# COUNTING AND PROBABILITY

Size: px
Start display at page:

Transcription

1 CHAPTER 9 COUNTING AND PROBABILITY It s as easy as That s the saying. And in certain ways, counting is easy. But other aspects of counting aren t so simple. Have you ever agreed to meet a friend in three days and then realized that you and your friend might mean different things? For example, on the European continent, to meet in eight days means to meet on the same day as today one week hence; on the other hand, in English-speaking countries, to meet in seven days means to meet one week hence. The difference is that on the continent, all days including the first and the last are counted. In the English-speaking world, it s the number of 24-hour periods that are counted. Continental countries Sun Mon Tue Wed Thu Fri Sat Sun }{{}}{{}}{{}}{{}}{{}}{{}}{{} English-speaking countries The English convention for counting days follows the almost universal convention for counting hours. If it is 9 A.M. and two people anywhere in the world agree to meet in three hours, they mean that they will get back together again at 12 noon. Musical intervals, on the other hand, are universally reckoned the way the Continentals count the days of a week. An interval of a third consists of two tones with a single tone in between, and an interval of a second consists of two adjacent tones. (See Figure ) C E C D Interval of a third Interval of a second Figure Of course, the complicating factor in all these examples is not how to count but rather what to count. And, indeed, in the more complex mathematical counting problems discussed in this chapter, it is what to count that is the central issue. Once one knows exactly what to count, the counting itself is as easy as Reprinted by permission of UFS, Inc. 516

3 518 Chapter 9 Counting and Probability Definition A sample space is the set of all possible outcomes of a random process or experiment. An event is a subset of a sample space. In case an experiment has finitely many outcomes and all outcomes are equally likely to occur, the probability of an event (set of outcomes) is just the ratio of the number of outcomes in the event to the total number of outcomes. Strictly speaking, this result can be deduced from a set of axioms for probability formulated in 1933 by the Russian mathematician A. N. Kolmogorov. In Section 9.8 we discuss the axioms and show how to derive their consequences formally. At present, we take a naïve approach to probability and simply state the result as a principle. Equally Likely Probability Formula If S is a finite sample space in which all outcomes are equally likely and E is an event in S, then the probability of E, denoted P(E), is P(E) = the number of outcomes in E the total number of outcomes in S. Notation For any finite set A, N(A) denotes the number of elements in A. With this notation, the equally likely probability formula becomes P(E) = N(E) N(S). Example Probabilities for a Deck of Cards An ordinary deck of cards contains 52 cards divided into four suits. The red suits are diamonds ( ) and hearts ( ) and the black suits are clubs ( ) and spades ( ). Each suit contains 13 cards of the following denominations: 2, 3, 4, 5, 6, 7, 8, 9, 10, J (jack), Q (queen), K (king), and A (ace). The cards J, Q, and K are called face cards. Mathematician Persi Diaconis, working with David Aldous in 1986 and Dave Bayer in 1992, showed that seven shuffles are needed to thoroughly mix up the cards in an ordinary deck. In 2000 mathematician Nick Trefethen, working with his father, Lloyd Trefethen, a mechanical engineer, used a somewhat different definition of thoroughly mix up to show that six shuffles will nearly always suffice. Imagine that the cards in a deck have become by some method so thoroughly mixed up that if you spread them out face down and pick one at random, you are as likely to get any one card as any other. a. What is the sample space of outcomes? b. What is the event that the chosen card is a black face card? c. What is the probability that the chosen card is a black face card?

4 9.1 Introduction 519 Solution a. The outcomes in the sample space S are the 52 cards in the deck. b. Let E be the event that a black face card is chosen. The outcomes in E are the jack, queen, and king of clubs and the jack, queen, and king of spades. Symbolically, E ={J, Q, K, J, Q, K }. c. By part (b), N(E) = 6, and according to the description of the situation, all 52 outcomes in the sample space are equally likely. Therefore, by the equally likely probability formula, the probability that the chosen card is a black face card is P(E) = N(E) N(S) = 6 52 = 11.5%. Example Rolling a Pair of Dice A die is one of a pair of dice. It is a cube with six sides, each containing from one to six dots, called pips. Suppose a blue die and a gray die are rolled together, and the numbers of dots that occur face up on each are recorded. The possible outcomes can be listed as follows, where in each case the die on the left is blue and the one on the right is gray. A more compact notation identifies, say, with the notation 24, with 53, and so forth. a. Use the compact notation to write the sample space S of possible outcomes. b. Use set notation to write the event E that the numbers showing face up have a sum of 6 and find the probability of this event. Solution a. S ={11, 12, 13, 14, 15, 16, 21, 22, 23, 24, 25, 26, 31, 32, 33, 34, 35, 36, 41, 42, 43, 44, 45, 46, 51, 52, 53, 54, 55, 56, 61, 62, 63, 64, 65, 66}. b. E ={15, 24, 33, 42, 51}. The probability that the sum of the numbers is 6 = P(E) = N(E) N(S) = The next example is called the Monty Hall problem after the host of an old game show, Let s Make A Deal. When it was originally publicized in a newspaper column and on a radio show, it created tremendous controversy. Many highly educated people, even some with Ph.D. s, submitted incorrect solutions or argued vociferously against the correct solution. Before you read the answer, think about what your own response to the situation would be.

6 9.1 Introduction 521 More generally, if m and n are integers and m n, how many integers are there from m through n? To answer this question, note that n = m + (n m), where n m 0 [since n m]. Note also that the element m + 0 is the first element of the list, the element m + 1 is the second element, the element m + 2 is the third, and so forth. In general, the element m + i is the (i + 1)st element of the list. list: m(= m + 0) m + 1 m n (= m + (n m)) count: (n m) + 1 And so the number of elements in the list is n m + 1. This general result is important enough to be restated as a theorem, the formal proof of which uses mathematical induction. (See exercise 28 at the end of this section.) The heart of the proof is the observation that if the list m, m + 1,...,k has k m + 1 numbers, then the list m, m + 1,...,k, k + 1 has (k m + 1) + 1 = (k + 1) m + 1 numbers. Theorem The Number of Elements in a List If m and n are integers and m n, then there are n m + 1 integers from m to n inclusive. Example Counting the Elements of a Sublist a. How many three-digit integers (integers from 100 to 999 inclusive) are divisible by 5? b. What is the probability that a randomly chosen three-digit integer is divisible by 5? Solution a. Imagine writing the three-digit integers in a row, noting those that are multiples of 5 and drawing arrows between each such integer and its corresponding multiple of From the sketch it is clear that there are as many three-digit integers that are multiples of 5 as there are integers from 20 to 199 inclusive. By Theorem 9.1.1, there are , or 180, such integers. Hence there are 180 three-digit integers that are divisible by 5. b. By Theorem the total number of integers from 100 through 999 is = 900. By part (a), 180 of these are divisible by 5. Hence the probability that a randomly chosen three-digit integer is divisible by 5 is 180/900 = 1/5. Example Application: Counting Elements of a One-Dimensional Array Analysis of many computer algorithms requires skill at counting the elements of a one-dimensional array. Let A[1], A[2],..., A[n] be a one-dimensional array, where n is a positive integer. a. Suppose the array is cut at a middle value A[m] so that two subarrays are formed: (1) A[1], A[2],...,A[m] and (2) A[m + 1], A[m + 2],...,A[n]. How many elements does each subarray have? b. What is the probability that a randomly chosen element of the array has an even subscript (i) if n is even? (ii) if n is odd?

7 522 Chapter 9 Counting and Probability Solution a. Array (1) has the same number of elements as the list of integers from 1 through m.so by Theorem 9.1.1, it has m, orm 1 + 1, elements. Array (2) has the same number of elements as the list of integers from m + 1 through n. So by Theorem 9.1.1, it has n m,orn (m + 1) + 1, elements. b. (i) If n is even, each even subscript starting with 2 and ending with n can be matched up with an integer from 1 to n/ n n/2 So there are n/2 array elements with even subscripts. Since the entire array has n elements, the probability that a randomly chosen element has an even subscript is n/2 n = 1 2. (ii) If n is odd, then the greatest even subscript of the array is n 1. So there are as many even subscripts between 1 and n as there are from 2 through n 1. Then the reasoning of (i) can be used to conclude that there are (n 1)/2 array elements with even subscripts. Test Yourself n 1 n (n 1)/2 Since the entire array has n elements, the probability that a randomly chosen (n 1)/2 element has an even subscript is = n 1. Observe that as n gets larger n 2n and larger, this probability gets closer and closer to 1/2. Note that the answers to (i) and (ii) can be combined using the floor notation. By Theorem 4.5.2, the number of array elements with even subscripts is n/2, so the probability that a randomly chosen element has an even subscript is n/2. n Answers to Test Yourself questions are located at the end of each section. 1. A sample space of a random process or experiment is. 2. An event in a sample space is. 3. To compute the probability of an event using the equally likely probability formula, you take the ratio of the to the. 4. If m n, the number of integers from m to n inclusive is.

9 524 Chapter 9 Counting and Probability c. Consider the event that two of the colors that appear face up are the same. One outcome in this event is RRB and another is RBR. List all outcomes in the event. What is the probability of the event? 17. Consider the situation described in exercise 16. a. Find the probability of the event that exactly one of the colors that appears face up is red. b. Find the probability of the event that at least one of the colors that appears face up is red. 18. An urn contains two blue balls (denoted B 1 and B 2 )and one white ball (denoted W ). One ball is drawn, its color is recorded, and it is replaced in the urn. Then another ball is drawn, and its color is recorded. a. Let B 1 W denote the outcome that the first ball drawn is B 1 and the second ball drawn is W. Because the first ball is replaced before the second ball is drawn, the outcomes of the experiment are equally likely. List all nine possible outcomes of the experiment. b. Consider the event that the two balls that are drawn are both blue. List all outcomes in the event. What is the probability of the event? c. Consider the event that the two balls that are drawn are of different colors. List all outcomes in the event. What is the probability of the event? 19. An urn contains two blue balls (denoted B 1 and B 2 )and three white balls (denoted W 1, W 2,andW 3 ). One ball is drawn, its color is recorded, and it is replaced in the urn. Then another ball is drawn and its color is recorded. a. Let B 1 W 2 denote the outcome that the first ball drawn is B 1 and the second ball drawn is W 2. Because the first ball is replaced before the second ball is drawn, the outcomes of the experiment are equally likely. List all 25 possible outcomes of the experiment. b. Consider the event that the first ball that is drawn is blue. List all outcomes in the event. What is the probability of the event? c. Consider the event that only white balls are drawn. List all outcomes in the event. What is the probability of the event? 20. Refer to Example Suppose you are appearing on a game show with a prize behind one of five closed doors: A, B, C, D, ande. If you pick the right door, you win the prize. You pick door A. The game show host then opens one of the other doors and reveals that there is no prize behind it. Then the host gives you the option of staying with your original choice of door A or switching to one of the other doors that is still closed. a. If you stick with your original choice, what is the probability that you will win the prize? b. If you switch to another door, what is the probability that you will win the prize? 21. a. How many positive two-digit integers are multiples of 3? b. What is the probability that a randomly chosen positive two-digit integer is a multiple of 3? c. What is the probability that a randomly chosen positive two-digit integer is a multiple of 4? 22. a. How many positive three-digit integers are multiples of 6? b. What is the probability that a randomly chosen positive three-digit integer is a multiple of 6? c. What is the probability that a randomly chosen positive three-digit integer is a multiple of 7? 23. Suppose A[1], A[2], A[3],..., A[n] is a one-dimensional array and n 50. a. How many elements are in the array? b. How many elements are in the subarray A[4], A[5],...,A[39]? c. If 3 m n, what is the probability that a randomly chosen array element is in the subarray A[3], A[4],...,A[m]? d. What is the probability that a randomly chosen array element is in the subarray shown below if n = 39? A[ n/2 ], A[ n/2 +1],..., A[n] 24. Suppose A[1], A[2],..., A[n] is a one-dimensional array and n 2. Consider the subarray A[1], A[2],...,A[ n/2 ]. a. How many elements are in the subarray (i) if n is even? and (ii) if n is odd? b. What is the probability that a randomly chosen array element is in the subarray (i) if n is even? and (ii) if n is odd? 25. Suppose A[1], A[2],..., A[n] is a one-dimensional array and n 2. Consider the subarray A[ n/2 ], A[ n/2 +1],...,A[n]. a. How many elements are in the subarray (i) if n is even? and (ii) if n is odd? b. What is the probability that a randomly chosen array element is in the subarray (i) if n is even? and (ii) if n is odd? 26. What is the 27th element in the one-dimensional array A[42], A[43],...,A[100]? 27. What is the 62nd element in the one-dimensional array B[29], B[30],...,B[100]? 28. If the largest of 56 consecutive integers is 279, what is the smallest? 29. If the largest of 87 consecutive integers is 326, what is the smallest? 30. How many even integers are between 1 and 1,001? 31. How many integers that are multiples of 3 are between 1 and 1,001? 32. A certain non-leap year has 365 days, and January 1 occurs on a Monday. a. How many Sundays are in the year? b. How many Mondays are in the year? 33. Prove Theorem (Let m be any integer and prove the theorem by mathematical induction on n.)

### Counting. 9.1 Basics of Probability and Counting

Mustafa Jarrar: Lecture Notes in Discrete Mamatics. irzeit University Palestine 2015 Counting 9.1 asics of Probability and Counting 9.2 Possibility Trees and Multiplication Rule 9.3 Counting Elements of

### Section Summary. Finite Probability Probabilities of Complements and Unions of Events Probabilistic Reasoning

Section 7.1 Section Summary Finite Probability Probabilities of Complements and Unions of Events Probabilistic Reasoning Probability of an Event Pierre-Simon Laplace (1749-1827) We first study Pierre-Simon

### Math 1313 Section 6.2 Definition of Probability

Math 1313 Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability

### Date. Probability. Chapter

Date Probability Contests, lotteries, and games offer the chance to win just about anything. You can win a cup of coffee. Even better, you can win cars, houses, vacations, or millions of dollars. Games

### 4.1 Sample Spaces and Events

4.1 Sample Spaces and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment is called an

### I. WHAT IS PROBABILITY?

C HAPTER 3 PROAILITY Random Experiments I. WHAT IS PROAILITY? The weatherman on 10 o clock news program states that there is a 20% chance that it will snow tomorrow, a 65% chance that it will rain and

### CHAPTER 7 Probability

CHAPTER 7 Probability 7.1. Sets A set is a well-defined collection of distinct objects. Welldefined means that we can determine whether an object is an element of a set or not. Distinct means that we can

### CSC/MTH 231 Discrete Structures II Spring, Homework 5

CSC/MTH 231 Discrete Structures II Spring, 2010 Homework 5 Name 1. A six sided die D (with sides numbered 1, 2, 3, 4, 5, 6) is thrown once. a. What is the probability that a 3 is thrown? b. What is the

### Diamond ( ) (Black coloured) (Black coloured) (Red coloured) ILLUSTRATIVE EXAMPLES

CHAPTER 15 PROBABILITY Points to Remember : 1. In the experimental approach to probability, we find the probability of the occurence of an event by actually performing the experiment a number of times

### Chapter 1. Probability

Chapter 1. Probability 1.1 Basic Concepts Scientific method a. For a given problem, we define measures that explains the problem well. b. Data is collected with observation and the measures are calculated.

### The next several lectures will be concerned with probability theory. We will aim to make sense of statements such as the following:

CS 70 Discrete Mathematics for CS Fall 2004 Rao Lecture 14 Introduction to Probability The next several lectures will be concerned with probability theory. We will aim to make sense of statements such

### 7.1 Experiments, Sample Spaces, and Events

7.1 Experiments, Sample Spaces, and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment

### The topic for the third and final major portion of the course is Probability. We will aim to make sense of statements such as the following:

CS 70 Discrete Mathematics for CS Spring 2006 Vazirani Lecture 17 Introduction to Probability The topic for the third and final major portion of the course is Probability. We will aim to make sense of

### Intermediate Math Circles November 1, 2017 Probability I

Intermediate Math Circles November 1, 2017 Probability I Probability is the study of uncertain events or outcomes. Games of chance that involve rolling dice or dealing cards are one obvious area of application.

### Key Concepts. Theoretical Probability. Terminology. Lesson 11-1

Key Concepts Theoretical Probability Lesson - Objective Teach students the terminology used in probability theory, and how to make calculations pertaining to experiments where all outcomes are equally

### Junior Circle Meeting 5 Probability. May 2, ii. In an actual experiment, can one get a different number of heads when flipping a coin 100 times?

Junior Circle Meeting 5 Probability May 2, 2010 1. We have a standard coin with one side that we call heads (H) and one side that we call tails (T). a. Let s say that we flip this coin 100 times. i. How

### Probability and Counting Techniques

Probability and Counting Techniques Diana Pell (Multiplication Principle) Suppose that a task consists of t choices performed consecutively. Suppose that choice 1 can be performed in m 1 ways; for each

### Unit 9: Probability Assignments

Unit 9: Probability Assignments #1: Basic Probability In each of exercises 1 & 2, find the probability that the spinner shown would land on (a) red, (b) yellow, (c) blue. 1. 2. Y B B Y B R Y Y B R 3. Suppose

### Before giving a formal definition of probability, we explain some terms related to probability.

probability 22 INTRODUCTION In our day-to-day life, we come across statements such as: (i) It may rain today. (ii) Probably Rajesh will top his class. (iii) I doubt she will pass the test. (iv) It is unlikely

### Chapter 1. Probability

Chapter 1. Probability 1.1 Basic Concepts Scientific method a. For a given problem, we define measures that explains the problem well. b. Data is collected with observation and the measures are calculated.

### Name: Class: Date: 6. An event occurs, on average, every 6 out of 17 times during a simulation. The experimental probability of this event is 11

Class: Date: Sample Mastery # Multiple Choice Identify the choice that best completes the statement or answers the question.. One repetition of an experiment is known as a(n) random variable expected value

### RANDOM EXPERIMENTS AND EVENTS

Random Experiments and Events 18 RANDOM EXPERIMENTS AND EVENTS In day-to-day life we see that before commencement of a cricket match two captains go for a toss. Tossing of a coin is an activity and getting

### Probability. The MEnTe Program Math Enrichment through Technology. Title V East Los Angeles College

Probability The MEnTe Program Math Enrichment through Technology Title V East Los Angeles College 2003 East Los Angeles College. All rights reserved. Topics Introduction Empirical Probability Theoretical

### Class XII Chapter 13 Probability Maths. Exercise 13.1

Exercise 13.1 Question 1: Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E F) = 0.2, find P (E F) and P(F E). It is given that P(E) = 0.6, P(F) = 0.3, and P(E F) = 0.2 Question 2:

### TEST A CHAPTER 11, PROBABILITY

TEST A CHAPTER 11, PROBABILITY 1. Two fair dice are rolled. Find the probability that the sum turning up is 9, given that the first die turns up an even number. 2. Two fair dice are rolled. Find the probability

### Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 13

CS 70 Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 13 Introduction to Discrete Probability In the last note we considered the probabilistic experiment where we flipped a

### The study of probability is concerned with the likelihood of events occurring. Many situations can be analyzed using a simplified model of probability

The study of probability is concerned with the likelihood of events occurring Like combinatorics, the origins of probability theory can be traced back to the study of gambling games Still a popular branch

### Here are two situations involving chance:

Obstacle Courses 1. Introduction. Here are two situations involving chance: (i) Someone rolls a die three times. (People usually roll dice in pairs, so dice is more common than die, the singular form.)

### CSE 312: Foundations of Computing II Quiz Section #2: Inclusion-Exclusion, Pigeonhole, Introduction to Probability (solutions)

CSE 31: Foundations of Computing II Quiz Section #: Inclusion-Exclusion, Pigeonhole, Introduction to Probability (solutions) Review: Main Theorems and Concepts Binomial Theorem: x, y R, n N: (x + y) n

### The probability set-up

CHAPTER 2 The probability set-up 2.1. Introduction and basic theory We will have a sample space, denoted S (sometimes Ω) that consists of all possible outcomes. For example, if we roll two dice, the sample

### Counting and Probability

Counting and Probability Lecture 42 Section 9.1 Robb T. Koether Hampden-Sydney College Wed, Apr 9, 2014 Robb T. Koether (Hampden-Sydney College) Counting and Probability Wed, Apr 9, 2014 1 / 17 1 Probability

### STAT 430/510 Probability Lecture 3: Space and Event; Sample Spaces with Equally Likely Outcomes

STAT 430/510 Probability Lecture 3: Space and Event; Sample Spaces with Equally Likely Outcomes Pengyuan (Penelope) Wang May 25, 2011 Review We have discussed counting techniques in Chapter 1. (Principle

### Grade 6 Math Circles Fall Oct 14/15 Probability

1 Faculty of Mathematics Waterloo, Ontario Centre for Education in Mathematics and Computing Grade 6 Math Circles Fall 2014 - Oct 14/15 Probability Probability is the likelihood of an event occurring.

### 3 The multiplication rule/miscellaneous counting problems

Practice for Exam 1 1 Axioms of probability, disjoint and independent events 1 Suppose P (A 0, P (B 05 (a If A and B are independent, what is P (A B? What is P (A B? (b If A and B are disjoint, what is

### The probability set-up

CHAPTER The probability set-up.1. Introduction and basic theory We will have a sample space, denoted S sometimes Ω that consists of all possible outcomes. For example, if we roll two dice, the sample space

### PROBABILITY Case of cards

WORKSHEET NO--1 PROBABILITY Case of cards WORKSHEET NO--2 Case of two die Case of coins WORKSHEET NO--3 1) Fill in the blanks: A. The probability of an impossible event is B. The probability of a sure

### STANDARD COMPETENCY : 1. To use the statistics rules, the rules of counting, and the characteristic of probability in problem solving.

Worksheet 4 th Topic : PROBABILITY TIME : 4 X 45 minutes STANDARD COMPETENCY : 1. To use the statistics rules, the rules of counting, and the characteristic of probability in problem solving. BASIC COMPETENCY:

### Week 1: Probability models and counting

Week 1: Probability models and counting Part 1: Probability model Probability theory is the mathematical toolbox to describe phenomena or experiments where randomness occur. To have a probability model

### Page 1 of 22. Website: Mobile:

Exercise 15.1 Question 1: Complete the following statements: (i) Probability of an event E + Probability of the event not E =. (ii) The probability of an event that cannot happen is. Such as event is called.

### Most of the time we deal with theoretical probability. Experimental probability uses actual data that has been collected.

AFM Unit 7 Day 3 Notes Theoretical vs. Experimental Probability Name Date Definitions: Experiment: process that gives a definite result Outcomes: results Sample space: set of all possible outcomes Event:

### 3 The multiplication rule/miscellaneous counting problems

Practice for Exam 1 1 Axioms of probability, disjoint and independent events 1. Suppose P (A) = 0.4, P (B) = 0.5. (a) If A and B are independent, what is P (A B)? What is P (A B)? (b) If A and B are disjoint,

### 1. The chance of getting a flush in a 5-card poker hand is about 2 in 1000.

CS 70 Discrete Mathematics for CS Spring 2008 David Wagner Note 15 Introduction to Discrete Probability Probability theory has its origins in gambling analyzing card games, dice, roulette wheels. Today

### Solutions for the Practice Final

Solutions for the Practice Final 1. Ian and Nai play the game of todo, where at each stage one of them flips a coin and then rolls a die. The person who played gets as many points as the number rolled

### Functional Skills Mathematics

Functional Skills Mathematics Level Learning Resource Probability D/L. Contents Independent Events D/L. Page - Combined Events D/L. Page - 9 West Nottinghamshire College D/L. Information Independent Events

### Chapter 4: Introduction to Probability

MTH 243 Chapter 4: Introduction to Probability Suppose that we found that one of our pieces of data was unusual. For example suppose our pack of M&M s only had 30 and that was 3.1 standard deviations below

### Probability. Dr. Zhang Fordham Univ.

Probability! Dr. Zhang Fordham Univ. 1 Probability: outline Introduction! Experiment, event, sample space! Probability of events! Calculate Probability! Through counting! Sum rule and general sum rule!

### Chapter 8: Probability: The Mathematics of Chance

Chapter 8: Probability: The Mathematics of Chance Free-Response 1. A spinner with regions numbered 1 to 4 is spun and a coin is tossed. Both the number spun and whether the coin lands heads or tails is

### Contents 2.1 Basic Concepts of Probability Methods of Assigning Probabilities Principle of Counting - Permutation and Combination 39

CHAPTER 2 PROBABILITY Contents 2.1 Basic Concepts of Probability 38 2.2 Probability of an Event 39 2.3 Methods of Assigning Probabilities 39 2.4 Principle of Counting - Permutation and Combination 39 2.5

### Rosen, Discrete Mathematics and Its Applications, 6th edition Extra Examples

Rosen, Discrete Mathematics and Its Applications, 6th edition Extra Examples Section 6.1 An Introduction to Discrete Probability Page references correspond to locations of Extra Examples icons in the textbook.

### MATH 215 DISCRETE MATHEMATICS INSTRUCTOR: P. WENG

MATH DISCRETE MATHEMATICS INSTRUCTOR: P. WENG Counting and Probability Suggested Problems Basic Counting Skills, Inclusion-Exclusion, and Complement. (a An office building contains 7 floors and has 7 offices

### Probability and the Monty Hall Problem Rong Huang January 10, 2016

Probability and the Monty Hall Problem Rong Huang January 10, 2016 Warm-up: There is a sequence of number: 1, 2, 4, 8, 16, 32, 64, How does this sequence work? How do you get the next number from the previous

### Probability and Counting Rules. Chapter 3

Probability and Counting Rules Chapter 3 Probability as a general concept can be defined as the chance of an event occurring. Many people are familiar with probability from observing or playing games of

### Such a description is the basis for a probability model. Here is the basic vocabulary we use.

5.2.1 Probability Models When we toss a coin, we can t know the outcome in advance. What do we know? We are willing to say that the outcome will be either heads or tails. We believe that each of these

### Probability. Ms. Weinstein Probability & Statistics

Probability Ms. Weinstein Probability & Statistics Definitions Sample Space The sample space, S, of a random phenomenon is the set of all possible outcomes. Event An event is a set of outcomes of a random

### Discrete Structures for Computer Science

Discrete Structures for Computer Science William Garrison bill@cs.pitt.edu 6311 Sennott Square Lecture #23: Discrete Probability Based on materials developed by Dr. Adam Lee The study of probability is

### Essential Question How can you list the possible outcomes in the sample space of an experiment?

. TEXAS ESSENTIAL KNOWLEDGE AND SKILLS G..B Sample Spaces and Probability Essential Question How can you list the possible outcomes in the sample space of an experiment? The sample space of an experiment

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Study Guide for Test III (MATH 1630) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the number of subsets of the set. 1) {x x is an even

### Section : Combinations and Permutations

Section 11.1-11.2: Combinations and Permutations Diana Pell A construction crew has three members. A team of two must be chosen for a particular job. In how many ways can the team be chosen? How many words

### Section Introduction to Sets

Section 1.1 - Introduction to Sets Definition: A set is a well-defined collection of objects usually denoted by uppercase letters. Definition: The elements, or members, of a set are denoted by lowercase

### CSE 312: Foundations of Computing II Quiz Section #2: Inclusion-Exclusion, Pigeonhole, Introduction to Probability

CSE 312: Foundations of Computing II Quiz Section #2: Inclusion-Exclusion, Pigeonhole, Introduction to Probability Review: Main Theorems and Concepts Binomial Theorem: Principle of Inclusion-Exclusion

### Review. Natural Numbers: Whole Numbers: Integers: Rational Numbers: Outline Sec Comparing Rational Numbers

FOUNDATIONS Outline Sec. 3-1 Gallo Name: Date: Review Natural Numbers: Whole Numbers: Integers: Rational Numbers: Comparing Rational Numbers Fractions: A way of representing a division of a whole into

### Chapter 11: Probability and Counting Techniques

Chapter 11: Probability and Counting Techniques Diana Pell Section 11.3: Basic Concepts of Probability Definition 1. A sample space is a set of all possible outcomes of an experiment. Exercise 1. An experiment

### 18.S34 (FALL, 2007) PROBLEMS ON PROBABILITY

18.S34 (FALL, 2007) PROBLEMS ON PROBABILITY 1. Three closed boxes lie on a table. One box (you don t know which) contains a \$1000 bill. The others are empty. After paying an entry fee, you play the following

### Probability. March 06, J. Boulton MDM 4U1. P(A) = n(a) n(s) Introductory Probability

Most people think they understand odds and probability. Do you? Decision 1: Pick a card Decision 2: Switch or don't Outcomes: Make a tree diagram Do you think you understand probability? Probability Write

### Chapter 2. Permutations and Combinations

2. Permutations and Combinations Chapter 2. Permutations and Combinations In this chapter, we define sets and count the objects in them. Example Let S be the set of students in this classroom today. Find

### Chapter 5 - Elementary Probability Theory

Chapter 5 - Elementary Probability Theory Historical Background Much of the early work in probability concerned games and gambling. One of the first to apply probability to matters other than gambling

### Fundamentals of Probability

Fundamentals of Probability Introduction Probability is the likelihood that an event will occur under a set of given conditions. The probability of an event occurring has a value between 0 and 1. An impossible

### PROBABILITY Introduction

PROBABILITY 295 PROBABILITY 15 The theory of probabilities and the theory of errors now constitute a formidable body of great mathematical interest and of great practical importance. 15.1 Introduction

### A Probability Work Sheet

A Probability Work Sheet October 19, 2006 Introduction: Rolling a Die Suppose Geoff is given a fair six-sided die, which he rolls. What are the chances he rolls a six? In order to solve this problem, we

### 12 Probability. Introduction Randomness

2 Probability Assessment statements 5.2 Concepts of trial, outcome, equally likely outcomes, sample space (U) and event. The probability of an event A as P(A) 5 n(a)/n(u ). The complementary events as

### This Probability Packet Belongs to:

This Probability Packet Belongs to: 1 2 Station #1: M & M s 1. What is the sample space of your bag of M&M s? 2. Find the theoretical probability of the M&M s in your bag. Then, place the candy back into

### PROBABILITY. 1. Introduction. Candidates should able to:

PROBABILITY Candidates should able to: evaluate probabilities in simple cases by means of enumeration of equiprobable elementary events (e.g for the total score when two fair dice are thrown), or by calculation

### Conditional Probability Worksheet

Conditional Probability Worksheet EXAMPLE 4. Drug Testing and Conditional Probability Suppose that a company claims it has a test that is 95% effective in determining whether an athlete is using a steroid.

### Theory of Probability - Brett Bernstein

Theory of Probability - Brett Bernstein Lecture 3 Finishing Basic Probability Review Exercises 1. Model flipping two fair coins using a sample space and a probability measure. Compute the probability of

### Probability - Chapter 4

Probability - Chapter 4 In this chapter, you will learn about probability its meaning, how it is computed, and how to evaluate it in terms of the likelihood of an event actually happening. A cynical person

### Raise your hand if you rode a bus within the past month. Record the number of raised hands.

166 CHAPTER 3 PROBABILITY TOPICS Raise your hand if you rode a bus within the past month. Record the number of raised hands. Raise your hand if you answered "yes" to BOTH of the first two questions. Record

### Probability Rules. 2) The probability, P, of any event ranges from which of the following?

Name: WORKSHEET : Date: Answer the following questions. 1) Probability of event E occurring is... P(E) = Number of ways to get E/Total number of outcomes possible in S, the sample space....if. 2) The probability,

### Chapter 5: Probability: What are the Chances? Section 5.2 Probability Rules

+ Chapter 5: Probability: What are the Chances? Section 5.2 + Two-Way Tables and Probability When finding probabilities involving two events, a two-way table can display the sample space in a way that

### Combinatorics: The Fine Art of Counting

Combinatorics: The Fine Art of Counting Week 6 Lecture Notes Discrete Probability Note Binomial coefficients are written horizontally. The symbol ~ is used to mean approximately equal. Introduction and

### Fdaytalk.com. Outcomes is probable results related to an experiment

EXPERIMENT: Experiment is Definite/Countable probable results Example: Tossing a coin Throwing a dice OUTCOMES: Outcomes is probable results related to an experiment Example: H, T Coin 1, 2, 3, 4, 5, 6

### Classical vs. Empirical Probability Activity

Name: Date: Hour : Classical vs. Empirical Probability Activity (100 Formative Points) For this activity, you will be taking part in 5 different probability experiments: Rolling dice, drawing cards, drawing

### 7.1 Chance Surprises, 7.2 Predicting the Future in an Uncertain World, 7.4 Down for the Count

7.1 Chance Surprises, 7.2 Predicting the Future in an Uncertain World, 7.4 Down for the Count Probability deals with predicting the outcome of future experiments in a quantitative way. The experiments

### Probability. The Bag Model

Probability The Bag Model Imagine a bag (or box) containing balls of various kinds having various colors for example. Assume that a certain fraction p of these balls are of type A. This means N = total

### Independent Events. 1. Given that the second baby is a girl, what is the. e.g. 2 The probability of bearing a boy baby is 2

Independent Events 7. Introduction Consider the following examples e.g. E throw a die twice A first thrown is "" second thrown is "" o find P( A) Solution: Since the occurrence of Udoes not dependu on

### Due Friday February 17th before noon in the TA drop box, basement, AP&M. HOMEWORK 3 : HAND IN ONLY QUESTIONS: 2, 4, 8, 11, 13, 15, 21, 24, 27

Exercise Sheet 3 jacques@ucsd.edu Due Friday February 17th before noon in the TA drop box, basement, AP&M. HOMEWORK 3 : HAND IN ONLY QUESTIONS: 2, 4, 8, 11, 13, 15, 21, 24, 27 1. A six-sided die is tossed.

### Unit 7 Central Tendency and Probability

Name: Block: 7.1 Central Tendency 7.2 Introduction to Probability 7.3 Independent Events 7.4 Dependent Events 7.1 Central Tendency A central tendency is a central or value in a data set. We will look at

### Section 6.1 #16. Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

Section 6.1 #16 What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit? page 1 Section 6.1 #38 Two events E 1 and E 2 are called independent if p(e 1

### CHAPTER 9 - COUNTING PRINCIPLES AND PROBABILITY

CHAPTER 9 - COUNTING PRINCIPLES AND PROBABILITY Probability is the Probability is used in many real-world fields, such as insurance, medical research, law enforcement, and political science. Objectives:

### Chapter 1: Sets and Probability

Chapter 1: Sets and Probability Section 1.3-1.5 Recap: Sample Spaces and Events An is an activity that has observable results. An is the result of an experiment. Example 1 Examples of experiments: Flipping

### Probability. Chapter-13

Chapter-3 Probability The definition of probability was given b Pierre Simon Laplace in 795 J.Cardan, an Italian physician and mathematician wrote the first book on probability named the book of games

### 1. How to identify the sample space of a probability experiment and how to identify simple events

Statistics Chapter 3 Name: 3.1 Basic Concepts of Probability Learning objectives: 1. How to identify the sample space of a probability experiment and how to identify simple events 2. How to use the Fundamental

### Probability Exercise 2

Probability Exercise 2 1 Question 9 A box contains 5 red marbles, 8 white marbles and 4 green marbles. One marble is taken out of the box at random. What is the probability that the marble taken out will

### Probability MAT230. Fall Discrete Mathematics. MAT230 (Discrete Math) Probability Fall / 37

Probability MAT230 Discrete Mathematics Fall 2018 MAT230 (Discrete Math) Probability Fall 2018 1 / 37 Outline 1 Discrete Probability 2 Sum and Product Rules for Probability 3 Expected Value MAT230 (Discrete

### If a regular six-sided die is rolled, the possible outcomes can be listed as {1, 2, 3, 4, 5, 6} there are 6 outcomes.

Section 11.1: The Counting Principle 1. Combinatorics is the study of counting the different outcomes of some task. For example If a coin is flipped, the side facing upward will be a head or a tail the

### Chapter-wise questions. Probability. 1. Two coins are tossed simultaneously. Find the probability of getting exactly one tail.

Probability 1. Two coins are tossed simultaneously. Find the probability of getting exactly one tail. 2. 26 cards marked with English letters A to Z (one letter on each card) are shuffled well. If one

### 2.5 Sample Spaces Having Equally Likely Outcomes

Sample Spaces Having Equally Likely Outcomes 3 Sample Spaces Having Equally Likely Outcomes Recall that we had a simple example (fair dice) before on equally-likely sample spaces Since they will appear

### Conditional Probability Worksheet

Conditional Probability Worksheet P( A and B) P(A B) = P( B) Exercises 3-6, compute the conditional probabilities P( AB) and P( B A ) 3. P A = 0.7, P B = 0.4, P A B = 0.25 4. P A = 0.45, P B = 0.8, P A