Divisibility. Igor Zelenko. SEE Math, August 13-14, 2012

Size: px
Start display at page:

Download "Divisibility. Igor Zelenko. SEE Math, August 13-14, 2012"

Transcription

1 Divisibility Igor Zelenko SEE Math, August 13-14, 2012

2 Before getting started Below is the list of problems and games I prepared for our activity. We will certainly solve/discuss/play only part of them and maybe in different order. It is recommended to continue to work at home on the problem we will not have time to discuss today.

3 Problem 1

4 Problem 1 In one kingdom there are only two kinds of coins: a coin of 9 cents and a coin of 15 cents. Can we get 70 cents using these coins?

5 Remark In general, given integer numbers a, b, and c, if the equation ax + by = c has an integer solutions x and y, then c must be divisible by the greatest common divisor (gcd) of a and b.

6 Remark In general, given integer numbers a, b, and c, if the equation ax + by = c has an integer solutions x and y, then c must be divisible by the greatest common divisor (gcd) of a and b. Moreover (for further thinking), if c is divisible by gcd (a,b) then the equation ax + by = c has integer solutions (in fact infinitely many). The latter is based on the so-called Euclid s algorithm for finding gcd.

7 Problem for home Three piles of stones contain 51, 49 and 5 stones respectively. It is allowed to unify any two piles to one pile and to divide a pile containing an even number of stones into two piles with the equal number of stones. Is it possible to get in this way 105 piles of one stone.

8 Problem 2

9 Problem 2 (a) Show that a square of a natural number has an odd number of divisors.

10 Problem 2 (a) Show that a square of a natural number has an odd number of divisors. (b) Is the converse statement true,

11 Problem 2 (a) Show that a square of a natural number has an odd number of divisors. (b) Is the converse statement true, i.e., if a number has an odd number of divisors, then is it a perfect square?

12 Problem 3 In some kingdom there was a jail with 100 cells, enumerated from 1 to 100. In each cell there was one prisoner. The locks in the cells were arrange such that the locked door becomes unlocked after one turn of the key clockwise and the unlocked door became locked after one turn of the key clockwise.

13 Problem 3 In some kingdom there was a jail with 100 cells, enumerated from 1 to 100. In each cell there was one prisoner. The locks in the cells were arrange such that the locked door becomes unlocked after one turn of the key clockwise and the unlocked door became locked after one turn of the key clockwise. The king was in a battle against one of his neighbor and at some moment he thought he is going to win. Being exited, he sent a messenger with an order to unlock all cells in the prison. However, the situation in the battlefield has changed quickly and the king sent another messenger (in pursuit of the first one) with the order to turn a key clockwise in each second cell. Then the situation in the battlefield improved and he sent the third messenger with an order to turn a key clockwise in each third cell and so on.

14 Problem 3 In some kingdom there was a jail with 100 cells, enumerated from 1 to 100. In each cell there was one prisoner. The locks in the cells were arrange such that the locked door becomes unlocked after one turn of the key clockwise and the unlocked door became locked after one turn of the key clockwise. The king was in a battle against one of his neighbor and at some moment he thought he is going to win. Being exited, he sent a messenger with an order to unlock all cells in the prison. However, the situation in the battlefield has changed quickly and the king sent another messenger (in pursuit of the first one) with the order to turn a key clockwise in each second cell. Then the situation in the battlefield improved and he sent the third messenger with an order to turn a key clockwise in each third cell and so on. In this way 100 messengers arrived to the jail almost simultaneously and turned successively the keys according to the king orders. After this procedure, how many prisoners were free and from what cells are they?

15 Divisibility by 9 test, Problem 4

16 Divisibility by 9 test, Problem 4 (a) Show that the difference of a natural number and the sum of its digit is divisible by 9.

17 Divisibility by 9 test, Problem 4 (a) Show that the difference of a natural number and the sum of its digit is divisible by 9. (b) Deduce from here the following generalization of the divisibility by 9 test: the remainders after division by 9 of a number and the sum of its digits are equal.

18 Divisibility by 9 test, Problem 4 (a) Show that the difference of a natural number and the sum of its digit is divisible by 9. (b) Deduce from here the following generalization of the divisibility by 9 test: the remainders after division by 9 of a number and the sum of its digits are equal. In particular, this implies the very well know divisibility by 9 test: the number (a n 1 a n 2... a 1 a 0 ) 10 is divisible by 9 if and only of a 0 + a a n 1 is divisible by 9.

19 Applications of divisibility by 9 test: Problem 5 John found the number 100! = Then he sum up all digits of this number, then he sum up all digits in this new number and so on till he got a one-digit number. What is this number?

20 Applications of divisibility by 9 test: Problem 6 After changing the order of digits in some number one gets a number that is three times bigger than the original one. Prove that the resulting number is a multiple of 27.

21 Application of divisibility by 9 test: Problem 7 Find the minimal natural number containing only digits 1 and 0 (in its decimal form) which is divided by 225.

22 Divisibility by 11 tests: Problem 8 (a) Show that the number (a n 1 a n 2... a 1 a 0 ) 10 is divisible by 11 if and only of a 0 a 1 + a 2 a ( 1) n 1 a n 1 is divisible by 11

23 Divisibility by 11 tests: Problem 8 (a) Show that the number (a n 1 a n 2... a 1 a 0 ) 10 is divisible by 11 if and only of a 0 a 1 + a 2 a ( 1) n 1 a n 1 is divisible by 11 or, equivalently, the difference of the sum of all odd digits and the sum of all even digits is divisible by 11.

24 Divisibility by 11 tests: Problem 8 (a) Show that the number (a n 1 a n 2... a 1 a 0 ) 10 is divisible by 11 if and only of a 0 a 1 + a 2 a ( 1) n 1 a n 1 is divisible by 11 or, equivalently, the difference of the sum of all odd digits and the sum of all even digits is divisible by 11. (b) Using this test, check whether is divisible by 11.

25 Divisibility by 7 test: Problem 9 (a) Show that the number (a n 1 a n 2... a 1 a 0 ) 10 is divisible by 7 if and only if the number the number (a n 1 a n 2... a 1 ) a 0 is divisible by 7.

26 Divisibility by 7 test: Problem 9 (a) Show that the number (a n 1 a n 2... a 1 a 0 ) 10 is divisible by 7 if and only if the number the number (a n 1 a n 2... a 1 ) a 0 is divisible by 7. In other words, we first take the number obtained from the original one by erasing the last digit (the digit of units) and then add to it the last digit multiplied by 5.

27 Divisibility by 7 test: Problem 9 (a) Show that the number (a n 1 a n 2... a 1 a 0 ) 10 is divisible by 7 if and only if the number the number (a n 1 a n 2... a 1 ) a 0 is divisible by 7. In other words, we first take the number obtained from the original one by erasing the last digit (the digit of units) and then add to it the last digit multiplied by 5. (b) Using this test, check whether the number is divisible by 7.

28 Divisibility by 7 test: Problem 9 (a) Show that the number (a n 1 a n 2... a 1 a 0 ) 10 is divisible by 7 if and only if the number the number (a n 1 a n 2... a 1 ) a 0 is divisible by 7. In other words, we first take the number obtained from the original one by erasing the last digit (the digit of units) and then add to it the last digit multiplied by 5. (b) Using this test, check whether the number is divisible by 7. (c) Deduce a similar test for divisibility by 49.

29 Divisibility by 13 test: Problem 10 (a) Show that the number (a n 1 a n 2... a 1 a 0 ) 10 is divisible by 13 if and only if the number the number (a n 1 a n 2... a 1 ) a 0

30 Divisibility by 13 test: Problem 10 (a) Show that the number (a n 1 a n 2... a 1 a 0 ) 10 is divisible by 13 if and only if the number the number (a n 1 a n 2... a 1 ) a 0 In other words, we first take the number obtained from the original one by erasing the last digit (the digit of units) and then add to it the last digit multiplied by 4.

31 Divisibility by 13 test: Problem 10 (a) Show that the number (a n 1 a n 2... a 1 a 0 ) 10 is divisible by 13 if and only if the number the number (a n 1 a n 2... a 1 ) a 0 In other words, we first take the number obtained from the original one by erasing the last digit (the digit of units) and then add to it the last digit multiplied by 4. (b ) Using this test, check whether the number is divisible by 13.

32 Divisibility by 13 test: Problem 10 (a) Show that the number (a n 1 a n 2... a 1 a 0 ) 10 is divisible by 13 if and only if the number the number (a n 1 a n 2... a 1 ) a 0 In other words, we first take the number obtained from the original one by erasing the last digit (the digit of units) and then add to it the last digit multiplied by 4. (b ) Using this test, check whether the number is divisible by 13. (c) Deduce a similar test for divisibility by 39.

33 If you ambitious: Problems for home Find similar test for divisibility by 17, 23, 27, 29, 59, 79, 89 and more.

34 Game using divisibility A pile contains n stones. Two players participate in the game. At each turn, a player may take no more than p stones from the pile but he mus take at least one stone. The loser is the player who cannot move. Which player has the winning strategy (the answer actually depends on n and p).

35 Remainders and periodicity. Problem 11 Find the last digit of the number

36 Remainders and periodicity. Problem 12 Find the remainder when the number is divided by 7.

Sheet 1: Introduction to prime numbers.

Sheet 1: Introduction to prime numbers. Option A Hand in at least one question from at least three sheets Sheet 1: Introduction to prime numbers. [provisional date for handing in: class 2.] 1. Use Sieve of Eratosthenes to find all prime numbers

More information

Multiples and Divisibility

Multiples and Divisibility Multiples and Divisibility A multiple of a number is a product of that number and an integer. Divisibility: A number b is said to be divisible by another number a if b is a multiple of a. 45 is divisible

More information

Activity 1: Play comparison games involving fractions, decimals and/or integers.

Activity 1: Play comparison games involving fractions, decimals and/or integers. Students will be able to: Lesson Fractions, Decimals, Percents and Integers. Play comparison games involving fractions, decimals and/or integers,. Complete percent increase and decrease problems, and.

More information

Modular arithmetic Math 2320

Modular arithmetic Math 2320 Modular arithmetic Math 220 Fix an integer m 2, called the modulus. For any other integer a, we can use the division algorithm to write a = qm + r. The reduction of a modulo m is the remainder r resulting

More information

Solutions for the Practice Questions

Solutions for the Practice Questions Solutions for the Practice Questions Question 1. Find all solutions to the congruence 13x 12 (mod 35). Also, answer the following questions about the solutions to the above congruence. Are there solutions

More information

Final Exam, Math 6105

Final Exam, Math 6105 Final Exam, Math 6105 SWIM, June 29, 2006 Your name Throughout this test you must show your work. 1. Base 5 arithmetic (a) Construct the addition and multiplication table for the base five digits. (b)

More information

PRIMES STEP Plays Games

PRIMES STEP Plays Games PRIMES STEP Plays Games arxiv:1707.07201v1 [math.co] 22 Jul 2017 Pratik Alladi Neel Bhalla Tanya Khovanova Nathan Sheffield Eddie Song William Sun Andrew The Alan Wang Naor Wiesel Kevin Zhang Kevin Zhao

More information

ALGEBRA: Chapter I: QUESTION BANK

ALGEBRA: Chapter I: QUESTION BANK 1 ALGEBRA: Chapter I: QUESTION BANK Elements of Number Theory Congruence One mark questions: 1 Define divisibility 2 If a b then prove that a kb k Z 3 If a b b c then PT a/c 4 If a b are two non zero integers

More information

Mathematics Explorers Club Fall 2012 Number Theory and Cryptography

Mathematics Explorers Club Fall 2012 Number Theory and Cryptography Mathematics Explorers Club Fall 2012 Number Theory and Cryptography Chapter 0: Introduction Number Theory enjoys a very long history in short, number theory is a study of integers. Mathematicians over

More information

Removing the Fear of Fractions from Your Students Thursday, April 16, 2015: 9:30 AM-10:30 AM 157 A (BCEC) Lead Speaker: Joseph C.

Removing the Fear of Fractions from Your Students Thursday, April 16, 2015: 9:30 AM-10:30 AM 157 A (BCEC) Lead Speaker: Joseph C. Removing the Fear of Fractions from Your Students Thursday, April 6, 20: 9:0 AM-0:0 AM 7 A (BCEC) Lead Speaker: Joseph C. Mason Associate Professor of Mathematics Hagerstown Community College Hagerstown,

More information

Lecture 8. Outline. 1. Modular Arithmetic. Clock Math!!! 2. Inverses for Modular Arithmetic: Greatest Common Divisor. 3. Euclid s GCD Algorithm

Lecture 8. Outline. 1. Modular Arithmetic. Clock Math!!! 2. Inverses for Modular Arithmetic: Greatest Common Divisor. 3. Euclid s GCD Algorithm Lecture 8. Outline. 1. Modular Arithmetic. Clock Math!!! 2. Inverses for Modular Arithmetic: Greatest Common Divisor. 3. Euclid s GCD Algorithm Clock Math If it is 1:00 now. What time is it in 5 hours?

More information

Discrete Math Class 4 ( )

Discrete Math Class 4 ( ) Discrete Math 37110 - Class 4 (2016-10-06) 41 Division vs congruences Instructor: László Babai Notes taken by Jacob Burroughs Revised by instructor DO 41 If m ab and gcd(a, m) = 1, then m b DO 42 If gcd(a,

More information

Modular Arithmetic. Kieran Cooney - February 18, 2016

Modular Arithmetic. Kieran Cooney - February 18, 2016 Modular Arithmetic Kieran Cooney - kieran.cooney@hotmail.com February 18, 2016 Sums and products in modular arithmetic Almost all of elementary number theory follows from one very basic theorem: Theorem.

More information

Grade 6 Math Circles March 1-2, Introduction to Number Theory

Grade 6 Math Circles March 1-2, Introduction to Number Theory Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 6 Math Circles March 1-2, 2016 Introduction to Number Theory Being able to do mental math quickly

More information

Carmen s Core Concepts (Math 135)

Carmen s Core Concepts (Math 135) Carmen s Core Concepts (Math 135) Carmen Bruni University of Waterloo Week 7 1 Congruence Definition 2 Congruence is an Equivalence Relation (CER) 3 Properties of Congruence (PC) 4 Example 5 Congruences

More information

Grade 6 Math Circles. Divisibility

Grade 6 Math Circles. Divisibility Faculty of Mathematics Waterloo, Ontario N2L 3G1 Introduction Grade 6 Math Circles November 12/13, 2013 Divisibility A factor is a whole number that divides exactly into another number without a remainder.

More information

Problem 2A Consider 101 natural numbers not exceeding 200. Prove that at least one of them is divisible by another one.

Problem 2A Consider 101 natural numbers not exceeding 200. Prove that at least one of them is divisible by another one. 1. Problems from 2007 contest Problem 1A Do there exist 10 natural numbers such that none one of them is divisible by another one, and the square of any one of them is divisible by any other of the original

More information

Class 8: Square Roots & Cube Roots (Lecture Notes)

Class 8: Square Roots & Cube Roots (Lecture Notes) Class 8: Square Roots & Cube Roots (Lecture Notes) SQUARE OF A NUMBER: The Square of a number is that number raised to the power. Examples: Square of 9 = 9 = 9 x 9 = 8 Square of 0. = (0.) = (0.) x (0.)

More information

Math 255 Spring 2017 Solving x 2 a (mod n)

Math 255 Spring 2017 Solving x 2 a (mod n) Math 255 Spring 2017 Solving x 2 a (mod n) Contents 1 Lifting 1 2 Solving x 2 a (mod p k ) for p odd 3 3 Solving x 2 a (mod 2 k ) 5 4 Solving x 2 a (mod n) for general n 9 1 Lifting Definition 1.1. Let

More information

Extra Practice 1. Name Date. Lesson 1: Numbers in the Media. 1. Rewrite each number in standard form. a) 3.6 million

Extra Practice 1. Name Date. Lesson 1: Numbers in the Media. 1. Rewrite each number in standard form. a) 3.6 million Master 4.27 Extra Practice 1 Lesson 1: Numbers in the Media 1. Rewrite each number in standard form. a) 3.6 million 3 b) 6 billion 4 c) 1 million 2 1 d) 2 billion 10 e) 4.25 million f) 1.4 billion 2. Use

More information

Class 8: Factors and Multiples (Lecture Notes)

Class 8: Factors and Multiples (Lecture Notes) Class 8: Factors and Multiples (Lecture Notes) If a number a divides another number b exactly, then we say that a is a factor of b and b is a multiple of a. Factor: A factor of a number is an exact divisor

More information

Extra Practice 1. Name Date. Lesson 1: Numbers in the Media. 1. Rewrite each number in standard form. a) 3.6 million b) 6 billion c)

Extra Practice 1. Name Date. Lesson 1: Numbers in the Media. 1. Rewrite each number in standard form. a) 3.6 million b) 6 billion c) Master 4.27 Extra Practice 1 Lesson 1: Numbers in the Media 1. Rewrite each number in standard form. 3 a) 3.6 million b) 6 billion c) 1 million 4 2 1 d) 2 billion e) 4.25 million f) 1.4 billion 10 2. Use

More information

Solutions to Exam 1. Problem 1. a) State Fermat s Little Theorem and Euler s Theorem. b) Let m, n be relatively prime positive integers.

Solutions to Exam 1. Problem 1. a) State Fermat s Little Theorem and Euler s Theorem. b) Let m, n be relatively prime positive integers. Solutions to Exam 1 Problem 1. a) State Fermat s Little Theorem and Euler s Theorem. b) Let m, n be relatively rime ositive integers. Prove that m φ(n) + n φ(m) 1 (mod mn). c) Find the remainder of 1 008

More information

Geometry 5. G. Number and Operations in Base Ten 5. NBT. Pieces of Eight Building Fluency: coordinates and compare decimals Materials: pair of dice, gameboard, paper Number of Players: - Directions:. Each

More information

Sample pages. Multiples, factors and divisibility. Recall 2. Student Book

Sample pages. Multiples, factors and divisibility. Recall 2. Student Book 52 Recall 2 Prepare for this chapter by attempting the following questions. If you have difficulty with a question, go to Pearson Places and download the Recall from Pearson Reader. Copy and complete these

More information

Launchpad Maths. Arithmetic II

Launchpad Maths. Arithmetic II Launchpad Maths. Arithmetic II LAW OF DISTRIBUTION The Law of Distribution exploits the symmetries 1 of addition and multiplication to tell of how those operations behave when working together. Consider

More information

The Chinese Remainder Theorem

The Chinese Remainder Theorem The Chinese Remainder Theorem 8-3-2014 The Chinese Remainder Theorem gives solutions to systems of congruences with relatively prime moduli The solution to a system of congruences with relatively prime

More information

Jim and Nim. Japheth Wood New York Math Circle. August 6, 2011

Jim and Nim. Japheth Wood New York Math Circle. August 6, 2011 Jim and Nim Japheth Wood New York Math Circle August 6, 2011 Outline 1. Games Outline 1. Games 2. Nim Outline 1. Games 2. Nim 3. Strategies Outline 1. Games 2. Nim 3. Strategies 4. Jim Outline 1. Games

More information

I.M.O. Winter Training Camp 2008: Invariants and Monovariants

I.M.O. Winter Training Camp 2008: Invariants and Monovariants I.M.. Winter Training Camp 2008: Invariants and Monovariants n math contests, you will often find yourself trying to analyze a process of some sort. For example, consider the following two problems. Sample

More information

Applications of Fermat s Little Theorem and Congruences

Applications of Fermat s Little Theorem and Congruences Applications of Fermat s Little Theorem and Congruences Definition: Let m be a positive integer. Then integers a and b are congruent modulo m, denoted by a b mod m, if m (a b). Example: 3 1 mod 2, 6 4

More information

SOLUTIONS TO PROBLEM SET 5. Section 9.1

SOLUTIONS TO PROBLEM SET 5. Section 9.1 SOLUTIONS TO PROBLEM SET 5 Section 9.1 Exercise 2. Recall that for (a, m) = 1 we have ord m a divides φ(m). a) We have φ(11) = 10 thus ord 11 3 {1, 2, 5, 10}. We check 3 1 3 (mod 11), 3 2 9 (mod 11), 3

More information

Introduction. and Z r1 Z rn. This lecture aims to provide techniques. CRT during the decription process in RSA is explained.

Introduction. and Z r1 Z rn. This lecture aims to provide techniques. CRT during the decription process in RSA is explained. THE CHINESE REMAINDER THEOREM INTRODUCED IN A GENERAL KONTEXT Introduction The rst Chinese problem in indeterminate analysis is encountered in a book written by the Chinese mathematician Sun Tzi. The problem

More information

2. Nine points are distributed around a circle in such a way that when all ( )

2. Nine points are distributed around a circle in such a way that when all ( ) 1. How many circles in the plane contain at least three of the points (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)? Solution: There are ( ) 9 3 = 8 three element subsets, all

More information

Distribution of Primes

Distribution of Primes Distribution of Primes Definition. For positive real numbers x, let π(x) be the number of prime numbers less than or equal to x. For example, π(1) = 0, π(10) = 4 and π(100) = 25. To use some ciphers, we

More information

Team Round University of South Carolina Math Contest, 2018

Team Round University of South Carolina Math Contest, 2018 Team Round University of South Carolina Math Contest, 2018 1. This is a team round. You have one hour to solve these problems as a team, and you should submit one set of answers for your team as a whole.

More information

Solutions for the Practice Final

Solutions for the Practice Final Solutions for the Practice Final 1. Ian and Nai play the game of todo, where at each stage one of them flips a coin and then rolls a die. The person who played gets as many points as the number rolled

More information

1st Grade Math. Please complete the activity below for the day indicated. Day 1: Double Trouble. Day 2: Greatest Sum. Day 3: Make a Number

1st Grade Math. Please complete the activity below for the day indicated. Day 1: Double Trouble. Day 2: Greatest Sum. Day 3: Make a Number 1st Grade Math Please complete the activity below for the day indicated. Day 1: Double Trouble Day 2: Greatest Sum Day 3: Make a Number Day 4: Math Fact Road Day 5: Toy Store Double Trouble Paper 1 Die

More information

Squares and Square roots

Squares and Square roots Squares and Square roots Introduction of Squares and Square Roots: LECTURE - 1 If a number is multiplied by itsely, then the product is said to be the square of that number. i.e., If m and n are two natural

More information

Example Enemy agents are trying to invent a new type of cipher. They decide on the following encryption scheme: Plaintext converts to Ciphertext

Example Enemy agents are trying to invent a new type of cipher. They decide on the following encryption scheme: Plaintext converts to Ciphertext Cryptography Codes Lecture 4: The Times Cipher, Factors, Zero Divisors, and Multiplicative Inverses Spring 2014 Morgan Schreffler Office: POT 902 http://www.ms.uky.edu/~mschreffler New Cipher Times Enemy

More information

Year 6. Mathematics A booklet for parents

Year 6. Mathematics A booklet for parents Year 6 Mathematics A booklet for parents About the statements These statements show some of the things most children should be able to do by the end of Year 6. Some statements may be more complex than

More information

NUMBER THEORY AMIN WITNO

NUMBER THEORY AMIN WITNO NUMBER THEORY AMIN WITNO.. w w w. w i t n o. c o m Number Theory Outlines and Problem Sets Amin Witno Preface These notes are mere outlines for the course Math 313 given at Philadelphia

More information

4th Pui Ching Invitational Mathematics Competition. Final Event (Secondary 1)

4th Pui Ching Invitational Mathematics Competition. Final Event (Secondary 1) 4th Pui Ching Invitational Mathematics Competition Final Event (Secondary 1) 2 Time allowed: 2 hours Instructions to Contestants: 1. 100 This paper is divided into Section A and Section B. The total score

More information

Table of Contents. Table of Contents 1

Table of Contents. Table of Contents 1 Table of Contents 1) The Factor Game a) Investigation b) Rules c) Game Boards d) Game Table- Possible First Moves 2) Toying with Tiles a) Introduction b) Tiles 1-10 c) Tiles 11-16 d) Tiles 17-20 e) Tiles

More information

G R AD E 4 UNIT 3: FRACTIONS - LESSONS 1-3

G R AD E 4 UNIT 3: FRACTIONS - LESSONS 1-3 G R AD E UNIT : FRACTIONS - LESSONS - KEY CONCEPT OVERVIEW In these lessons, students explore fraction equivalence. They show how fractions can be expressed as the sum of smaller fractions by using different

More information

1 = 3 2 = 3 ( ) = = = 33( ) 98 = = =

1 = 3 2 = 3 ( ) = = = 33( ) 98 = = = Math 115 Discrete Math Final Exam December 13, 2000 Your name It is important that you show your work. 1. Use the Euclidean algorithm to solve the decanting problem for decanters of sizes 199 and 98. In

More information

Math 127: Equivalence Relations

Math 127: Equivalence Relations Math 127: Equivalence Relations Mary Radcliffe 1 Equivalence Relations Relations can take many forms in mathematics. In these notes, we focus especially on equivalence relations, but there are many other

More information

Adding Fractions with Different Denominators. Subtracting Fractions with Different Denominators

Adding Fractions with Different Denominators. Subtracting Fractions with Different Denominators Adding Fractions with Different Denominators How to Add Fractions with different denominators: Find the Least Common Denominator (LCD) of the fractions Rename the fractions to have the LCD Add the numerators

More information

MidMichigan Olympiad Problems 5-6

MidMichigan Olympiad Problems 5-6 MidMichigan Olympiad 2018 Problems 5-6 1. A Slavic dragon has three heads. A knight fights the dragon. If the knight cuts off one dragon s head three new heads immediately grow. Is it possible that the

More information

It is important that you show your work. The total value of this test is 220 points.

It is important that you show your work. The total value of this test is 220 points. June 27, 2001 Your name It is important that you show your work. The total value of this test is 220 points. 1. (10 points) Use the Euclidean algorithm to solve the decanting problem for decanters of sizes

More information

Grade 7/8 Math Circles February 9-10, Modular Arithmetic

Grade 7/8 Math Circles February 9-10, Modular Arithmetic Faculty of Mathematics Waterloo, Ontario N2L 3G Centre for Education in Mathematics and Computing Grade 7/8 Math Circles February 9-, 26 Modular Arithmetic Introduction: The 2-hour Clock Question: If it

More information

b) Find all positive integers smaller than 200 which leave remainder 1, 3, 4 upon division by 3, 5, 7 respectively.

b) Find all positive integers smaller than 200 which leave remainder 1, 3, 4 upon division by 3, 5, 7 respectively. Solutions to Exam 1 Problem 1. a) State Fermat s Little Theorem and Euler s Theorem. b) Let m, n be relatively prime positive integers. Prove that m φ(n) + n φ(m) 1 (mod mn). Solution: a) Fermat s Little

More information

The congruence relation has many similarities to equality. The following theorem says that congruence, like equality, is an equivalence relation.

The congruence relation has many similarities to equality. The following theorem says that congruence, like equality, is an equivalence relation. Congruences A congruence is a statement about divisibility. It is a notation that simplifies reasoning about divisibility. It suggests proofs by its analogy to equations. Congruences are familiar to us

More information

Number Theory. Konkreetne Matemaatika

Number Theory. Konkreetne Matemaatika ITT9131 Number Theory Konkreetne Matemaatika Chapter Four Divisibility Primes Prime examples Factorial Factors Relative primality `MOD': the Congruence Relation Independent Residues Additional Applications

More information

Exam 1 7 = = 49 2 ( ) = = 7 ( ) =

Exam 1 7 = = 49 2 ( ) = = 7 ( ) = Exam 1 Problem 1. a) Define gcd(a, b). Using Euclid s algorithm comute gcd(889, 168). Then find x, y Z such that gcd(889, 168) = x 889 + y 168 (check your answer!). b) Let a be an integer. Prove that gcd(3a

More information

CMPSCI 250: Introduction to Computation. Lecture #14: The Chinese Remainder Theorem David Mix Barrington 24 February 2012

CMPSCI 250: Introduction to Computation. Lecture #14: The Chinese Remainder Theorem David Mix Barrington 24 February 2012 CMPSCI 250: Introduction to Computation Lecture #14: The Chinese Remainder Theorem David Mix Barrington 24 February 2012 The Chinese Remainder Theorem Infinitely Many Primes Reviewing Inverses and the

More information

Modular Arithmetic: refresher.

Modular Arithmetic: refresher. Lecture 7. Outline. 1. Modular Arithmetic. Clock Math!!! 2. Inverses for Modular Arithmetic: Greatest Common Divisor. Division!!! 3. Euclid s GCD Algorithm. A little tricky here! Clock Math If it is 1:00

More information

A C E. Answers Investigation 1. Applications. b. No; 6 18 = b. n = 12 c. n = 12 d. n = 20 e. n = 3

A C E. Answers Investigation 1. Applications. b. No; 6 18 = b. n = 12 c. n = 12 d. n = 20 e. n = 3 Answers Applications 1. a. Divide 24 by 12 to see if you get a whole number. Since 12 2 = 24 or 24 12 = 2, 12 is a factor b. Divide 291 by 7 to see if the answer is a whole number. Since 291 7 = 41.571429,

More information

Numbers (8A) Young Won Lim 5/24/17

Numbers (8A) Young Won Lim 5/24/17 Numbers (8A Copyright (c 2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

Number Theory - Divisibility Number Theory - Congruences. Number Theory. June 23, Number Theory

Number Theory - Divisibility Number Theory - Congruences. Number Theory. June 23, Number Theory - Divisibility - Congruences June 23, 2014 Primes - Divisibility - Congruences Definition A positive integer p is prime if p 2 and its only positive factors are itself and 1. Otherwise, if p 2, then p

More information

Problem Set 10 2 E = 3 F

Problem Set 10 2 E = 3 F Problem Set 10 1. A and B start with p = 1. Then they alternately multiply p by one of the numbers 2 to 9. The winner is the one who first reaches (a) p 1000, (b) p 10 6. Who wins, A or B? (Derek) 2. (Putnam

More information

Numbers (8A) Young Won Lim 6/21/17

Numbers (8A) Young Won Lim 6/21/17 Numbers (8A Copyright (c 2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

Problem F. Chessboard Coloring

Problem F. Chessboard Coloring Problem F Chessboard Coloring You have a chessboard with N rows and N columns. You want to color each of the cells with exactly N colors (colors are numbered from 0 to N 1). A coloring is valid if and

More information

Teacher s Notes. Problem of the Month: Courtney s Collection

Teacher s Notes. Problem of the Month: Courtney s Collection Teacher s Notes Problem of the Month: Courtney s Collection Overview: In the Problem of the Month, Courtney s Collection, students use number theory, number operations, organized lists and counting methods

More information

Solutions of problems for grade R5

Solutions of problems for grade R5 International Mathematical Olympiad Formula of Unity / The Third Millennium Year 016/017. Round Solutions of problems for grade R5 1. Paul is drawing points on a sheet of squared paper, at intersections

More information

CS1802 Week 9: Probability, Expectation, Entropy

CS1802 Week 9: Probability, Expectation, Entropy CS02 Discrete Structures Recitation Fall 207 October 30 - November 3, 207 CS02 Week 9: Probability, Expectation, Entropy Simple Probabilities i. What is the probability that if a die is rolled five times,

More information

Constructions of Coverings of the Integers: Exploring an Erdős Problem

Constructions of Coverings of the Integers: Exploring an Erdős Problem Constructions of Coverings of the Integers: Exploring an Erdős Problem Kelly Bickel, Michael Firrisa, Juan Ortiz, and Kristen Pueschel August 20, 2008 Abstract In this paper, we study necessary conditions

More information

Multiple : The product of a given whole number and another whole number. For example, some multiples of 3 are 3, 6, 9, and 12.

Multiple : The product of a given whole number and another whole number. For example, some multiples of 3 are 3, 6, 9, and 12. 1.1 Factor (divisor): One of two or more whole numbers that are multiplied to get a product. For example, 1, 2, 3, 4, 6, and 12 are factors of 12 1 x 12 = 12 2 x 6 = 12 3 x 4 = 12 Factors are also called

More information

Classwork Example 1: Exploring Subtraction with the Integer Game

Classwork Example 1: Exploring Subtraction with the Integer Game 7.2.5 Lesson Date Understanding Subtraction of Integers Student Objectives I can justify the rule for subtraction: Subtracting a number is the same as adding its opposite. I can relate the rule for subtraction

More information

Solving Big Problems

Solving Big Problems Solving Big Problems A 3-Week Book of Big Problems, Solved Solving Big Problems Students July 25 SPMPS/BEAM Contents Challenge Problems 2. Palindromes.................................... 2.2 Pick Your

More information

How to Become a Mathemagician: Mental Calculations and Math Magic

How to Become a Mathemagician: Mental Calculations and Math Magic How to Become a Mathemagician: Mental Calculations and Math Magic Adam Gleitman (amgleit@mit.edu) Splash 2012 A mathematician is a conjurer who gives away his secrets. John H. Conway This document describes

More information

Solutions to Problem Set 6 - Fall 2008 Due Tuesday, Oct. 21 at 1:00

Solutions to Problem Set 6 - Fall 2008 Due Tuesday, Oct. 21 at 1:00 18.781 Solutions to Problem Set 6 - Fall 008 Due Tuesday, Oct. 1 at 1:00 1. (Niven.8.7) If p 3 is prime, how many solutions are there to x p 1 1 (mod p)? How many solutions are there to x p 1 (mod p)?

More information

International Contest-Game MATH KANGAROO Canada, 2007

International Contest-Game MATH KANGAROO Canada, 2007 International Contest-Game MATH KANGAROO Canada, 007 Grade 9 and 10 Part A: Each correct answer is worth 3 points. 1. Anh, Ben and Chen have 30 balls altogether. If Ben gives 5 balls to Chen, Chen gives

More information

Public Key Encryption

Public Key Encryption Math 210 Jerry L. Kazdan Public Key Encryption The essence of this procedure is that as far as we currently know, it is difficult to factor a number that is the product of two primes each having many,

More information

Quantitative Aptitude Preparation Numbers. Prepared by: MS. RUPAL PATEL Assistant Professor CMPICA, CHARUSAT

Quantitative Aptitude Preparation Numbers. Prepared by: MS. RUPAL PATEL Assistant Professor CMPICA, CHARUSAT Quantitative Aptitude Preparation Numbers Prepared by: MS. RUPAL PATEL Assistant Professor CMPICA, CHARUSAT Numbers Numbers In Hindu Arabic system, we have total 10 digits. Namely, 0, 1, 2, 3, 4, 5, 6,

More information

Math Circle: Logic Puzzles

Math Circle: Logic Puzzles Math Circle: Logic Puzzles June 4, 2017 The Missing $1 Three people rent a room for the night for a total of $30. They each pay $10 and go upstairs. The owner then realizes the room was only supposed to

More information

6.2 Modular Arithmetic

6.2 Modular Arithmetic 6.2 Modular Arithmetic Every reader is familiar with arithmetic from the time they are three or four years old. It is the study of numbers and various ways in which we can combine them, such as through

More information

Data security (Cryptography) exercise book

Data security (Cryptography) exercise book University of Debrecen Faculty of Informatics Data security (Cryptography) exercise book 1 Contents 1 RSA 4 1.1 RSA in general.................................. 4 1.2 RSA background.................................

More information

Practice Midterm 2 Solutions

Practice Midterm 2 Solutions Practice Midterm 2 Solutions May 30, 2013 (1) We want to show that for any odd integer a coprime to 7, a 3 is congruent to 1 or 1 mod 7. In fact, we don t need the assumption that a is odd. By Fermat s

More information

Grade 6 Math Circles March 8-9, Modular Arithmetic

Grade 6 Math Circles March 8-9, Modular Arithmetic Faculty of Mathematics Waterloo, Ontario N2L 3G Centre for Education in Mathematics and Computing Grade 6 Math Circles March 8-9, 26 Modular Arithmetic Introduction: The 2-hour Clock Question: If its 7

More information

Roll & Make. Represent It a Different Way. Show Your Number as a Number Bond. Show Your Number on a Number Line. Show Your Number as a Strip Diagram

Roll & Make. Represent It a Different Way. Show Your Number as a Number Bond. Show Your Number on a Number Line. Show Your Number as a Strip Diagram Roll & Make My In Picture Form In Word Form In Expanded Form With Money Represent It a Different Way Make a Comparison Statement with a Greater than Your Make a Comparison Statement with a Less than Your

More information

Whatcom County Math Championship 2016 Individual 4 th Grade

Whatcom County Math Championship 2016 Individual 4 th Grade Whatcom County Math Championship 201 Individual 4 th Grade 1. If 2 3 is written as a mixed fraction, what is the difference between the numerator and the denominator? 2. Write 0.92 as a reduced fraction.

More information

Fair Game Review. Chapter 2. Name Date. Write the decimal as a fraction Write the fraction as a decimal. 7.

Fair Game Review. Chapter 2. Name Date. Write the decimal as a fraction Write the fraction as a decimal. 7. Name Date Chapter Fair Game Review Write the decimal as a fraction.. 0.6. 0.79. 0.7. 0.86 Write the fraction as a decimal.. 8 6. 7. 6 8. 7 0 9. A quarterback completed 0.6 of his passes during a game.

More information

Calculators will not be permitted on the exam. The numbers on the exam will be suitable for calculating by hand.

Calculators will not be permitted on the exam. The numbers on the exam will be suitable for calculating by hand. Midterm #2: practice MATH 311 Intro to Number Theory midterm: Thursday, Oct 20 Please print your name: Calculators will not be permitted on the exam. The numbers on the exam will be suitable for calculating

More information

What numbers can we make?

What numbers can we make? Meeting Student s Booklet What numbers can we make? October 12, 2016 @ UCI Contents 1 Even or odd? 2 New currency A present for Dad 4 A present for Mom 5 Challenges 6 Crystal Ball UC IRVINE MATH CEO http://www.math.uci.edu/mathceo/

More information

Number Theory/Cryptography (part 1 of CSC 282)

Number Theory/Cryptography (part 1 of CSC 282) Number Theory/Cryptography (part 1 of CSC 282) http://www.cs.rochester.edu/~stefanko/teaching/11cs282 1 Schedule The homework is due Sep 8 Graded homework will be available at noon Sep 9, noon. EXAM #1

More information

Math 152: Applicable Mathematics and Computing

Math 152: Applicable Mathematics and Computing Math 152: Applicable Mathematics and Computing April 16, 2017 April 16, 2017 1 / 17 Announcements Please bring a blue book for the midterm on Friday. Some students will be taking the exam in Center 201,

More information

L_sson 9 Subtracting across zeros

L_sson 9 Subtracting across zeros L_sson 9 Subtracting across zeros A. Here are the steps for subtracting 3-digit numbers across zeros. Complete the example. 7 10 12 8 0 2 2 3 8 9 1. Subtract the ones column. 2 8 requires regrouping. 2.

More information

Lecture 32. Handout or Document Camera or Class Exercise. Which of the following is equal to [53] [5] 1 in Z 7? (Do not use a calculator.

Lecture 32. Handout or Document Camera or Class Exercise. Which of the following is equal to [53] [5] 1 in Z 7? (Do not use a calculator. Lecture 32 Instructor s Comments: This is a make up lecture. You can choose to cover many extra problems if you wish or head towards cryptography. I will probably include the square and multiply algorithm

More information

Use the following games to help students practice the following [and many other] grade-level appropriate math skills.

Use the following games to help students practice the following [and many other] grade-level appropriate math skills. ON Target! Math Games with Impact Students will: Practice grade-level appropriate math skills. Develop mathematical reasoning. Move flexibly between concrete and abstract representations of mathematical

More information

University of British Columbia. Math 312, Midterm, 6th of June 2017

University of British Columbia. Math 312, Midterm, 6th of June 2017 University of British Columbia Math 312, Midterm, 6th of June 2017 Name (please be legible) Signature Student number Duration: 90 minutes INSTRUCTIONS This test has 7 problems for a total of 100 points.

More information

An ordered collection of counters in rows or columns, showing multiplication facts.

An ordered collection of counters in rows or columns, showing multiplication facts. Addend A number which is added to another number. Addition When a set of numbers are added together. E.g. 5 + 3 or 6 + 2 + 4 The answer is called the sum or the total and is shown by the equals sign (=)

More information

MATH 324 Elementary Number Theory Solutions to Practice Problems for Final Examination Monday August 8, 2005

MATH 324 Elementary Number Theory Solutions to Practice Problems for Final Examination Monday August 8, 2005 MATH 324 Elementary Number Theory Solutions to Practice Problems for Final Examination Monday August 8, 2005 Deartment of Mathematical and Statistical Sciences University of Alberta Question 1. Find integers

More information

Grab Bag Math ➊ ➋ ➌ ➍ ➎ ➏ ON THEIR OWN. Can you figure out all the ways to build one-layer rectangular boxes with Snap Cubes?

Grab Bag Math ➊ ➋ ➌ ➍ ➎ ➏ ON THEIR OWN. Can you figure out all the ways to build one-layer rectangular boxes with Snap Cubes? Grab Bag Math ON THEIR OWN Can you figure out all the ways to build one-layer rectangular boxes with Snap Cubes? ➊ ➋ ➌ ➍ ➎ ➏ Work with a partner. Pick a grab bag from the box. Using the Snap Cubes in the

More information

I can use the four operations (+, -, x, ) to help me understand math.

I can use the four operations (+, -, x, ) to help me understand math. I Can Common Core! 4 th Grade Math I can use the four operations (+, -, x, ) to help me understand math. Page 1 I can understand that multiplication fact problems can be seen as comparisons of groups (e.g.,

More information

Numbers (8A) Young Won Lim 5/22/17

Numbers (8A) Young Won Lim 5/22/17 Numbers (8A Copyright (c 2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

Olympiad Combinatorics. Pranav A. Sriram

Olympiad Combinatorics. Pranav A. Sriram Olympiad Combinatorics Pranav A. Sriram August 2014 Chapter 2: Algorithms - Part II 1 Copyright notices All USAMO and USA Team Selection Test problems in this chapter are copyrighted by the Mathematical

More information

CMPSCI 250: Introduction to Computation. Lecture #14: The Chinese Remainder Theorem David Mix Barrington 4 October 2013

CMPSCI 250: Introduction to Computation. Lecture #14: The Chinese Remainder Theorem David Mix Barrington 4 October 2013 CMPSCI 250: Introduction to Computation Lecture #14: The Chinese Remainder Theorem David Mix Barrington 4 October 2013 The Chinese Remainder Theorem Infinitely Many Primes Reviewing Inverses and the Inverse

More information

T101 DEPARTMENTAL FINAL REVIEW

T101 DEPARTMENTAL FINAL REVIEW T101 DEPARTMENTAL FINAL REVIEW REVISED SPRING 2009 *******This is only a sampling of some problems to review. Previous tests and reviews should also be reviewed.*** 1) a) Find the 14th term of the arithmetic

More information

A1 Problem Statement Unit Pricing

A1 Problem Statement Unit Pricing A1 Problem Statement Unit Pricing Given up to 10 items (weight in ounces and cost in dollars) determine which one by order (e.g. third) is the cheapest item in terms of cost per ounce. Also output the

More information

Review. Natural Numbers: Whole Numbers: Integers: Rational Numbers: Outline Sec Comparing Rational Numbers

Review. Natural Numbers: Whole Numbers: Integers: Rational Numbers: Outline Sec Comparing Rational Numbers FOUNDATIONS Outline Sec. 3-1 Gallo Name: Date: Review Natural Numbers: Whole Numbers: Integers: Rational Numbers: Comparing Rational Numbers Fractions: A way of representing a division of a whole into

More information