# Developed by Rashmi Kathuria. She can be reached at

Size: px
Start display at page:

Transcription

1 Developed by Rashmi Kathuria. She can be reached at

2 Photocopiable Activity 1: Step by step Topic Nature of task Content coverage Learning objectives Task Duration Arithmetic progression (AP) Remedial n th term of AP To enhance the skill to find the n th term of AP Worksheet with hints Individual need based Problem: Find the n th term of AP: 2, 4, 6, 8 Write the first term, a = 2 Find a common difference d = 2 (d = second term first term) Now n th term, t n = a + (n-1) d = 2 + (n-1)2 = Now, find the n th term of 1, 3, 5, 7 Note: Add more questions as per the need. 52 TEACHER PLUS, NOVEMBER 2011

3 Activity 2: Fact sheet Topic Nature of task Content coverage Learning objectives Task Duration Probability Remedial A deck of cards To enhance problem solving skills using a pack of cards Creating a fact sheet on playing cards Individual need based Fact sheet on a pack of cards 1. There are a total of 52 cards in a pack 2. 2 colours red and black red cards, 26 black cards 4. 4 suits spade, diamond, club, heart spade cards (A, 1, 2, 3,., Jack, Queen, King) diamond cards (A, 1, 2, 3,... Jack, Queen, King) club cards (A, 1, 2, 3,...Jack, Queen, King) heart cards (A, 1, 2, 3,...Jack, Queen, King) face cards - (4 Jacks, 4 Queens, 4 Kings) 10. Number cards 40 After studying the pack of cards attempt to answer the following questions: A card is drawn from a well shuffled deck of cards. Find the probability of drawing 1. a spade card 6. a face card 11. a clubs card or a king 2. a red card 7. a number card 12. a clubs card and a king 3. a king 8. a jack of clubs 13. a queen of red suit 4. a black king 9. a non red card 14. a red face card 5. neither a king nor a queen 10. a 6 or an a red number card Now remove the kings and queens from the deck of cards. A card is drawn at random. Find the probability of drawing the following: 1. a spade card 6. a non red card 2. a red card 7. a 6 or an 8 3. a face card 8. a clubs card or a king 4. a number card 9. a queen of red suit 5. a jack of clubs 10. a red face card TEACHER PLUS, NOVEMBER

4 Photocopiable Activity 3: Mind map Topic Nature of task Content coverage Learning objectives Task Duration Probability Remedial Complete chapter To improve a student s problem solving capacity in probability Using a mind map Individual need based This is a mind map on probability Answer the following questions: i. Write the number of total possible outcomes for the following Experiment Total possible outcomes Tossing a coin Tossing a pair of coins Tossing 3 coins Rolling a pair of dice ii. A pair of dice are rolled. Find the probability of the following: a) Getting the sum of 7 b) Getting a sum greater than 7 c) Getting a sum less than 7... d) Getting an even number on both dice e) Getting the same number on both dice.. 54 TEACHER PLUS, NOVEMBER 2011

5 Activity 4: Find the error In the following solved problems, find the error and correct it in the space provided. TEACHER PLUS, NOVEMBER

6 Photocopiable 56 TEACHER PLUS, NOVEMBER 2011

7 Activity 5: Word collage Using the given words, write the statement for the fundamental theorem of arithmetic. Write important theorems and results on triangle using the given words. TEACHER PLUS, NOVEMBER

8 Photocopiable Activity 6: Practice sheet Students often get confused with the concept of types of numbers in grade 9 and 10. Following is an example for recognizing types of numbers. Put a tick or cross for each category that applies to a given number in each row. S.No. Number Real Rational Irrational Integer Whole Natural π/ / ½ π/4 Practice sheet on graph of a pair of linear equations in two variables Given below is a graph representing a pair of linear equations in two variables. x+y=4, 3x-2y=12 Observe the following carefully... The given two lines intersect at (4, 0) which is the solution of the given pair of linear equations in two variables. Coordinates of points where lines cut the x and y axis are A (0, 4) and C(0, -6) Vertices of triangle formed by the given lines and y-axis are A(0, 4), B(4, 0) and C(0, -6) The area of Δ ABC = ½(10 x 4) = 20 square units Given below is the graph representing a pair of linear equations in two variables x-y=4, x-2y=4 Given below is a graph representing pair of linear equations in two variables x-y=2, x+y=4. 1. What are the coordinates of points where two lines meet the x-axis? 2. What are the coordinates of points where two lines meet the y-axis? 3. What is the solution of the given pair of equations? Read from graph. 4. What is the area of triangle formed by the given lines and x-axis? 5. What is the area of triangle formed by the given lines and y-axis? 58 TEACHER PLUS, NOVEMBER 2011

### PROBABILITY Case of cards

WORKSHEET NO--1 PROBABILITY Case of cards WORKSHEET NO--2 Case of two die Case of coins WORKSHEET NO--3 1) Fill in the blanks: A. The probability of an impossible event is B. The probability of a sure

### Classical vs. Empirical Probability Activity

Name: Date: Hour : Classical vs. Empirical Probability Activity (100 Formative Points) For this activity, you will be taking part in 5 different probability experiments: Rolling dice, drawing cards, drawing

### Venn Diagram Problems

Venn Diagram Problems 1. In a mums & toddlers group, 15 mums have a daughter, 12 mums have a son. a) Julia says 15 + 12 = 27 so there must be 27 mums altogether. Explain why she could be wrong: b) There

### ABC High School, Kathmandu, Nepal. Topic : Probability

BC High School, athmandu, Nepal Topic : Probability Grade 0 Teacher: Shyam Prasad charya. Objective of the Module: t the end of this lesson, students will be able to define and say formula of. define Mutually

### Lesson 3 Dependent and Independent Events

Lesson 3 Dependent and Independent Events When working with 2 separate events, we must first consider if the first event affects the second event. Situation 1 Situation 2 Drawing two cards from a deck

### Chapter-wise questions. Probability. 1. Two coins are tossed simultaneously. Find the probability of getting exactly one tail.

Probability 1. Two coins are tossed simultaneously. Find the probability of getting exactly one tail. 2. 26 cards marked with English letters A to Z (one letter on each card) are shuffled well. If one

### Key Concepts. Theoretical Probability. Terminology. Lesson 11-1

Key Concepts Theoretical Probability Lesson - Objective Teach students the terminology used in probability theory, and how to make calculations pertaining to experiments where all outcomes are equally

### If you roll a die, what is the probability you get a four OR a five? What is the General Education Statistics

If you roll a die, what is the probability you get a four OR a five? What is the General Education Statistics probability that you get neither? Class Notes The Addition Rule (for OR events) and Complements

### CMPSCI 240: Reasoning Under Uncertainty First Midterm Exam

CMPSCI 240: Reasoning Under Uncertainty First Midterm Exam February 18, 2015. Name: ID: Instructions: Answer the questions directly on the exam pages. Show all your work for each question. Providing more

### Such a description is the basis for a probability model. Here is the basic vocabulary we use.

5.2.1 Probability Models When we toss a coin, we can t know the outcome in advance. What do we know? We are willing to say that the outcome will be either heads or tails. We believe that each of these

### Diamond ( ) (Black coloured) (Black coloured) (Red coloured) ILLUSTRATIVE EXAMPLES

CHAPTER 15 PROBABILITY Points to Remember : 1. In the experimental approach to probability, we find the probability of the occurence of an event by actually performing the experiment a number of times

### Conditional Probability Worksheet

Conditional Probability Worksheet P( A and B) P(A B) = P( B) Exercises 3-6, compute the conditional probabilities P( AB) and P( B A ) 3. P A = 0.7, P B = 0.4, P A B = 0.25 4. P A = 0.45, P B = 0.8, P A

### 7.1 Experiments, Sample Spaces, and Events

7.1 Experiments, Sample Spaces, and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment

### STANDARD COMPETENCY : 1. To use the statistics rules, the rules of counting, and the characteristic of probability in problem solving.

Worksheet 4 th Topic : PROBABILITY TIME : 4 X 45 minutes STANDARD COMPETENCY : 1. To use the statistics rules, the rules of counting, and the characteristic of probability in problem solving. BASIC COMPETENCY:

### DISCUSSION #8 FRIDAY MAY 25 TH Sophie Engle (Teacher Assistant) ECS20: Discrete Mathematics

DISCUSSION #8 FRIDAY MAY 25 TH 2007 Sophie Engle (Teacher Assistant) ECS20: Discrete Mathematics 2 Homework 8 Hints and Examples 3 Section 5.4 Binomial Coefficients Binomial Theorem 4 Example: j j n n

### Introduction to probability

Introduction to probability Suppose an experiment has a finite set X = {x 1,x 2,...,x n } of n possible outcomes. Each time the experiment is performed exactly one on the n outcomes happens. Assign each

### ATHS FC Math Department Al Ain Remedial worksheet. Lesson 10.4 (Ellipses)

ATHS FC Math Department Al Ain Remedial worksheet Section Name ID Date Lesson Marks Lesson 10.4 (Ellipses) 10.4, 10.5, 0.4, 0.5 and 0.6 Intervention Plan Page 1 of 19 Gr 12 core c 2 = a 2 b 2 Question

### Probability Simulation User s Manual

Probability Simulation User s Manual Documentation of features and usage for Probability Simulation Copyright 2000 Corey Taylor and Rusty Wagner 1 Table of Contents 1. General Setup 3 2. Coin Section 4

### When combined events A and B are independent:

A Resource for ree-standing Mathematics Qualifications A or B Mutually exclusive means that A and B cannot both happen at the same time. Venn Diagram showing mutually exclusive events: Aces The events

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

6. Practice Problems Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the probability. ) A bag contains red marbles, blue marbles, and 8

### More Probability: Poker Hands and some issues in Counting

More Probability: Poker Hands and some issues in Counting Data From Thursday Everybody flipped a pair of coins and recorded how many times they got two heads, two tails, or one of each. We saw that the

### Chapter 16. Probability. For important terms and definitions refer NCERT text book. (6) NCERT text book page 386 question no.

Chapter 16 Probability For important terms and definitions refer NCERT text book. Type- I Concept : sample space (1)NCERT text book page 386 question no. 1 (*) (2) NCERT text book page 386 question no.

### UNIT 4 APPLICATIONS OF PROBABILITY Lesson 1: Events. Instruction. Guided Practice Example 1

Guided Practice Example 1 Bobbi tosses a coin 3 times. What is the probability that she gets exactly 2 heads? Write your answer as a fraction, as a decimal, and as a percent. Sample space = {HHH, HHT,

### Grade 10 Mean, Mode and Median

ID : ae-10-mean-mode-and-median [1] Grade 10 Mean, Mode and Median For more such worksheets visit www.edugain.com Answer the questions (1) A poll is taken among 10000 people working in a town. The aim

### Here are two situations involving chance:

Obstacle Courses 1. Introduction. Here are two situations involving chance: (i) Someone rolls a die three times. (People usually roll dice in pairs, so dice is more common than die, the singular form.)

### Conditional Probability Worksheet

Conditional Probability Worksheet EXAMPLE 4. Drug Testing and Conditional Probability Suppose that a company claims it has a test that is 95% effective in determining whether an athlete is using a steroid.

### Activity 1: Play comparison games involving fractions, decimals and/or integers.

Students will be able to: Lesson Fractions, Decimals, Percents and Integers. Play comparison games involving fractions, decimals and/or integers,. Complete percent increase and decrease problems, and.

### MC215: MATHEMATICAL REASONING AND DISCRETE STRUCTURES

MC215: MATHEMATICAL REASONING AND DISCRETE STRUCTURES Thursday, 4/17/14 The Addition Principle The Inclusion-Exclusion Principle The Pigeonhole Principle Reading: [J] 6.1, 6.8 [H] 3.5, 12.3 Exercises:

### Before giving a formal definition of probability, we explain some terms related to probability.

probability 22 INTRODUCTION In our day-to-day life, we come across statements such as: (i) It may rain today. (ii) Probably Rajesh will top his class. (iii) I doubt she will pass the test. (iv) It is unlikely

### Unit 9: Probability Assignments

Unit 9: Probability Assignments #1: Basic Probability In each of exercises 1 & 2, find the probability that the spinner shown would land on (a) red, (b) yellow, (c) blue. 1. 2. Y B B Y B R Y Y B R 3. Suppose

### Probability Exercise 2

Probability Exercise 2 1 Question 9 A box contains 5 red marbles, 8 white marbles and 4 green marbles. One marble is taken out of the box at random. What is the probability that the marble taken out will

### Math 1313 Section 6.2 Definition of Probability

Math 1313 Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability

### TEST A CHAPTER 11, PROBABILITY

TEST A CHAPTER 11, PROBABILITY 1. Two fair dice are rolled. Find the probability that the sum turning up is 9, given that the first die turns up an even number. 2. Two fair dice are rolled. Find the probability

### 4.1 Sample Spaces and Events

4.1 Sample Spaces and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment is called an

### Intermediate Math Circles November 1, 2017 Probability I

Intermediate Math Circles November 1, 2017 Probability I Probability is the study of uncertain events or outcomes. Games of chance that involve rolling dice or dealing cards are one obvious area of application.

### Mathematical Foundations HW 5 By 11:59pm, 12 Dec, 2015

1 Probability Axioms Let A,B,C be three arbitrary events. Find the probability of exactly one of these events occuring. Sample space S: {ABC, AB, AC, BC, A, B, C, }, and S = 8. P(A or B or C) = 3 8. note:

### Probability. The Bag Model

Probability The Bag Model Imagine a bag (or box) containing balls of various kinds having various colors for example. Assume that a certain fraction p of these balls are of type A. This means N = total

### Chapter 5: Probability: What are the Chances? Section 5.2 Probability Rules

+ Chapter 5: Probability: What are the Chances? Section 5.2 + Two-Way Tables and Probability When finding probabilities involving two events, a two-way table can display the sample space in a way that

### Math Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5.

Math 166 Spring 2007 c Heather Ramsey Page 1 Math 166 - Exam 2 Review NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Section 7.1 - Experiments, Sample Spaces,

### Math Exam 2 Review. NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5.

Math 166 Spring 2007 c Heather Ramsey Page 1 Math 166 - Exam 2 Review NOTE: For reviews of the other sections on Exam 2, refer to the first page of WIR #4 and #5. Section 7.1 - Experiments, Sample Spaces,

### Def: The intersection of A and B is the set of all elements common to both set A and set B

Def: Sample Space the set of all possible outcomes Def: Element an item in the set Ex: The number "3" is an element of the "rolling a die" sample space Main concept write in Interactive Notebook Intersection:

### Probability. Ms. Weinstein Probability & Statistics

Probability Ms. Weinstein Probability & Statistics Definitions Sample Space The sample space, S, of a random phenomenon is the set of all possible outcomes. Event An event is a set of outcomes of a random

### Section 5.4 Permutations and Combinations

Section 5.4 Permutations and Combinations Definition: n-factorial For any natural number n, n! n( n 1)( n 2) 3 2 1. 0! = 1 A combination of a set is arranging the elements of the set without regard to

### PROBABILITY. 1. Introduction. Candidates should able to:

PROBABILITY Candidates should able to: evaluate probabilities in simple cases by means of enumeration of equiprobable elementary events (e.g for the total score when two fair dice are thrown), or by calculation

### Whatcom County Math Championship 2017 Probability + Statistics 4 th Grade

Probability + Statistics 4 th Grade 1. nya has two spinners, with each space the same area. If she adds the result of both spinners, what is the probability that her answer will be even? Write the answer

### Section 5.4 Permutations and Combinations

Section 5.4 Permutations and Combinations Definition: n-factorial For any natural number n, n! = n( n 1)( n 2) 3 2 1. 0! = 1 A combination of a set is arranging the elements of the set without regard to

### Section 7.1 Experiments, Sample Spaces, and Events

Section 7.1 Experiments, Sample Spaces, and Events Experiments An experiment is an activity with observable results. 1. Which of the follow are experiments? (a) Going into a room and turning on a light.

### Chapter 8: Probability: The Mathematics of Chance

Chapter 8: Probability: The Mathematics of Chance Free-Response 1. A spinner with regions numbered 1 to 4 is spun and a coin is tossed. Both the number spun and whether the coin lands heads or tails is

### Counting integral solutions

Thought exercise 2.2 20 Counting integral solutions Question: How many non-negative integer solutions are there of x 1 +x 2 +x 3 +x 4 = 10? Thought exercise 2.2 20 Counting integral solutions Question:

### Simple Probability. Arthur White. 28th September 2016

Simple Probability Arthur White 28th September 2016 Probabilities are a mathematical way to describe an uncertain outcome. For eample, suppose a physicist disintegrates 10,000 atoms of an element A, and

### Date. Probability. Chapter

Date Probability Contests, lotteries, and games offer the chance to win just about anything. You can win a cup of coffee. Even better, you can win cars, houses, vacations, or millions of dollars. Games

### Unit 1 Day 1: Sample Spaces and Subsets. Define: Sample Space. Define: Intersection of two sets (A B) Define: Union of two sets (A B)

Unit 1 Day 1: Sample Spaces and Subsets Students will be able to (SWBAT) describe events as subsets of sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions,

### March 5, What is the area (in square units) of the region in the first quadrant defined by 18 x + y 20?

March 5, 007 1. We randomly select 4 prime numbers without replacement from the first 10 prime numbers. What is the probability that the sum of the four selected numbers is odd? (A) 0.1 (B) 0.30 (C) 0.36

### Class 10 Probability. Answer t he quest ions. For more such worksheets visit

ID : in-0-probability [] Class 0 Probability For more such worksheets visit www.edugain.com Answer t he quest ions () Rajesh is participating in a race. The probability that he will come f irst in the

### Poker: Probabilities of the Various Hands

Poker: Probabilities of the Various Hands 22 February 2012 Poker II 22 February 2012 1/27 Some Review from Monday There are 4 suits and 13 values. The suits are Spades Hearts Diamonds Clubs There are 13

### 4.3 Rules of Probability

4.3 Rules of Probability If a probability distribution is not uniform, to find the probability of a given event, add up the probabilities of all the individual outcomes that make up the event. Example:

### Name: Section: Date:

WORKSHEET 5: PROBABILITY Name: Section: Date: Answer the following problems and show computations on the blank spaces provided. 1. In a class there are 14 boys and 16 girls. What is the probability of

### Chapter 1: Sets and Probability

Chapter 1: Sets and Probability Section 1.3-1.5 Recap: Sample Spaces and Events An is an activity that has observable results. An is the result of an experiment. Example 1 Examples of experiments: Flipping

### 1. Eighty percent of eighty percent of a number is 144. What is the 1. number? 2. How many diagonals does a regular pentagon have? 2.

Blitz, Page 1 1. Eighty percent of eighty percent of a number is 144. What is the 1. number? 2. How many diagonals does a regular pentagon have? 2. diagonals 3. A tiny test consists of 3 multiple choice

### Important Distributions 7/17/2006

Important Distributions 7/17/2006 Discrete Uniform Distribution All outcomes of an experiment are equally likely. If X is a random variable which represents the outcome of an experiment of this type, then

### Grade 6 Math Circles Fall Oct 14/15 Probability

1 Faculty of Mathematics Waterloo, Ontario Centre for Education in Mathematics and Computing Grade 6 Math Circles Fall 2014 - Oct 14/15 Probability Probability is the likelihood of an event occurring.

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

More 9.-9.3 Practice Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Answer the question. ) In how many ways can you answer the questions on

### Probability is the likelihood that an event will occur.

Section 3.1 Basic Concepts of is the likelihood that an event will occur. In Chapters 3 and 4, we will discuss basic concepts of probability and find the probability of a given event occurring. Our main

### 13-6 Probabilities of Mutually Exclusive Events

Determine whether the events are mutually exclusive or not mutually exclusive. Explain your reasoning. 1. drawing a card from a standard deck and getting a jack or a club The jack of clubs is an outcome

### Review. Natural Numbers: Whole Numbers: Integers: Rational Numbers: Outline Sec Comparing Rational Numbers

FOUNDATIONS Outline Sec. 3-1 Gallo Name: Date: Review Natural Numbers: Whole Numbers: Integers: Rational Numbers: Comparing Rational Numbers Fractions: A way of representing a division of a whole into

### Section 7.3 and 7.4 Probability of Independent Events

Section 7.3 and 7.4 Probability of Independent Events Grade 7 Review Two or more events are independent when one event does not affect the outcome of the other event(s). For example, flipping a coin and

### (a) Suppose you flip a coin and roll a die. Are the events obtain a head and roll a 5 dependent or independent events?

Unit 6 Probability Name: Date: Hour: Multiplication Rule of Probability By the end of this lesson, you will be able to Understand Independence Use the Multiplication Rule for independent events Independent

### CSE 21: Midterm 1 Solution

CSE 21: Midterm 1 Solution August 16, 2007 No books, no calculators. Two double-sided 3x5 cards with handwritten notes allowed. Before starting the test, please write your test number on the top-right

### LC OL Probability. ARNMaths.weebly.com. As part of Leaving Certificate Ordinary Level Math you should be able to complete the following.

A Ryan LC OL Probability ARNMaths.weebly.com Learning Outcomes As part of Leaving Certificate Ordinary Level Math you should be able to complete the following. Counting List outcomes of an experiment Apply

### Chapter 1. Probability

Chapter 1. Probability 1.1 Basic Concepts Scientific method a. For a given problem, we define measures that explains the problem well. b. Data is collected with observation and the measures are calculated.

### ABE/ASE Standards Mathematics

[Lesson Title] TEACHER NAME PROGRAM NAME Program Information Playing the Odds [Unit Title] Data Analysis and Probability NRS EFL(s) 3 4 TIME FRAME 240 minutes (double lesson) ABE/ASE Standards Mathematics

### 3 The multiplication rule/miscellaneous counting problems

Practice for Exam 1 1 Axioms of probability, disjoint and independent events 1. Suppose P (A) = 0.4, P (B) = 0.5. (a) If A and B are independent, what is P (A B)? What is P (A B)? (b) If A and B are disjoint,

### Probability Assignment

Name Probability Assignment Student # Hr 1. An experiment consists of spinning the spinner one time. a. How many possible outcomes are there? b. List the sample space for the experiment. c. Determine the

### ECE 302 Homework Assignment 2 Solutions

ECE 302 Assignment 2 Solutions January 29, 2007 1 ECE 302 Homework Assignment 2 Solutions Note: To obtain credit for an answer, you must provide adequate justification. Also, if it is possible to obtain

### Dungeon Crawler Card Game

Dungeon Crawler Card Game Design by: Nadun J Players will choose a class at the start of the game. Hearts = Healer Spades = Warrior Diamond = Wizard Clubs = Trickster Once the classes have been chosen,

### 2. How many different three-member teams can be formed from six students?

KCATM 2011 Probability & Statistics 1. A fair coin is thrown in the air four times. If the coin lands with the head up on the first three tosses, what is the probability that the coin will land with the

### CBSE Sample Paper Class 10 Mathematicss

CBSE Sample Paper Class 10 Mathematicss 1] In the given figure, the respective values of y and x are 30 o and 45 o 60 o and 45 45 o and 60 o 60 o and 30 o 2] The next term of the given series would be

### Poker: Probabilities of the Various Hands

Poker: Probabilities of the Various Hands 19 February 2014 Poker II 19 February 2014 1/27 Some Review from Monday There are 4 suits and 13 values. The suits are Spades Hearts Diamonds Clubs There are 13

### Name: Class: Date: 6. An event occurs, on average, every 6 out of 17 times during a simulation. The experimental probability of this event is 11

Class: Date: Sample Mastery # Multiple Choice Identify the choice that best completes the statement or answers the question.. One repetition of an experiment is known as a(n) random variable expected value

### MATH 1115, Mathematics for Commerce WINTER 2011 Toby Kenney Homework Sheet 6 Model Solutions

MATH, Mathematics for Commerce WINTER 0 Toby Kenney Homework Sheet Model Solutions. A company has two machines for producing a product. The first machine produces defective products % of the time. The

### 8.2 Union, Intersection, and Complement of Events; Odds

8.2 Union, Intersection, and Complement of Events; Odds Since we defined an event as a subset of a sample space it is natural to consider set operations like union, intersection or complement in the context

### Fdaytalk.com. Outcomes is probable results related to an experiment

EXPERIMENT: Experiment is Definite/Countable probable results Example: Tossing a coin Throwing a dice OUTCOMES: Outcomes is probable results related to an experiment Example: H, T Coin 1, 2, 3, 4, 5, 6

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Practice for Final Exam Name Identify the following variable as either qualitative or quantitative and explain why. 1) The number of people on a jury A) Qualitative because it is not a measurement or a

### Textbook: pp Chapter 2: Probability Concepts and Applications

1 Textbook: pp. 39-80 Chapter 2: Probability Concepts and Applications 2 Learning Objectives After completing this chapter, students will be able to: Understand the basic foundations of probability analysis.

### Probability Test Review Math 2. a. What is? b. What is? c. ( ) d. ( )

Probability Test Review Math 2 Name 1. Use the following venn diagram to answer the question: Event A: Odd Numbers Event B: Numbers greater than 10 a. What is? b. What is? c. ( ) d. ( ) 2. In Jason's homeroom

### Independence Is The Word

Problem 1 Simulating Independent Events Describe two different events that are independent. Describe two different events that are not independent. The probability of obtaining a tail with a coin toss

### NATIONAL MATHS YEAR 8. Jim Wade Jack Mock

NATIONAL MATHS Jim Wade Jack Mock YEAR 8 04 First published 04 Private Bag 70 Marrickville NSW 475 Australia Tel: (0) 956 Fax: (0) 9550 95 sales@sciencepress.com.au www.sciencepress.com.au All rights reserved.

### Counting Methods and Probability

CHAPTER Counting Methods and Probability Many good basketball players can make 90% of their free throws. However, the likelihood of a player making several free throws in a row will be less than 90%. You

### Grade 8 Math Assignment: Probability

Grade 8 Math Assignment: Probability Part 1: Rock, Paper, Scissors - The Study of Chance Purpose An introduction of the basic information on probability and statistics Materials: Two sets of hands Paper

### 6) A) both; happy B) neither; not happy C) one; happy D) one; not happy

MATH 00 -- PRACTICE TEST 2 Millersville University, Spring 202 Ron Umble, Instr. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find all natural

### Class XII Chapter 13 Probability Maths. Exercise 13.1

Exercise 13.1 Question 1: Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E F) = 0.2, find P (E F) and P(F E). It is given that P(E) = 0.6, P(F) = 0.3, and P(E F) = 0.2 Question 2:

### Chapter 1. Probability

Chapter 1. Probability 1.1 Basic Concepts Scientific method a. For a given problem, we define measures that explains the problem well. b. Data is collected with observation and the measures are calculated.

### Discrete probability and the laws of chance

Chapter 8 Discrete probability and the laws of chance 8.1 Multiple Events and Combined Probabilities 1 Determine the probability of each of the following events assuming that the die has equal probability

### CHAPTER 8 Additional Probability Topics

CHAPTER 8 Additional Probability Topics 8.1. Conditional Probability Conditional probability arises in probability experiments when the person performing the experiment is given some extra information

### RANDOM EXPERIMENTS AND EVENTS

Random Experiments and Events 18 RANDOM EXPERIMENTS AND EVENTS In day-to-day life we see that before commencement of a cricket match two captains go for a toss. Tossing of a coin is an activity and getting

### Mathematics SAMPLE Confey College. Kildare

L.20 NAME SCHOOL TEACHER Pre-Leaving Certificate Examination, 2017 DEB Paper Exams 2 Higher Level 300 marks Time: 2 hours, 30 minutes Name/vers Printed: Checked: To: Updated: Name/vers Complete School

### Chapter 1 - Set Theory

Midterm review Math 3201 Name: Chapter 1 - Set Theory Part 1: Multiple Choice : 1) U = {hockey, basketball, golf, tennis, volleyball, soccer}. If B = {sports that use a ball}, which element would be in

### Define and Diagram Outcomes (Subsets) of the Sample Space (Universal Set)

12.3 and 12.4 Notes Geometry 1 Diagramming the Sample Space using Venn Diagrams A sample space represents all things that could occur for a given event. In set theory language this would be known as the