
More informationNC MATH 2 NCFE FINAL EXAM REVIEW Unit 6 Probability
NC MATH 2 NCFE FINAL EXAM REVIEW Unit 6 Probability Theoretical Probability A tube of sweets contains 20 red candies, 8 blue candies, 8 green candies and 4 orange candies. If a sweet is taken at random
More informationLenarz Math 102 Practice Exam # 3 Name: 1. A 10sided die is rolled 100 times with the following results:
Lenarz Math 102 Practice Exam # 3 Name: 1. A 10sided die is rolled 100 times with the following results: Outcome Frequency 1 8 2 8 3 12 4 7 5 15 8 7 8 8 13 9 9 10 12 (a) What is the experimental probability
More informationCSC/MATA67 Tutorial, Week 12
CSC/MATA67 Tutorial, Week 12 November 23, 2017 1 More counting problems A class consists of 15 students of whom 5 are prefects. Q: How many committees of 8 can be formed if each consists of a) exactly
More information1. An office building contains 27 floors and has 37 offices on each floor. How many offices are in the building?
1. An office building contains 27 floors and has 37 offices on each floor. How many offices are in the building? 2. A particular brand of shirt comes in 12 colors, has a male version and a female version,
More informationTest 2 SOLUTIONS (Chapters 5 7)
Test 2 SOLUTIONS (Chapters 5 7) 10 1. I have been sitting at my desk rolling a sixsided die (singular of dice), and counting how many times I rolled a 6. For example, after my first roll, I had rolled
More informationName: Partners: Math Academy I. Review 6 Version A. 5. There are over a billion different possible orders for a line of 14 people.
Name: Partners: Math Academy I Date: Review 6 Version A [A] Circle whether each statement is true or false. 1. Odd and less than 4 are mutually exclusive. 2. The probability of a card being red given it
More informationChapter 8: Probability: The Mathematics of Chance
Chapter 8: Probability: The Mathematics of Chance FreeResponse 1. A spinner with regions numbered 1 to 4 is spun and a coin is tossed. Both the number spun and whether the coin lands heads or tails is
More informationSection 5.4 Permutations and Combinations
Section 5.4 Permutations and Combinations Definition: nfactorial For any natural number n, n! = n( n 1)( n 2) 3 2 1. 0! = 1 A combination of a set is arranging the elements of the set without regard to
More informationTopic : ADDITION OF PROBABILITIES (MUTUALLY EXCLUSIVE EVENTS) TIME : 4 X 45 minutes
Worksheet 6 th Topic : ADDITION OF PROBABILITIES (MUTUALLY EXCLUSIVE EVENTS) TIME : 4 X 45 minutes STANDARD COMPETENCY : 1. To use the statistics rules, the rules of counting, and the characteristic of
More informationDeveloped by Rashmi Kathuria. She can be reached at
Developed by Rashmi Kathuria. She can be reached at . Photocopiable Activity 1: Step by step Topic Nature of task Content coverage Learning objectives Task Duration Arithmetic
More information7.1 Chance Surprises, 7.2 Predicting the Future in an Uncertain World, 7.4 Down for the Count
7.1 Chance Surprises, 7.2 Predicting the Future in an Uncertain World, 7.4 Down for the Count Probability deals with predicting the outcome of future experiments in a quantitative way. The experiments
More informationProbability Simulation User s Manual
Probability Simulation User s Manual Documentation of features and usage for Probability Simulation Copyright 2000 Corey Taylor and Rusty Wagner 1 Table of Contents 1. General Setup 3 2. Coin Section 4
More informationCMPSCI 240: Reasoning Under Uncertainty First Midterm Exam
CMPSCI 240: Reasoning Under Uncertainty First Midterm Exam February 18, 2015. Name: ID: Instructions: Answer the questions directly on the exam pages. Show all your work for each question. Providing more
More informationCompound Probability. A to determine the likelihood of two events occurring at the. ***Events can be classified as independent or dependent events.
Probability 68B A to determine the likelihood of two events occurring at the. ***Events can be classified as independent or dependent events. Independent Events are events in which the result of event
More informationMath Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5.
Math 166 Spring 2007 c Heather Ramsey Page 1 Math 166  Exam 2 Review NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Section 7.1  Experiments, Sample Spaces,
More informationMath Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5.
Math 166 Spring 2007 c Heather Ramsey Page 1 Math 166  Exam 2 Review NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Section 7.1  Experiments, Sample Spaces,
More informationIntroduction to probability
Introduction to probability Suppose an experiment has a finite set X = {x 1,x 2,...,x n } of n possible outcomes. Each time the experiment is performed exactly one on the n outcomes happens. Assign each
More informationSection 7.3 and 7.4 Probability of Independent Events
Section 7.3 and 7.4 Probability of Independent Events Grade 7 Review Two or more events are independent when one event does not affect the outcome of the other event(s). For example, flipping a coin and
More informationChapter 5  Elementary Probability Theory
Chapter 5  Elementary Probability Theory Historical Background Much of the early work in probability concerned games and gambling. One of the first to apply probability to matters other than gambling
More information6) A) both; happy B) neither; not happy C) one; happy D) one; not happy
MATH 00  PRACTICE TEST 2 Millersville University, Spring 202 Ron Umble, Instr. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find all natural
More informationAlgebra II Chapter 12 Test Review
Sections: Counting Principle Permutations Combinations Probability Name Choose the letter of the term that best matches each statement or phrase. 1. An illustration used to show the total number of A.
More informationName Class Date. Introducing Probability Distributions
Name Class Date Binomial Distributions Extension: Distributions Essential question: What is a probability distribution and how is it displayed? 86 CC.9 2.S.MD.5(+) ENGAGE Introducing Distributions Video
More informationBasic Probability. Let! = # 8 # < 13, # N ,., and / are the subsets of! such that  = multiples of four. = factors of 24 / = square numbers
Basic Probability Let! = # 8 # < 13, # N ,., and / are the subsets of! such that  = multiples of four. = factors of 24 / = square numbers (a) List the elements of!. (b) (i) Draw a Venn diagram to show
More information2 Event is equally likely to occur or not occur. When all outcomes are equally likely, the theoretical probability that an event A will occur is:
10.3 TEKS a.1, a.4 Define and Use Probability Before You determined the number of ways an event could occur. Now You will find the likelihood that an event will occur. Why? So you can find reallife geometric
More informationTEST A CHAPTER 11, PROBABILITY
TEST A CHAPTER 11, PROBABILITY 1. Two fair dice are rolled. Find the probability that the sum turning up is 9, given that the first die turns up an even number. 2. Two fair dice are rolled. Find the probability
More information3 The multiplication rule/miscellaneous counting problems
Practice for Exam 1 1 Axioms of probability, disjoint and independent events 1 Suppose P (A 0, P (B 05 (a If A and B are independent, what is P (A B? What is P (A B? (b If A and B are disjoint, what is
More informationLesson 3 Dependent and Independent Events
Lesson 3 Dependent and Independent Events When working with 2 separate events, we must first consider if the first event affects the second event. Situation 1 Situation 2 Drawing two cards from a deck
More informationMATH 215 DISCRETE MATHEMATICS INSTRUCTOR: P. WENG
MATH DISCRETE MATHEMATICS INSTRUCTOR: P. WENG Counting and Probability Suggested Problems Basic Counting Skills, InclusionExclusion, and Complement. (a An office building contains 7 floors and has 7 offices
More informationProbability Assignment
Name Probability Assignment Student # Hr 1. An experiment consists of spinning the spinner one time. a. How many possible outcomes are there? b. List the sample space for the experiment. c. Determine the
More information