Introduction to Number Theory 2. c Eli Biham - November 5, Introduction to Number Theory 2 (12)

Size: px
Start display at page:

Download "Introduction to Number Theory 2. c Eli Biham - November 5, Introduction to Number Theory 2 (12)"

Transcription

1 Introduction to Number Theory c Eli Biham - November 5, Introduction to Number Theory (1)

2 Quadratic Residues Definition: The numbers 0, 1,,...,(n 1) mod n, are called uadratic residues modulo n. Numbers which are not uadratic residues modulo n are called uadratic non-residues modulo n. Examle: Modulo 11: i i mod There are six uadratic residues modulo 11: 0, 1, 3, 4, 5, and 9. There are five uadratic non-residues modulo 11:, 6, 7, 8, 10. c Eli Biham - November 5, Introduction to Number Theory (1)

3 Quadratic Residues (cont.) Lemma: Let be rime. Exactly half of the numbers in Z are uadratic residues. With 0, exactly +1 numbers in Z are uadratic residues. Proof: There are at most +1 uadratic residues, since 0 1 ( 1) (mod ) ( ). (mod ) i ( i). (mod ) i Thus, all the elements in Z san at most +1 uadratic residues. There are at least +1 uadratic residues, otherwise, for some i j 1 / it holds that i = ( i) = j = ( j), in contrast to Lagrange theorem that states that the euation x i = 0 has at most two solutions (mod ). c Eli Biham - November 5, Introduction to Number Theory (1)

4 Quadratic Residues (cont.) Since Z is cyclic, there is a generator. Let g be a generator of Z. 1. g is a uadratic non-residue modulo, since otherwise there is some b such that b g (mod ). Clearly, b 1 1 (mod ), and thus g 1 b 1 1 (mod ). However, the order of g is 1. Contradiction.. g, g 4,...,g ( 1) mod are uadratic residues, and are distinct, therefore, there are at least 1 uadratic residues. 3. g,g 3,g 5,...,g ( ) mod are uadratic non-residues, since if any of them is a uadratic residue, g is also a uadratic residue. QED c Eli Biham - November 5, Introduction to Number Theory (1)

5 Euler s Criterion Theorem: Let be a rime, and let a Z. Then, a is a uadratic residue modulo iff a 1 1 (mod ). Proof: ( ) If a is a uadratic residue, there is some b such that a b Thus, a 1 (b ) 1 b 1 1 (mod ). (mod ). c Eli Biham - November 5, Introduction to Number Theory (1)

6 Euler s Criterion (cont.) ( ) If a is a uadratic non-residue: For any r there is a uniue s such that rs a (mod ), i.e., s = ar 1, and there is no r r such that s = ar 1. Since a is a uadratic non-residue, r s (mod ). Thus, the numbers 1,, 3,..., 1 are divided into 1 distinct airs (r 1, s 1 ), (r,s ),..., (r 1, s 1), such that r i s i = a, and we get a 1 by Wilson s theorem. QED r 1 s 1 r s...r 1 s ( 1) 1 (mod ) c Eli Biham - November 5, Introduction to Number Theory (1)

7 Quadratic Residues Modulo n = Let and be large rimes and let n = (as in RSA). Theorem: Let m Z n. If m is a uadratic residue modulo n, then m has exactly four suare roots modulo n in Z n. Proof: Assume α m (mod n). Then gcd(m, n) = 1 gcd(α, n) = 1 gcd(α, n) = 1 α Z n. and since then m α (mod n) m α (mod ) m α (mod ) m has two suare roots modulo (α mod and α mod ) and two suare roots modulo (α mod and α mod ). c Eli Biham - November 5, Introduction to Number Theory (1)

8 Quadratic Residues Modulo n = (cont.) Look at the systems of euations x ±α (mod ) x ±α (mod ) which reresent four systems (one of each ossible choice of ±). Each system has an uniue solution modulo n which satisfies and thus satisfies x m (mod ) x m (mod ) x m (mod n) All the four solutions are roots of m modulo n. These are all the roots. Otherwise there must be more than two roots either modulo or modulo. QED c Eli Biham - November 5, Introduction to Number Theory (1)

9 Quadratic Residues Modulo n = (cont.) Conclusion: Exactly a uarter of the numbers in Z n are uadratic residues modulo n. c Eli Biham - November 5, Introduction to Number Theory (1)

10 Legendre s Symbol Definition: Let be a rime such that a. Legendre s symbol of a over is a = +1, if a is a uadratic residue modulo ; 1, if a is a uadratic non-residue modulo. By Euler: a a 1 (mod ). c Eli Biham - November 5, Introduction to Number Theory (1)

11 Legendre s Symbol (cont.) Proerties of Legendre s symbol: 1. a a (mod ) ( a. ( 1 ) = ( c ) = 1 c. ) = ( a 3. ( ) 1 1, if = 4k + 1; = 1, if = 4k + 3. Proof: ). 1 ( 1) 1 (mod ) ( 1) 4k+1 1 ( 1) 4k+3 1 ( 1) k 1, if = 4k + 1; ( 1) k+1 1, if = 4k + 3. c Eli Biham - November 5, Introduction to Number Theory (1)

12 4. ( ) = ( 1) 1 8. (given without a roof). 5. ( ) ( ) ( ) ab = a b. Proof: Legendre s Symbol (cont.) Let g be a generator modulo. Then, i,a g i (mod ) and j, b g j (mod ). a is a uadratic residue iff i is even, b is a uadratic residue iff j is even, and ab is a uadratic residue iff i + j is even. Thus, by Euler: ab ( 1) i+j ( 1) i ( 1) j a b (mod ). c Eli Biham - November 5, Introduction to Number Theory (1)

13 Legendre s Symbol (cont.) 6. The recirocity law: if are both odd rimes then = ( 1) 1 1. (given without a roof). c Eli Biham - November 5, Introduction to Number Theory (1)

14 Jacobi s Symbol Jacobi s symbol is a generalization of Legendre s symbol to comosite numbers. Definition: Let n be odd, and let 1,,..., k be the rime factors of n (not necessarily distinct) such that n = 1 k. Let a be corime to n. Jacobi s symbol of a over n is a n = a 1 a k a. In articular, for n = a n = a = a a. c Eli Biham - November 5, Introduction to Number Theory (1)

15 Jacobi s Symbol (cont.) Remarks: 1. a Z n is a uadratic residue modulo n iff the Legendre s symbols over all the rime factors are 1.. When Jacobi s symbol is 1, a is not necessarily a uadratic residue. 3. When Jacobi s symbol is -1, a is necessarily a uadratic non-residue. c Eli Biham - November 5, Introduction to Number Theory (1)

16 Proerties of Jacobi s symbol: Jacobi s Symbol (cont.) Let m and n be integers, and let a and b be corime to m and n. Assume that n is odd and that the factorization of n is n = 1 k. 1. a b (mod n) ( ( ) a n) = b n.. ( ) 1 n = 1 n (1 is a uadratic residue modulo any n). 3. ( ) 1 n 1 n = ( 1). Proof: oening arentheses: = n = 1 k = (( 1 1) + 1)(( 1) + 1) (( k 1) + 1) S {1,,...,k} ( i 1) i S c Eli Biham - November 5, Introduction to Number Theory (1)

17 = Jacobi s Symbol (cont.) S {1,,...,k} S ( i 1) i S + i {1,,...,k} ( i 1) + 1 = [( 1 1)( 1) ( k 1) +...] + ( 1 1) + ( 1) ( k 1) + 1 where all the terms with S (in the brackets) are multiles of four, and all the i 1 are even. Thus, and n 1 1 = n ( 1 1) ( 1) 1 1 k ( k 1) (mod ), = ( 1) ( 1 1)/ ( 1) ( 1)/ ( 1) ( k 1)/ = ( 1) ( 1 1)/+( 1)/+...+( k 1)/ = ( 1) (n 1)/. c Eli Biham - November 5, Introduction to Number Theory (1)

18 Jacobi s Symbol (cont.) 4. ( ) n n = ( 1) 1 8. Proof: We saw that ( ) = ( 1) 1 8, thus: n = 1 k = ( 1) k 1 8 It remains to show that n k 1 8 (mod ) 1 = (1 + ( 1 1))(1 + ( 1)) = 1 + ( 1 1) + ( 1) + ( 1 1)( 1) But 8 ( 1 1) and 8 ( 1), thus 64 ( 1 1)( 1). Therefore, ( 1 1) + ( 1) (mod 16) c Eli Biham - November 5, Introduction to Number Theory (1)

19 Jacobi s Symbol (cont.) And, 1 3 (1 + ( 1 1))(1 + ( 1))(1 + ( 3 1)) (mod 16) 1 + ( 1 1) + ( 1) + ( 3 1) (mod 16) etc., thus, n 1 + ( 1 1) + ( 1) + + ( k 1) (mod 16) n k 1 8 (mod ) c Eli Biham - November 5, Introduction to Number Theory (1)

20 Jacobi s Symbol (cont.) 5. The first multilication roerty: ( ( ( ) a mn) = a a m) n. (if a is corime to mn it is corime to m and to n; the rest is derived directly from the definition). 6. The second multilication roerty: ( ) ( ) ( ) ab n = a b n n. (if ab is corime to n, the both a and b are corime to n; the rest is derived since this roerty holds for Legendre s symbol). c Eli Biham - November 5, Introduction to Number Theory (1)

21 Jacobi s Symbol (cont.) 7. The recirocity law: if m, n are corime and odd then n m = ( 1) m 1 n 1 m n. Proof: First assume that m = is a rime, thus, n = 1 By the recirocity law of Legendre s symbol we know that Thus, i n = ( 1) 1 = ( 1) i 1 1 ( k 1 ) 1 k i.. k }{{} c Eli Biham - November 5, Introduction to Number Theory (1) ( n).

22 We saw in roerty 3 that, Jacobi s Symbol (cont.) thus, n 1 ( 1 1) Now for any odd m: + ( 1) n = ( 1) ( k 1) n 1 n. (mod ), n m = = n 1 1 n n = ( 1) m 1 n l l n n n 1 m n ( 1) n 1 ( l 1 ) QED c Eli Biham - November 5, Introduction to Number Theory (1)

23 Alication of Jacobi s Symbol: Jacobi s Symbol (cont.) Using the roerties of Jacobi s symbol, it is easy to calculate Legendre s symbols in olynomial time. Examle: = = = = = 6 = ( 1) = 37 7 ( 1)(+1) 1 = 1 ( 1)(+1) = 3 ( 1)(+1)1 = is rime, therefore ( ) can also be comuted by: (mod 71). 71 c Eli Biham - November 5, Introduction to Number Theory (1)

24 Comlexity: Jacobi s Symbol (cont.) The only reuired arithmetic oerations are modular reductions and division by owers of two. Clearly, a division (rule 6) reduces the numerator by a factor of two. A modular reduction (using rule 7 and then rule 1), reduces the number by at least two: as if a > b then a = b + r b + r > r + r, thus r < a/, i.e, a mod b < a/. Therefore, at most O(log n) modular reductions/divisions are erformed, each of which takes O((log n) ) time. This shows that the comlexity is O((log n) 3 ), which is olynomial in log n. A more recise analysis of this algorithm shows that the comlexity can be reduced to O((log n) ). c Eli Biham - November 5, Introduction to Number Theory (1)

Example: Modulo 11: Since Z p is cyclic, there is a generator. Let g be a generator of Z p.

Example: Modulo 11: Since Z p is cyclic, there is a generator. Let g be a generator of Z p. Qudrtic Residues Defiitio: The umbers 0, 1,,, ( mod, re clled udrtic residues modulo Numbers which re ot udrtic residues modulo re clled udrtic o-residues modulo Exmle: Modulo 11: Itroductio to Number

More information

Math 124 Homework 5 Solutions

Math 124 Homework 5 Solutions Math 12 Homework 5 Solutions by Luke Gustafson Fall 2003 1. 163 1 2 (mod 2 gives = 2 the smallest rime. 2a. First, consider = 2. We know 2 is not a uadratic residue if and only if 3, 5 (mod 8. By Dirichlet

More information

Solutions to Exam 1. Problem 1. a) State Fermat s Little Theorem and Euler s Theorem. b) Let m, n be relatively prime positive integers.

Solutions to Exam 1. Problem 1. a) State Fermat s Little Theorem and Euler s Theorem. b) Let m, n be relatively prime positive integers. Solutions to Exam 1 Problem 1. a) State Fermat s Little Theorem and Euler s Theorem. b) Let m, n be relatively rime ositive integers. Prove that m φ(n) + n φ(m) 1 (mod mn). c) Find the remainder of 1 008

More information

MT 430 Intro to Number Theory MIDTERM 2 PRACTICE

MT 430 Intro to Number Theory MIDTERM 2 PRACTICE MT 40 Intro to Number Theory MIDTERM 2 PRACTICE Material covered Midterm 2 is comrehensive but will focus on the material of all the lectures from February 9 u to Aril 4 Please review the following toics

More information

Quadratic Residues. Legendre symbols provide a computational tool for determining whether a quadratic congruence has a solution. = a (p 1)/2 (mod p).

Quadratic Residues. Legendre symbols provide a computational tool for determining whether a quadratic congruence has a solution. = a (p 1)/2 (mod p). Quadratic Residues 4--015 a is a quadratic residue mod m if x = a (mod m). Otherwise, a is a quadratic nonresidue. Quadratic Recirocity relates the solvability of the congruence x = (mod q) to the solvability

More information

MATH 324 Elementary Number Theory Solutions to Practice Problems for Final Examination Monday August 8, 2005

MATH 324 Elementary Number Theory Solutions to Practice Problems for Final Examination Monday August 8, 2005 MATH 324 Elementary Number Theory Solutions to Practice Problems for Final Examination Monday August 8, 2005 Deartment of Mathematical and Statistical Sciences University of Alberta Question 1. Find integers

More information

MTH 3527 Number Theory Quiz 10 (Some problems that might be on the quiz and some solutions.) 1. Euler φ-function. Desribe all integers n such that:

MTH 3527 Number Theory Quiz 10 (Some problems that might be on the quiz and some solutions.) 1. Euler φ-function. Desribe all integers n such that: MTH 7 Number Theory Quiz 10 (Some roblems that might be on the quiz and some solutions.) 1. Euler φ-function. Desribe all integers n such that: (a) φ(n) = Solution: n = 4,, 6 since φ( ) = ( 1) =, φ() =

More information

Is 1 a Square Modulo p? Is 2?

Is 1 a Square Modulo p? Is 2? Chater 21 Is 1 a Square Modulo? Is 2? In the revious chater we took various rimes and looked at the a s that were quadratic residues and the a s that were nonresidues. For examle, we made a table of squares

More information

To be able to determine the quadratic character of an arbitrary number mod p (p an odd prime), we. The first (and most delicate) case concerns 2

To be able to determine the quadratic character of an arbitrary number mod p (p an odd prime), we. The first (and most delicate) case concerns 2 Quadratic Reciprocity To be able to determine the quadratic character of an arbitrary number mod p (p an odd prime), we need to be able to evaluate q for any prime q. The first (and most delicate) case

More information

6. Find an inverse of a modulo m for each of these pairs of relatively prime integers using the method

6. Find an inverse of a modulo m for each of these pairs of relatively prime integers using the method Exercises Exercises 1. Show that 15 is an inverse of 7 modulo 26. 2. Show that 937 is an inverse of 13 modulo 2436. 3. By inspection (as discussed prior to Example 1), find an inverse of 4 modulo 9. 4.

More information

NUMBER THEORY AMIN WITNO

NUMBER THEORY AMIN WITNO NUMBER THEORY AMIN WITNO.. w w w. w i t n o. c o m Number Theory Outlines and Problem Sets Amin Witno Preface These notes are mere outlines for the course Math 313 given at Philadelphia

More information

Collection of rules, techniques and theorems for solving polynomial congruences 11 April 2012 at 22:02

Collection of rules, techniques and theorems for solving polynomial congruences 11 April 2012 at 22:02 Collection of rules, techniques and theorems for solving polynomial congruences 11 April 2012 at 22:02 Public Polynomial congruences come up constantly, even when one is dealing with much deeper problems

More information

30 HWASIN PARK, JOONGSOO PARK AND DAEYEOUL KIM Lemma 1.1. Let =2 k q +1, k 2 Z +. Then the set of rimitive roots modulo is the set of quadratic non-re

30 HWASIN PARK, JOONGSOO PARK AND DAEYEOUL KIM Lemma 1.1. Let =2 k q +1, k 2 Z +. Then the set of rimitive roots modulo is the set of quadratic non-re J. KSIAM Vol.4, No.1, 29-38, 2000 A CRITERION ON PRIMITIVE ROOTS MODULO Hwasin Park, Joongsoo Park and Daeyeoul Kim Abstract. In this aer, we consider a criterion on rimitive roots modulo where is the

More information

Exam 1 7 = = 49 2 ( ) = = 7 ( ) =

Exam 1 7 = = 49 2 ( ) = = 7 ( ) = Exam 1 Problem 1. a) Define gcd(a, b). Using Euclid s algorithm comute gcd(889, 168). Then find x, y Z such that gcd(889, 168) = x 889 + y 168 (check your answer!). b) Let a be an integer. Prove that gcd(3a

More information

Assignment 2. Due: Monday Oct. 15, :59pm

Assignment 2. Due: Monday Oct. 15, :59pm Introduction To Discrete Math Due: Monday Oct. 15, 2012. 11:59pm Assignment 2 Instructor: Mohamed Omar Math 6a For all problems on assignments, you are allowed to use the textbook, class notes, and other

More information

UNIVERSITY OF MANITOBA DATE: December 7, FINAL EXAMINATION TITLE PAGE TIME: 3 hours EXAMINER: M. Davidson

UNIVERSITY OF MANITOBA DATE: December 7, FINAL EXAMINATION TITLE PAGE TIME: 3 hours EXAMINER: M. Davidson TITLE PAGE FAMILY NAME: (Print in ink) GIVEN NAME(S): (Print in ink) STUDENT NUMBER: SEAT NUMBER: SIGNATURE: (in ink) (I understand that cheating is a serious offense) INSTRUCTIONS TO STUDENTS: This is

More information

Foundations of Cryptography

Foundations of Cryptography Foundations of Cryptography Ville Junnila viljun@utu.fi Department of Mathematics and Statistics University of Turku 2015 Ville Junnila viljun@utu.fi Lecture 10 1 of 17 The order of a number (mod n) Definition

More information

LECTURE 9: QUADRATIC RESIDUES AND THE LAW OF QUADRATIC RECIPROCITY

LECTURE 9: QUADRATIC RESIDUES AND THE LAW OF QUADRATIC RECIPROCITY LECTURE 9: QUADRATIC RESIDUES AND THE LAW OF QUADRATIC RECIPROCITY 1. Bsic roerties of qudrtic residues We now investigte residues with secil roerties of lgebric tye. Definition 1.1. (i) When (, m) 1 nd

More information

On the Fibonacci Sequence. By: Syrous Marivani LSUA. Mathematics Department. Alexandria, LA 71302

On the Fibonacci Sequence. By: Syrous Marivani LSUA. Mathematics Department. Alexandria, LA 71302 On the Fibonacci Sequence By: Syrous Marivani LSUA Mathematics Deartment Alexandria, LA 70 The so-called Fibonacci sequence {(n)} n 0 given by: (n) = (n ) + (n ), () where (0) = 0, and () =. The ollowing

More information

b) Find all positive integers smaller than 200 which leave remainder 1, 3, 4 upon division by 3, 5, 7 respectively.

b) Find all positive integers smaller than 200 which leave remainder 1, 3, 4 upon division by 3, 5, 7 respectively. Solutions to Exam 1 Problem 1. a) State Fermat s Little Theorem and Euler s Theorem. b) Let m, n be relatively prime positive integers. Prove that m φ(n) + n φ(m) 1 (mod mn). Solution: a) Fermat s Little

More information

SIZE OF THE SET OF RESIDUES OF INTEGER POWERS OF FIXED EXPONENT

SIZE OF THE SET OF RESIDUES OF INTEGER POWERS OF FIXED EXPONENT SIZE OF THE SET OF RESIDUES OF INTEGER POWERS OF FIXED EXPONENT RICHARD J. MATHAR Abstract. The ositive integers corime to some integer m generate the abelian grou (Z/nZ) of multilication modulo m. Admitting

More information

MAT Modular arithmetic and number theory. Modular arithmetic

MAT Modular arithmetic and number theory. Modular arithmetic Modular arithmetic 1 Modular arithmetic may seem like a new and strange concept at first The aim of these notes is to describe it in several different ways, in the hope that you will find at least one

More information

Discrete Square Root. Çetin Kaya Koç Winter / 11

Discrete Square Root. Çetin Kaya Koç  Winter / 11 Discrete Square Root Çetin Kaya Koç koc@cs.ucsb.edu Çetin Kaya Koç http://koclab.cs.ucsb.edu Winter 2017 1 / 11 Discrete Square Root Problem The discrete square root problem is defined as the computation

More information

Conjectures and Results on Super Congruences

Conjectures and Results on Super Congruences Conjectures and Results on Suer Congruences Zhi-Wei Sun Nanjing University Nanjing 210093, P. R. China zwsun@nju.edu.cn htt://math.nju.edu.cn/ zwsun Feb. 8, 2010 Part A. Previous Wor by Others What are

More information

L29&30 - RSA Cryptography

L29&30 - RSA Cryptography L29&30 - RSA Cryptography CSci/Math 2112 20&22 July 2015 1 / 13 Notation We write a mod n for the integer b such that 0 b < n and a b (mod n). 2 / 13 Calculating Large Powers Modulo n Example 1 What is

More information

Number Theory/Cryptography (part 1 of CSC 282)

Number Theory/Cryptography (part 1 of CSC 282) Number Theory/Cryptography (part 1 of CSC 282) http://www.cs.rochester.edu/~stefanko/teaching/11cs282 1 Schedule The homework is due Sep 8 Graded homework will be available at noon Sep 9, noon. EXAM #1

More information

LECTURE 7: POLYNOMIAL CONGRUENCES TO PRIME POWER MODULI

LECTURE 7: POLYNOMIAL CONGRUENCES TO PRIME POWER MODULI LECTURE 7: POLYNOMIAL CONGRUENCES TO PRIME POWER MODULI 1. Hensel Lemma for nonsingular solutions Although there is no analogue of Lagrange s Theorem for prime power moduli, there is an algorithm for determining

More information

The Chinese Remainder Theorem

The Chinese Remainder Theorem The Chinese Remainder Theorem Theorem. Let m and n be two relatively prime positive integers. Let a and b be any two integers. Then the two congruences x a (mod m) x b (mod n) have common solutions. Any

More information

The Chinese Remainder Theorem

The Chinese Remainder Theorem The Chinese Remainder Theorem Theorem. Let n 1,..., n r be r positive integers relatively prime in pairs. (That is, gcd(n i, n j ) = 1 whenever 1 i < j r.) Let a 1,..., a r be any r integers. Then the

More information

Wilson s Theorem and Fermat s Theorem

Wilson s Theorem and Fermat s Theorem Wilson s Theorem and Fermat s Theorem 7-27-2006 Wilson s theorem says that p is prime if and only if (p 1)! = 1 (mod p). Fermat s theorem says that if p is prime and p a, then a p 1 = 1 (mod p). Wilson

More information

LECTURE 3: CONGRUENCES. 1. Basic properties of congruences We begin by introducing some definitions and elementary properties.

LECTURE 3: CONGRUENCES. 1. Basic properties of congruences We begin by introducing some definitions and elementary properties. LECTURE 3: CONGRUENCES 1. Basic properties of congruences We begin by introducing some definitions and elementary properties. Definition 1.1. Suppose that a, b Z and m N. We say that a is congruent to

More information

Solutions to Problem Set 6 - Fall 2008 Due Tuesday, Oct. 21 at 1:00

Solutions to Problem Set 6 - Fall 2008 Due Tuesday, Oct. 21 at 1:00 18.781 Solutions to Problem Set 6 - Fall 008 Due Tuesday, Oct. 1 at 1:00 1. (Niven.8.7) If p 3 is prime, how many solutions are there to x p 1 1 (mod p)? How many solutions are there to x p 1 (mod p)?

More information

An interesting class of problems of a computational nature ask for the standard residue of a power of a number, e.g.,

An interesting class of problems of a computational nature ask for the standard residue of a power of a number, e.g., Binary exponentiation An interesting class of problems of a computational nature ask for the standard residue of a power of a number, e.g., What are the last two digits of the number 2 284? In the absence

More information

SOLUTIONS TO PROBLEM SET 5. Section 9.1

SOLUTIONS TO PROBLEM SET 5. Section 9.1 SOLUTIONS TO PROBLEM SET 5 Section 9.1 Exercise 2. Recall that for (a, m) = 1 we have ord m a divides φ(m). a) We have φ(11) = 10 thus ord 11 3 {1, 2, 5, 10}. We check 3 1 3 (mod 11), 3 2 9 (mod 11), 3

More information

MATH 118 PROBLEM SET 6

MATH 118 PROBLEM SET 6 MATH 118 PROBLEM SET 6 WASEEM LUTFI, GABRIEL MATSON, AND AMY PIRCHER Section 1 #16: Show tht if is qudrtic residue modulo m, nd b 1 (mod m, then b is lso qudrtic residue Then rove tht the roduct of the

More information

Cryptography CS 555. Topic 20: Other Public Key Encryption Schemes. CS555 Topic 20 1

Cryptography CS 555. Topic 20: Other Public Key Encryption Schemes. CS555 Topic 20 1 Cryptography CS 555 Topic 20: Other Public Key Encryption Schemes Topic 20 1 Outline and Readings Outline Quadratic Residue Rabin encryption Goldwasser-Micali Commutative encryption Homomorphic encryption

More information

1.6 Congruence Modulo m

1.6 Congruence Modulo m 1.6 Congruence Modulo m 47 5. Let a, b 2 N and p be a prime. Prove for all natural numbers n 1, if p n (ab) and p - a, then p n b. 6. In the proof of Theorem 1.5.6 it was stated that if n is a prime number

More information

Primitive Roots. Chapter Orders and Primitive Roots

Primitive Roots. Chapter Orders and Primitive Roots Chapter 5 Primitive Roots The name primitive root applies to a number a whose powers can be used to represent a reduced residue system modulo n. Primitive roots are therefore generators in that sense,

More information

Low Complexity Tail-Biting Trellises for Some Extremal Self-Dual Codes

Low Complexity Tail-Biting Trellises for Some Extremal Self-Dual Codes Low Comlexity Tail-Biting Trellises for Some Extremal Self-Dual Codes Grégory Olocco, Ayoub Otmani To cite this version: Grégory Olocco, Ayoub Otmani. Low Comlexity Tail-Biting Trellises for Some Extremal

More information

p 1 MAX(a,b) + MIN(a,b) = a+b n m means that m is a an integer multiple of n. Greatest Common Divisor: We say that n divides m.

p 1 MAX(a,b) + MIN(a,b) = a+b n m means that m is a an integer multiple of n. Greatest Common Divisor: We say that n divides m. Great Theoretical Ideas In Computer Science Steven Rudich CS - Spring Lecture Feb, Carnegie Mellon University Modular Arithmetic and the RSA Cryptosystem p- p MAX(a,b) + MIN(a,b) = a+b n m means that m

More information

Discrete Math Class 4 ( )

Discrete Math Class 4 ( ) Discrete Math 37110 - Class 4 (2016-10-06) 41 Division vs congruences Instructor: László Babai Notes taken by Jacob Burroughs Revised by instructor DO 41 If m ab and gcd(a, m) = 1, then m b DO 42 If gcd(a,

More information

CHAPTER 2. Modular Arithmetic

CHAPTER 2. Modular Arithmetic CHAPTER 2 Modular Arithmetic In studying the integers we have seen that is useful to write a = qb + r. Often we can solve problems by considering only the remainder, r. This throws away some of the information,

More information

A REMARK ON A PAPER OF LUCA AND WALSH 1. Zhao-Jun Li Department of Mathematics, Anhui Normal University, Wuhu, China. Min Tang 2.

A REMARK ON A PAPER OF LUCA AND WALSH 1. Zhao-Jun Li Department of Mathematics, Anhui Normal University, Wuhu, China. Min Tang 2. #A40 INTEGERS 11 (2011) A REMARK ON A PAPER OF LUCA AND WALSH 1 Zhao-Jun Li Department of Mathematics, Anhui Normal University, Wuhu, China Min Tang 2 Department of Mathematics, Anhui Normal University,

More information

Computational Complexity of Generalized Push Fight

Computational Complexity of Generalized Push Fight Comutational Comlexity of Generalized Push Fight Jeffrey Bosboom Erik D. Demaine Mikhail Rudoy Abstract We analyze the comutational comlexity of otimally laying the two-layer board game Push Fight, generalized

More information

by Michael Filaseta University of South Carolina

by Michael Filaseta University of South Carolina by Michael Filaseta University of South Carolina Background: A covering of the integers is a system of congruences x a j (mod m j, j =, 2,..., r, with a j and m j integral and with m j, such that every

More information

Modular Arithmetic: refresher.

Modular Arithmetic: refresher. Lecture 7. Outline. 1. Modular Arithmetic. Clock Math!!! 2. Inverses for Modular Arithmetic: Greatest Common Divisor. Division!!! 3. Euclid s GCD Algorithm. A little tricky here! Clock Math If it is 1:00

More information

Static Program Analysis

Static Program Analysis Static Program Analysis Lecture 21: Shae Analysis & Final Remarks Thomas Noll Software Modeling and Verification Grou RWTH Aachen University htts://moves.rwth-aachen.de/teaching/ws-1617/sa/ Reca: Pointer

More information

Two congruences involving 4-cores

Two congruences involving 4-cores Two congruences involving 4-cores ABSTRACT. The goal of this paper is to prove two new congruences involving 4- cores using elementary techniques; namely, if a 4 (n) denotes the number of 4-cores of n,

More information

Number Theory - Divisibility Number Theory - Congruences. Number Theory. June 23, Number Theory

Number Theory - Divisibility Number Theory - Congruences. Number Theory. June 23, Number Theory - Divisibility - Congruences June 23, 2014 Primes - Divisibility - Congruences Definition A positive integer p is prime if p 2 and its only positive factors are itself and 1. Otherwise, if p 2, then p

More information

Solution: Alice tosses a coin and conveys the result to Bob. Problem: Alice can choose any result.

Solution: Alice tosses a coin and conveys the result to Bob. Problem: Alice can choose any result. Example - Coin Toss Coin Toss: Alice and Bob want to toss a coin. Easy to do when they are in the same room. How can they toss a coin over the phone? Mutual Commitments Solution: Alice tosses a coin and

More information

ON MODULI FOR WHICH THE FIBONACCI SEQUENCE CONTAINS A COMPLETE SYSTEM OF RESIDUES S. A. BURR Belt Telephone Laboratories, Inc., Whippany, New Jersey

ON MODULI FOR WHICH THE FIBONACCI SEQUENCE CONTAINS A COMPLETE SYSTEM OF RESIDUES S. A. BURR Belt Telephone Laboratories, Inc., Whippany, New Jersey ON MODULI FOR WHICH THE FIBONACCI SEQUENCE CONTAINS A COMPLETE SYSTEM OF RESIDUES S. A. BURR Belt Telephone Laboratories, Inc., Whippany, New Jersey Shah [1] and Bruckner [2] have considered the problem

More information

Escaping from a Labyrinth with One-way Roads for Limited Robots

Escaping from a Labyrinth with One-way Roads for Limited Robots 1 Escaing from a Labyrinth with One-way Roads for Limited Robots Bernd Brüggemann Tom Kamhans Elmar Langetee FKIE, FGAN e.v., Bonn, Germany Institute of Comuter Science I, University of Bonn, Bonn, Germany

More information

The congruence relation has many similarities to equality. The following theorem says that congruence, like equality, is an equivalence relation.

The congruence relation has many similarities to equality. The following theorem says that congruence, like equality, is an equivalence relation. Congruences A congruence is a statement about divisibility. It is a notation that simplifies reasoning about divisibility. It suggests proofs by its analogy to equations. Congruences are familiar to us

More information

Degree project NUMBER OF PERIODIC POINTS OF CONGRUENTIAL MONOMIAL DYNAMICAL SYSTEMS

Degree project NUMBER OF PERIODIC POINTS OF CONGRUENTIAL MONOMIAL DYNAMICAL SYSTEMS Degree project NUMBER OF PERIODIC POINTS OF CONGRUENTIAL MONOMIAL DYNAMICAL SYSTEMS Author: MD.HASIRUL ISLAM NAZIR BASHIR Supervisor: MARCUS NILSSON Date: 2012-06-15 Subject: Mathematics and Modeling Level:

More information

Discrete Mathematics & Mathematical Reasoning Multiplicative Inverses and Some Cryptography

Discrete Mathematics & Mathematical Reasoning Multiplicative Inverses and Some Cryptography Discrete Mathematics & Mathematical Reasoning Multiplicative Inverses and Some Cryptography Colin Stirling Informatics Some slides based on ones by Myrto Arapinis Colin Stirling (Informatics) Discrete

More information

Introduction to Modular Arithmetic

Introduction to Modular Arithmetic 1 Integers modulo n 1.1 Preliminaries Introduction to Modular Arithmetic Definition 1.1.1 (Equivalence relation). Let R be a relation on the set A. Recall that a relation R is a subset of the cartesian

More information

DUBLIN CITY UNIVERSITY

DUBLIN CITY UNIVERSITY DUBLIN CITY UNIVERSITY SEMESTER ONE EXAMINATIONS 2013 MODULE: (Title & Code) CA642 Cryptography and Number Theory COURSE: M.Sc. in Security and Forensic Computing YEAR: 1 EXAMINERS: (Including Telephone

More information

PT. Primarity Tests Given an natural number n, we want to determine if n is a prime number.

PT. Primarity Tests Given an natural number n, we want to determine if n is a prime number. PT. Primarity Tests Given an natural number n, we want to determine if n is a prime number. (PT.1) If a number m of the form m = 2 n 1, where n N, is a Mersenne number. If a Mersenne number m is also a

More information

Chapter 4 Cyclotomic Cosets, the Mattson Solomon Polynomial, Idempotents and Cyclic Codes

Chapter 4 Cyclotomic Cosets, the Mattson Solomon Polynomial, Idempotents and Cyclic Codes Chapter 4 Cyclotomic Cosets, the Mattson Solomon Polynomial, Idempotents and Cyclic Codes 4.1 Introduction Much of the pioneering research on cyclic codes was carried out by Prange [5]inthe 1950s and considerably

More information

SQUARING THE MAGIC SQUARES OF ORDER 4

SQUARING THE MAGIC SQUARES OF ORDER 4 Journal of lgebra Number Theory: dvances and lications Volume 7 Number Pages -6 SQURING THE MGIC SQURES OF ORDER STEFNO BRBERO UMBERTO CERRUTI and NDIR MURRU Deartment of Mathematics University of Turin

More information

Zhanjiang , People s Republic of China

Zhanjiang , People s Republic of China Math. Comp. 78(2009), no. 267, 1853 1866. COVERS OF THE INTEGERS WITH ODD MODULI AND THEIR APPLICATIONS TO THE FORMS x m 2 n AND x 2 F 3n /2 Ke-Jian Wu 1 and Zhi-Wei Sun 2, 1 Department of Mathematics,

More information

Public Key Cryptography Great Ideas in Theoretical Computer Science Saarland University, Summer 2014

Public Key Cryptography Great Ideas in Theoretical Computer Science Saarland University, Summer 2014 7 Public Key Cryptography Great Ideas in Theoretical Computer Science Saarland University, Summer 2014 Cryptography studies techniques for secure communication in the presence of third parties. A typical

More information

Algorithmic Number Theory and Cryptography (CS 303)

Algorithmic Number Theory and Cryptography (CS 303) Algorithmic Number Theory and Cryptography (CS 303) Modular Arithmetic Jeremy R. Johnson 1 Introduction Objective: To become familiar with modular arithmetic and some key algorithmic constructions that

More information

Congruence properties of the binary partition function

Congruence properties of the binary partition function Congruence properties of the binary partition function 1. Introduction. We denote by b(n) the number of binary partitions of n, that is the number of partitions of n as the sum of powers of 2. As usual,

More information

Carmen s Core Concepts (Math 135)

Carmen s Core Concepts (Math 135) Carmen s Core Concepts (Math 135) Carmen Bruni University of Waterloo Week 7 1 Congruence Definition 2 Congruence is an Equivalence Relation (CER) 3 Properties of Congruence (PC) 4 Example 5 Congruences

More information

Modular Arithmetic. claserken. July 2016

Modular Arithmetic. claserken. July 2016 Modular Arithmetic claserken July 2016 Contents 1 Introduction 2 2 Modular Arithmetic 2 2.1 Modular Arithmetic Terminology.................. 2 2.2 Properties of Modular Arithmetic.................. 2 2.3

More information

RESIDUE NUMBER SYSTEM. (introduction to hardware aspects) Dr. Danila Gorodecky

RESIDUE NUMBER SYSTEM. (introduction to hardware aspects) Dr. Danila Gorodecky RESIDUE NUMBER SYSTEM (introduction to hardware asects) Dr. Danila Gorodecky danila.gorodecky@gmail.com Terminology Residue number system (RNS) (refers to Chinese remainder theorem) Residue numeral system

More information

Modular arithmetic Math 2320

Modular arithmetic Math 2320 Modular arithmetic Math 220 Fix an integer m 2, called the modulus. For any other integer a, we can use the division algorithm to write a = qm + r. The reduction of a modulo m is the remainder r resulting

More information

Groups, Modular Arithmetic and Geometry

Groups, Modular Arithmetic and Geometry Groups, Modular Arithmetic and Geometry Pupil Booklet 2012 The Maths Zone www.themathszone.co.uk Modular Arithmetic Modular arithmetic was developed by Euler and then Gauss in the late 18th century and

More information

MA/CSSE 473 Day 9. The algorithm (modified) N 1

MA/CSSE 473 Day 9. The algorithm (modified) N 1 MA/CSSE 473 Day 9 Primality Testing Encryption Intro The algorithm (modified) To test N for primality Pick positive integers a 1, a 2,, a k < N at random For each a i, check for a N 1 i 1 (mod N) Use the

More information

Solutions for the Practice Questions

Solutions for the Practice Questions Solutions for the Practice Questions Question 1. Find all solutions to the congruence 13x 12 (mod 35). Also, answer the following questions about the solutions to the above congruence. Are there solutions

More information

Public-Key Cryptosystem Based on Composite Degree Residuosity Classes. Paillier Cryptosystem. Harmeet Singh

Public-Key Cryptosystem Based on Composite Degree Residuosity Classes. Paillier Cryptosystem. Harmeet Singh Public-Key Cryptosystem Based on Composite Degree Residuosity Classes aka Paillier Cryptosystem Harmeet Singh Harmeet Singh Winter 2018 1 / 26 Background s Background Foundation of public-key encryption

More information

Number Theory. Konkreetne Matemaatika

Number Theory. Konkreetne Matemaatika ITT9131 Number Theory Konkreetne Matemaatika Chapter Four Divisibility Primes Prime examples Factorial Factors Relative primality `MOD': the Congruence Relation Independent Residues Additional Applications

More information

Basic Communication Operations (cont.) Alexandre David B2-206

Basic Communication Operations (cont.) Alexandre David B2-206 Basic Communication Oerations (cont.) Alexandre David B-06 Today Scatter and Gather (4.4). All-to-All Personalized Communication (4.5). Circular Shift (4.6). Imroving the Seed of Some Communication Oerations

More information

Algorithmic Number Theory and Cryptography (CS 303)

Algorithmic Number Theory and Cryptography (CS 303) Algorithmic Number Theory and Cryptography (CS 303) Modular Arithmetic and the RSA Public Key Cryptosystem Jeremy R. Johnson 1 Introduction Objective: To understand what a public key cryptosystem is and

More information

Math 412: Number Theory Lecture 6: congruence system and

Math 412: Number Theory Lecture 6: congruence system and Math 412: Number Theory Lecture 6: congruence system and classes Gexin Yu gyu@wm.edu College of William and Mary Chinese Remainder Theorem Chinese Remainder Theorem: let m 1, m 2,..., m k be pairwise coprimes.

More information

Introduction. and Z r1 Z rn. This lecture aims to provide techniques. CRT during the decription process in RSA is explained.

Introduction. and Z r1 Z rn. This lecture aims to provide techniques. CRT during the decription process in RSA is explained. THE CHINESE REMAINDER THEOREM INTRODUCED IN A GENERAL KONTEXT Introduction The rst Chinese problem in indeterminate analysis is encountered in a book written by the Chinese mathematician Sun Tzi. The problem

More information

Solutions for the Practice Final

Solutions for the Practice Final Solutions for the Practice Final 1. Ian and Nai play the game of todo, where at each stage one of them flips a coin and then rolls a die. The person who played gets as many points as the number rolled

More information

x 8 (mod 15) x 8 3 (mod 5) eli 2 2y 6 (mod 10) y 3 (mod 5) 6x 9 (mod 11) y 3 (mod 11) So y = 3z + 3u + 3w (mod 990) z = (990/9) (990/9) 1

x 8 (mod 15) x 8 3 (mod 5) eli 2 2y 6 (mod 10) y 3 (mod 5) 6x 9 (mod 11) y 3 (mod 11) So y = 3z + 3u + 3w (mod 990) z = (990/9) (990/9) 1 Exercise help set 6/2011 Number Theory 1. x 2 0 (mod 2) x 2 (mod 6) x 2 (mod 3) a) x 5 (mod 7) x 5 (mod 7) x 8 (mod 15) x 8 3 (mod 5) (x 8 2 (mod 3)) So x 0y + 2z + 5w + 8u (mod 210). y is not needed.

More information

SOLUTIONS FOR PROBLEM SET 4

SOLUTIONS FOR PROBLEM SET 4 SOLUTIONS FOR PROBLEM SET 4 A. A certain integer a gives a remainder of 1 when divided by 2. What can you say about the remainder that a gives when divided by 8? SOLUTION. Let r be the remainder that a

More information

BAND SURGERY ON KNOTS AND LINKS, III

BAND SURGERY ON KNOTS AND LINKS, III BAND SURGERY ON KNOTS AND LINKS, III TAIZO KANENOBU Abstract. We give two criteria of links concerning a band surgery: The first one is a condition on the determinants of links which are related by a band

More information

Math 319 Problem Set #7 Solution 18 April 2002

Math 319 Problem Set #7 Solution 18 April 2002 Math 319 Problem Set #7 Solution 18 April 2002 1. ( 2.4, problem 9) Show that if x 2 1 (mod m) and x / ±1 (mod m) then 1 < (x 1, m) < m and 1 < (x + 1, m) < m. Proof: From x 2 1 (mod m) we get m (x 2 1).

More information

Diffie-Hellman key-exchange protocol

Diffie-Hellman key-exchange protocol Diffie-Hellman key-exchange protocol This protocol allows two users to choose a common secret key, for DES or AES, say, while communicating over an insecure channel (with eavesdroppers). The two users

More information

ON THE EQUATION a x x (mod b) Jam Germain

ON THE EQUATION a x x (mod b) Jam Germain ON THE EQUATION a (mod b) Jam Germain Abstract. Recently Jimenez and Yebra [3] constructed, for any given a and b, solutions to the title equation. Moreover they showed how these can be lifted to higher

More information

#A3 INTEGERS 17 (2017) A NEW CONSTRAINT ON PERFECT CUBOIDS. Thomas A. Plick

#A3 INTEGERS 17 (2017) A NEW CONSTRAINT ON PERFECT CUBOIDS. Thomas A. Plick #A3 INTEGERS 17 (2017) A NEW CONSTRAINT ON PERFECT CUBOIDS Thomas A. Plick tomplick@gmail.com Received: 10/5/14, Revised: 9/17/16, Accepted: 1/23/17, Published: 2/13/17 Abstract We show that out of the

More information

Final exam. Question Points Score. Total: 150

Final exam. Question Points Score. Total: 150 MATH 11200/20 Final exam DECEMBER 9, 2016 ALAN CHANG Please present your solutions clearly and in an organized way Answer the questions in the space provided on the question sheets If you run out of room

More information

Fermat s little theorem. RSA.

Fermat s little theorem. RSA. .. Computing large numbers modulo n (a) In modulo arithmetic, you can always reduce a large number to its remainder a a rem n (mod n). (b) Addition, subtraction, and multiplication preserve congruence:

More information

ALGEBRA: Chapter I: QUESTION BANK

ALGEBRA: Chapter I: QUESTION BANK 1 ALGEBRA: Chapter I: QUESTION BANK Elements of Number Theory Congruence One mark questions: 1 Define divisibility 2 If a b then prove that a kb k Z 3 If a b b c then PT a/c 4 If a b are two non zero integers

More information

Math 127: Equivalence Relations

Math 127: Equivalence Relations Math 127: Equivalence Relations Mary Radcliffe 1 Equivalence Relations Relations can take many forms in mathematics. In these notes, we focus especially on equivalence relations, but there are many other

More information

Sheet 1: Introduction to prime numbers.

Sheet 1: Introduction to prime numbers. Option A Hand in at least one question from at least three sheets Sheet 1: Introduction to prime numbers. [provisional date for handing in: class 2.] 1. Use Sieve of Eratosthenes to find all prime numbers

More information

Lecture 8. Outline. 1. Modular Arithmetic. Clock Math!!! 2. Inverses for Modular Arithmetic: Greatest Common Divisor. 3. Euclid s GCD Algorithm

Lecture 8. Outline. 1. Modular Arithmetic. Clock Math!!! 2. Inverses for Modular Arithmetic: Greatest Common Divisor. 3. Euclid s GCD Algorithm Lecture 8. Outline. 1. Modular Arithmetic. Clock Math!!! 2. Inverses for Modular Arithmetic: Greatest Common Divisor. 3. Euclid s GCD Algorithm Clock Math If it is 1:00 now. What time is it in 5 hours?

More information

University of British Columbia. Math 312, Midterm, 6th of June 2017

University of British Columbia. Math 312, Midterm, 6th of June 2017 University of British Columbia Math 312, Midterm, 6th of June 2017 Name (please be legible) Signature Student number Duration: 90 minutes INSTRUCTIONS This test has 7 problems for a total of 100 points.

More information

EE 418: Network Security and Cryptography

EE 418: Network Security and Cryptography EE 418: Network Security and Cryptography Homework 3 Solutions Assigned: Wednesday, November 2, 2016, Due: Thursday, November 10, 2016 Instructor: Tamara Bonaci Department of Electrical Engineering University

More information

SESAME Modular Arithmetic. MurphyKate Montee. March 2018 IN,Z, We think numbers should satisfy certain rules, which we call axioms:

SESAME Modular Arithmetic. MurphyKate Montee. March 2018 IN,Z, We think numbers should satisfy certain rules, which we call axioms: SESAME Modular Arithmetic MurphyKate Montee March 08 What is a Number? Examples of Number Systems: We think numbers should satisfy certain rules which we call axioms: Commutivity Associativity 3 Existence

More information

ON SPLITTING UP PILES OF STONES

ON SPLITTING UP PILES OF STONES ON SPLITTING UP PILES OF STONES GREGORY IGUSA Abstract. In this paper, I describe the rules of a game, and give a complete description of when the game can be won, and when it cannot be won. The first

More information

Constructions of Coverings of the Integers: Exploring an Erdős Problem

Constructions of Coverings of the Integers: Exploring an Erdős Problem Constructions of Coverings of the Integers: Exploring an Erdős Problem Kelly Bickel, Michael Firrisa, Juan Ortiz, and Kristen Pueschel August 20, 2008 Abstract In this paper, we study necessary conditions

More information

CMPSCI 250: Introduction to Computation. Lecture #14: The Chinese Remainder Theorem David Mix Barrington 24 February 2012

CMPSCI 250: Introduction to Computation. Lecture #14: The Chinese Remainder Theorem David Mix Barrington 24 February 2012 CMPSCI 250: Introduction to Computation Lecture #14: The Chinese Remainder Theorem David Mix Barrington 24 February 2012 The Chinese Remainder Theorem Infinitely Many Primes Reviewing Inverses and the

More information

Math 255 Spring 2017 Solving x 2 a (mod n)

Math 255 Spring 2017 Solving x 2 a (mod n) Math 255 Spring 2017 Solving x 2 a (mod n) Contents 1 Lifting 1 2 Solving x 2 a (mod p k ) for p odd 3 3 Solving x 2 a (mod 2 k ) 5 4 Solving x 2 a (mod n) for general n 9 1 Lifting Definition 1.1. Let

More information

Data security (Cryptography) exercise book

Data security (Cryptography) exercise book University of Debrecen Faculty of Informatics Data security (Cryptography) exercise book 1 Contents 1 RSA 4 1.1 RSA in general.................................. 4 1.2 RSA background.................................

More information

Arithmetic Properties of Combinatorial Quantities

Arithmetic Properties of Combinatorial Quantities A tal given at the National Center for Theoretical Sciences (Hsinchu, Taiwan; August 4, 2010 Arithmetic Properties of Combinatorial Quantities Zhi-Wei Sun Nanjing University Nanjing 210093, P. R. China

More information