AwesomeMath Admission Test A

Size: px
Start display at page:

Download "AwesomeMath Admission Test A"

Transcription

1 1 (Before beginning, I d like to thank USAMTS for the template, which I modified to get this template) It would be beneficial to assign each square a value, and then make a few equalities. a b 3 c d e X 4 5 As we know that each row and diagonal has the same value, we know: a+b+3 = a+c+x = x+9 = e+8 = c+d+e = a+d+5 = d+3+x. Using the simplest equations(x+9 = e+8), we can say e = x + 1, and substituting, we can say c + d + x + 1 = a + c + x, or d + 1 = a. Now, plugging these back in to a + d + 5 = d x, we get 2d + 6 = d x, or d + 3 = x. Knowing the 3 boxed equations, (and knowing that the second and third can be used to show x = a + 2), we shall put this back in the magic square: x-2 b 3 c x-3 x-1 X 4 5 Now, using the diagonal and the bottom row, we get 2x = x + 9 = x = 9 Solutions- 9 pages long. 1

2 2 To get as small of a number as possible, first we must try to get as few digits as possible, which we get by combining as many prime factors as possible per digit. We can prime factorize 10!: , or It s obvious that we can t combine the 5s or 7 with anything else, as multiplying 5 or 7 by another integer gives it more than one place value. So we have to combine 8 2s and 4 3s into as few digits possible. We can combine 3 2s at a time to get an 8, so that gives us 2 8s, with 2 2s and 4 3s remaining. At this point, we can t combine numbers 3 at a time, so with 6 factors remaining, we re going to use 3 digits, so our task should be be to make the 8-digit number as small as possible with the digits already fixed. We can make the 3 last digits 669 or 499. The latter will make the starting digit, which is the first digit looked at when comparing numbers, smaller, so we will use that option. This makes our desired number Solutions- 9 pages long. 2

3 3 First, we should see what combinations of 6 digits other than 6 of the decimal system can be added up to equal 36. We try the largest example: = 36. It should be obvious that making any of these numbers smaller will not work; that is: this example is the only example! Thus, we must show that (9-6)(8-6)(7-6)(5-6)(4-6)(3-6) = -36 and we will be done = 6 6 = 36. As this is the only solution, our proof is complete. Solutions- 9 pages long. 3

4 4 The first thing we should notice is: all squares that have an even-numbered side-length will have an even number of 1*1 squares inside of them. As a black 1*1 square is equally likely as a white 1*1 square, squares with even-numbered side-lengths will have an equal number of white and black squares they won t have more than half their area colored black. Thus, we only have to count squares that have odd-numbered side lengths. We can use the fact that a black 1*1 square is equally likely as a white 1*1 square to say that there are as many 1*1, 3*3, 5*5, 7*7 squares with more than half their area black as their are 3*3 squares with more than half their area white (since there are no 1*1, 3*3, 5*5, 7*7 squares who have an equal black and white area). So, we can just count the number of each type of square, and halving this will give the number of squares with more than half of their area colored black. There are 64 1*1 squares, 36 3*3 squares, 16 5*5 squares, and 4 7*7 squares. Adding this up, we get 120, and dividing by 2, we get 60. Solutions- 9 pages long. 4

5 5 The number of games that occured between the 5 participants who withdrew after 5 games is not known, as they could have all played within the group of 5, leading to just 5 games played (AB, AC, BC, DE, DE), or they could have all played different games, leading to 10 games, or a little of both. So all we know is that these 5 players contributed to 5 to 10 games. Thus, the other x players played between 90 and 95 games within themselves. A round robin tournament means that everyone plays each other once. So other than the 5 players who left, the x players all played each other for one game, so each participant played each of the other x 1 participants once. This led to (x)(x 1) 2 games (dividing by 2 to eliminate the repetitions). We know that 180 (x)(x 1) 190. Although this can be solved using inequalties and/or graphing, some good trial-and-error will solve this faster. Trying x = 10 leads to 90, which is too small. Trying x = 15 leads to 210, which is slightly too large. Trying x=14 gives 192, which is between 180 and 190. Thus, there were 14 other participants, and 19 participants initially. Solutions- 9 pages long. 5

6 6 The first thing we should try when looking at this problem is bring all the terms to the LHS and factor. (x)(x 3) + (y)(y 3) + (z)(z 3) + (w)(w 3) = 0 is one possible factorization, but this would be very tedious with many numbers to check and we wouldn t know if we had all the solutions. Instead, we shall try completing the square: (x 2 3x+ 9 4 )+(y2 3y+ 9 4 )+(z2 3z+ 9 4 )+(w2 3w+ 9 4 ) = 9 = (x 3 2 )2 +(y 3 2 )2 +(z 3 2 )2 +(w 3 2 )2 = 9 Now, we know that x,y,z, and w are all integers and all squares are nonnegative, so the largest value of x,y,z, and w is 4 (as any integer greater than 4 will lead to the LHS of the equation to be greater than 9). If we square each of (4-3 2 ), (3-3 2 ), (2-3 2 ), and (1-3 2 ), we get 6.25, 2.25,.25, and.25. Combinations using these that add up to 9 are: 6.25, 2.25,.25,.25; and 2.25, 2.25, 2.25, For the second combination (4 2.5s), there is only 1 way to make that: (3,3,3,3) because 3 is the only number that equals 2.25 (1.5) when 1.5 is subtracted. However, there are numerous variations of the first combination. Since subtracting 1.5 from and squaring both 2 and 1 gives.25, possible combinations are (4,3,2,2); (4,3,2,1); and (4,3,1,1). The first quadruple can be arranged 4! 2! = 12 ways, as can the third quadruple, and the second quadruple can be arranged 4! = 24 ways. Thus, there are 48 quadruples using 6.25, 2.25,.25,.25 and one quadruple using 2.25, 2.25, 2.25, 2.25, giving us a total of 49 combinations. These 49 solutions are permutations of (4, 3, 2, 2), (4, 3, 2, 1), (4, 3, 1, 1), and(3, 3, 3, 3). Solutions- 9 pages long. 6

7 7 Some points have been labeled for ease in discussion. As we are trying to prove the 3 lines are concurrent, we can use Ceva s theorem, which in this case states that MK KW W L LS SJ JM = 1 Seeing these ratios, it would be a good idea to look for similar triangles. It is known that EMW is similar to ASW is similar to SOM because all three are equilateral. Thus, there is most likely a pair of similar triangles whose ratios can be found which will make proving that the lines are concurrent using the theorem very simple. This may be facilitated by drawing in some lines such as in this diagram: This seems to me the most straightforward approach to proving the concurrency of the lines. Solutions- 9 pages long. 7

8 8 If we let a equal the original number of participants, and b equal the intial average age, then clearly ab equals the combined age of all the participants at AwesomeMath. If the average age increased by one month if three additional 18 year olds had participated, then we can say (a + 3)(b ) = ab Similarly, if the average age would have increased by one month if three 12 year olds had not particicpated, then we can say (a 3)(b ) = ab 36. Expanding the first equation and simplifying, we get 3b + a 12 = Doing the same for the second equation gives 3b + a 12 = Adding the two equations gives a 6 = 18. Multiplying both sides by 6 gives a = 108, and since we are looking for the number of participants, the answer is 108 Solutions- 9 pages long. 8

9 9 First, we should notice that a set of all the integers from does not have two elements that add together to make a power of two. This is because 1024 and 2048 are powers of two, and since adding the smallest number of the set twice is slightly more than a power of 2, and adding the largest number of the set twice is not greater than the next power of 2. (Thus, any sum of two elements of the set of integers 1025 to 2007 inclusive would fall between 2048 and 4096.)We now must find as many other numbers (less than 1025) as possible so that we still won t have two numbers that add together to make a power of two. We know that these numbers must all be less than 41 (since = 2 11 ). We can begin small and eliminate numbers (larger than that number) that would otherwise add up to a power of 2 (We will start at 5, because 1,2,and 4 won t work [as they are already powers of two], and 3 would eliminate more numbers than 5): Element Numbers that cannot be added 5 11 ( = 16), 27 ( = 32) 6 10, , (Note that eliminated numbers and powers of two were skipped in the numbers column) Any number larger would either have been already eliminated, or would be greater than 41 (and would thus match up with a number from to make a power of 2). Thus, we have found all solutions. There are 983 integers from 1025 to 2007 inclusive, and our table gives us 18 integers, and since we are looking for the smallest set that DEFINITELY contains two elements that add up to a power of 2, the answer is = Solutions- 9 pages long. 9

UNIVERSITY OF NORTHERN COLORADO MATHEMATICS CONTEST

UNIVERSITY OF NORTHERN COLORADO MATHEMATICS CONTEST UNIVERSITY OF NORTHERN COLORADO MATHEMATICS CONTEST First Round For all Colorado Students Grades 7-12 October 31, 2009 You have 90 minutes no calculators allowed The average of n numbers is their sum divided

More information

Year 5 Problems and Investigations Spring

Year 5 Problems and Investigations Spring Year 5 Problems and Investigations Spring Week 1 Title: Alternating chains Children create chains of alternating positive and negative numbers and look at the patterns in their totals. Skill practised:

More information

Topics to be covered

Topics to be covered Basic Counting 1 Topics to be covered Sum rule, product rule, generalized product rule Permutations, combinations Binomial coefficients, combinatorial proof Inclusion-exclusion principle Pigeon Hole Principle

More information

Solutions to the European Kangaroo Pink Paper

Solutions to the European Kangaroo Pink Paper Solutions to the European Kangaroo Pink Paper 1. The calculation can be approximated as follows: 17 0.3 20.16 999 17 3 2 1000 2. A y plotting the points, it is easy to check that E is a square. Since any

More information

The Sixth Annual West Windsor-Plainsboro Mathematics Tournament

The Sixth Annual West Windsor-Plainsboro Mathematics Tournament The Sixth Annual West Windsor-Plainsboro Mathematics Tournament Saturday October 27th, 2018 Grade 7 Test RULES The test consists of 25 multiple choice problems and 5 short answer problems to be done in

More information

GAP CLOSING. Powers and Roots. Intermediate / Senior Facilitator Guide

GAP CLOSING. Powers and Roots. Intermediate / Senior Facilitator Guide GAP CLOSING Powers and Roots Intermediate / Senior Facilitator Guide Powers and Roots Diagnostic...5 Administer the diagnostic...5 Using diagnostic results to personalize interventions...5 Solutions...5

More information

The Real Number System and Pythagorean Theorem Unit 9 Part B

The Real Number System and Pythagorean Theorem Unit 9 Part B The Real Number System and Pythagorean Theorem Unit 9 Part B Standards: 8.NS.1 Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion;

More information

MATH CIRCLE, 10/13/2018

MATH CIRCLE, 10/13/2018 MATH CIRCLE, 10/13/2018 LARGE SOLUTIONS 1. Write out row 8 of Pascal s triangle. Solution. 1 8 28 56 70 56 28 8 1. 2. Write out all the different ways you can choose three letters from the set {a, b, c,

More information

Class 8 Cubes and Cube Root

Class 8 Cubes and Cube Root ID : in-8-cubes-and-cube-root [1] Class 8 Cubes and Cube Root For more such worksheets visit www.edugain.com Answer the questions (1) Find the value of A if (2) If you subtract a number x from 15 times

More information

Course Syllabus - Online Prealgebra

Course Syllabus - Online Prealgebra Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 1.1 Whole Numbers, Place Value Practice Problems for section 1.1 HW 1A 1.2 Adding Whole Numbers Practice Problems for section 1.2 HW 1B 1.3 Subtracting Whole Numbers

More information

Foundations of Computing Discrete Mathematics Solutions to exercises for week 12

Foundations of Computing Discrete Mathematics Solutions to exercises for week 12 Foundations of Computing Discrete Mathematics Solutions to exercises for week 12 Agata Murawska (agmu@itu.dk) November 13, 2013 Exercise (6.1.2). A multiple-choice test contains 10 questions. There are

More information

Table of Contents. Table of Contents 1

Table of Contents. Table of Contents 1 Table of Contents 1) The Factor Game a) Investigation b) Rules c) Game Boards d) Game Table- Possible First Moves 2) Toying with Tiles a) Introduction b) Tiles 1-10 c) Tiles 11-16 d) Tiles 17-20 e) Tiles

More information

Twenty-sixth Annual UNC Math Contest First Round Fall, 2017

Twenty-sixth Annual UNC Math Contest First Round Fall, 2017 Twenty-sixth Annual UNC Math Contest First Round Fall, 07 Rules: 90 minutes; no electronic devices. The positive integers are,,,,.... Find the largest integer n that satisfies both 6 < 5n and n < 99..

More information

Practice Midterm 2 Solutions

Practice Midterm 2 Solutions Practice Midterm 2 Solutions May 30, 2013 (1) We want to show that for any odd integer a coprime to 7, a 3 is congruent to 1 or 1 mod 7. In fact, we don t need the assumption that a is odd. By Fermat s

More information

Square & Square Roots

Square & Square Roots Square & Square Roots 1. If a natural number m can be expressed as n², where n is also a natural number, then m is a square number. 2. All square numbers end with, 1, 4, 5, 6 or 9 at unit s place. All

More information

Mathematical Olympiads November 19, 2014

Mathematical Olympiads November 19, 2014 athematical Olympiads November 19, 2014 for Elementary & iddle Schools 1A Time: 3 minutes Suppose today is onday. What day of the week will it be 2014 days later? 1B Time: 4 minutes The product of some

More information

METHOD 1: METHOD 2: 4D METHOD 1: METHOD 2:

METHOD 1: METHOD 2: 4D METHOD 1: METHOD 2: 4A Strategy: Count how many times each digit appears. There are sixteen 4s, twelve 3s, eight 2s, four 1s, and one 0. The sum of the digits is (16 4) + + (8 2) + (4 1) = 64 + 36 +16+4= 120. 4B METHOD 1:

More information

LESSON 2: THE INCLUSION-EXCLUSION PRINCIPLE

LESSON 2: THE INCLUSION-EXCLUSION PRINCIPLE LESSON 2: THE INCLUSION-EXCLUSION PRINCIPLE The inclusion-exclusion principle (also known as the sieve principle) is an extended version of the rule of the sum. It states that, for two (finite) sets, A

More information

The City School. Comprehensive Worksheet (1st Term) November 2018 Mathematics Class 8

The City School. Comprehensive Worksheet (1st Term) November 2018 Mathematics Class 8 The City School Comprehensive Worksheet (1st Term) November 2018 Mathematics Class 8 Index No: S i INSTRUCTIONS Write your index number, section, school/campus and date clearly in the space provided Read

More information

Adding Fractions with Different Denominators. Subtracting Fractions with Different Denominators

Adding Fractions with Different Denominators. Subtracting Fractions with Different Denominators Adding Fractions with Different Denominators How to Add Fractions with different denominators: Find the Least Common Denominator (LCD) of the fractions Rename the fractions to have the LCD Add the numerators

More information

Solutions to the 2004 CMO written March 31, 2004

Solutions to the 2004 CMO written March 31, 2004 Solutions to the 004 CMO written March 31, 004 1. Find all ordered triples (x, y, z) of real numbers which satisfy the following system of equations: xy = z x y xz = y x z yz = x y z Solution 1 Subtracting

More information

State Math Contest Junior Exam SOLUTIONS

State Math Contest Junior Exam SOLUTIONS State Math Contest Junior Exam SOLUTIONS 1. The following pictures show two views of a non standard die (however the numbers 1-6 are represented on the die). How many dots are on the bottom face of figure?

More information

2009 Philippine Elementary Mathematics International Contest Page 1

2009 Philippine Elementary Mathematics International Contest Page 1 2009 Philippine Elementary Mathematics International Contest Page 1 Individual Contest 1. Find the smallest positive integer whose product after multiplication by 543 ends in 2009. It is obvious that the

More information

Distribution of Primes

Distribution of Primes Distribution of Primes Definition. For positive real numbers x, let π(x) be the number of prime numbers less than or equal to x. For example, π(1) = 0, π(10) = 4 and π(100) = 25. To use some ciphers, we

More information

Square Roots and the Pythagorean Theorem

Square Roots and the Pythagorean Theorem UNIT 1 Square Roots and the Pythagorean Theorem Just for Fun What Do You Notice? Follow the steps. An example is given. Example 1. Pick a 4-digit number with different digits. 3078 2. Find the greatest

More information

IMOK Maclaurin Paper 2014

IMOK Maclaurin Paper 2014 IMOK Maclaurin Paper 2014 1. What is the largest three-digit prime number whose digits, and are different prime numbers? We know that, and must be three of,, and. Let denote the largest of the three digits,

More information

Rosen, Discrete Mathematics and Its Applications, 6th edition Extra Examples

Rosen, Discrete Mathematics and Its Applications, 6th edition Extra Examples Rosen, Discrete Mathematics and Its Applications, 6th edition Extra Examples Section 1.7 Proof Methods and Strategy Page references correspond to locations of Extra Examples icons in the textbook. p.87,

More information

CONNECT: Divisibility

CONNECT: Divisibility CONNECT: Divisibility If a number can be exactly divided by a second number, with no remainder, then we say that the first number is divisible by the second number. For example, 6 can be divided by 3 so

More information

17. Symmetries. Thus, the example above corresponds to the matrix: We shall now look at how permutations relate to trees.

17. Symmetries. Thus, the example above corresponds to the matrix: We shall now look at how permutations relate to trees. 7 Symmetries 7 Permutations A permutation of a set is a reordering of its elements Another way to look at it is as a function Φ that takes as its argument a set of natural numbers of the form {, 2,, n}

More information

Meet #5 March Intermediate Mathematics League of Eastern Massachusetts

Meet #5 March Intermediate Mathematics League of Eastern Massachusetts Meet #5 March 2008 Intermediate Mathematics League of Eastern Massachusetts Meet #5 March 2008 Category 1 Mystery 1. In the diagram to the right, each nonoverlapping section of the large rectangle is

More information

GAP CLOSING. Powers and Roots. Intermediate / Senior Student Book GAP CLOSING. Powers and Roots. Intermediate / Senior Student Book

GAP CLOSING. Powers and Roots. Intermediate / Senior Student Book GAP CLOSING. Powers and Roots. Intermediate / Senior Student Book GAP CLOSING Powers and Roots GAP CLOSING Powers and Roots Intermediate / Senior Student Book Intermediate / Senior Student Book Powers and Roots Diagnostic...3 Perfect Squares and Square Roots...6 Powers...

More information

Daniel Plotnick. November 5 th, 2017 Mock (Practice) AMC 8 Welcome!

Daniel Plotnick. November 5 th, 2017 Mock (Practice) AMC 8 Welcome! November 5 th, 2017 Mock (Practice) AMC 8 Welcome! 2011 = prime number 2012 = 2 2 503 2013 = 3 11 61 2014 = 2 19 53 2015 = 5 13 31 2016 = 2 5 3 2 7 1 2017 = prime number 2018 = 2 1009 2019 = 3 673 2020

More information

5. Find the least number which when multiplied with will make it a perfect square. A. 19 B. 22 C. 36 D. 42

5. Find the least number which when multiplied with will make it a perfect square. A. 19 B. 22 C. 36 D. 42 1. Find the square root of 484 by prime factorization method. A. 11 B. 22 C. 33 D. 44 2. Find the cube root of 19683. A. 25 B. 26 C. 27 D. 28 3. A certain number of people agree to subscribe as many rupees

More information

The congruence relation has many similarities to equality. The following theorem says that congruence, like equality, is an equivalence relation.

The congruence relation has many similarities to equality. The following theorem says that congruence, like equality, is an equivalence relation. Congruences A congruence is a statement about divisibility. It is a notation that simplifies reasoning about divisibility. It suggests proofs by its analogy to equations. Congruences are familiar to us

More information

Question: 1 - What will be the unit digit of the squares of the following numbers?

Question: 1 - What will be the unit digit of the squares of the following numbers? Square And Square Roots Question: 1 - What will be the unit digit of the squares of the following numbers? (i) 81 Answer: 1 Explanation: Since, 1 2 ends up having 1 as the digit at unit s place so 81 2

More information

UK JUNIOR MATHEMATICAL CHALLENGE. April 26th 2012

UK JUNIOR MATHEMATICAL CHALLENGE. April 26th 2012 UK JUNIOR MATHEMATICAL CHALLENGE April 6th 0 SOLUTIONS These solutions augment the printed solutions that we send to schools. For convenience, the solutions sent to schools are confined to two sides of

More information

1999 Mathcounts National Sprint Round Solutions

1999 Mathcounts National Sprint Round Solutions 999 Mathcounts National Sprint Round Solutions. Solution: 5. A -digit number is divisible by if the sum of its digits is divisible by. The first digit cannot be 0, so we have the following four groups

More information

Introductory Probability

Introductory Probability Introductory Probability Combinations Nicholas Nguyen nicholas.nguyen@uky.edu Department of Mathematics UK Agenda Assigning Objects to Identical Positions Denitions Committee Card Hands Coin Toss Counts

More information

Launchpad Maths. Arithmetic II

Launchpad Maths. Arithmetic II Launchpad Maths. Arithmetic II LAW OF DISTRIBUTION The Law of Distribution exploits the symmetries 1 of addition and multiplication to tell of how those operations behave when working together. Consider

More information

Maxima and Minima. Terminology note: Do not confuse the maximum f(a, b) (a number) with the point (a, b) where the maximum occurs.

Maxima and Minima. Terminology note: Do not confuse the maximum f(a, b) (a number) with the point (a, b) where the maximum occurs. 10-11-2010 HW: 14.7: 1,5,7,13,29,33,39,51,55 Maxima and Minima In this very important chapter, we describe how to use the tools of calculus to locate the maxima and minima of a function of two variables.

More information

1 Introduction. 2 An Easy Start. KenKen. Charlotte Teachers Institute, 2015

1 Introduction. 2 An Easy Start. KenKen. Charlotte Teachers Institute, 2015 1 Introduction R is a puzzle whose solution requires a combination of logic and simple arithmetic and combinatorial skills 1 The puzzles range in difficulty from very simple to incredibly difficult Students

More information

About Permutations and Combinations: Examples

About Permutations and Combinations: Examples About Permutations and Combinations: Examples TABLE OF CONTENTS Basics... 1 Product Rule...1-2 Sum Rule...2 Permutations... 2-3 Combinations... 3-4 Pascal s Triangle... 4 Binomial Theorem.. 4 Pascal s

More information

ON THE ENUMERATION OF MAGIC CUBES*

ON THE ENUMERATION OF MAGIC CUBES* 1934-1 ENUMERATION OF MAGIC CUBES 833 ON THE ENUMERATION OF MAGIC CUBES* BY D. N. LEHMER 1. Introduction. Assume the cube with one corner at the origin and the three edges at that corner as axes of reference.

More information

Contest 1. October 20, 2009

Contest 1. October 20, 2009 Contest 1 October 20, 2009 Problem 1 What value of x satisfies x(x-2009) = x(x+2009)? Problem 1 What value of x satisfies x(x-2009) = x(x+2009)? By inspection, x = 0 satisfies the equation. Problem 1 What

More information

Applications of Fermat s Little Theorem and Congruences

Applications of Fermat s Little Theorem and Congruences Applications of Fermat s Little Theorem and Congruences Definition: Let m be a positive integer. Then integers a and b are congruent modulo m, denoted by a b mod m, if m (a b). Example: 3 1 mod 2, 6 4

More information

ON SPLITTING UP PILES OF STONES

ON SPLITTING UP PILES OF STONES ON SPLITTING UP PILES OF STONES GREGORY IGUSA Abstract. In this paper, I describe the rules of a game, and give a complete description of when the game can be won, and when it cannot be won. The first

More information

BmMT 2013 TEAM ROUND SOLUTIONS 16 November 2013

BmMT 2013 TEAM ROUND SOLUTIONS 16 November 2013 BmMT 01 TEAM ROUND SOLUTIONS 16 November 01 1. If Bob takes 6 hours to build houses, he will take 6 hours to build = 1 houses. The answer is 18.. Here is a somewhat elegant way to do the calculation: 1

More information

DISCRETE STRUCTURES COUNTING

DISCRETE STRUCTURES COUNTING DISCRETE STRUCTURES COUNTING LECTURE2 The Pigeonhole Principle The generalized pigeonhole principle: If N objects are placed into k boxes, then there is at least one box containing at least N/k of the

More information

The prime factorization of 150 is 5 x 3 x 2 x 5. This can be written in any order.

The prime factorization of 150 is 5 x 3 x 2 x 5. This can be written in any order. Outcome 1 Number Sense Worksheet CO1A Students will demonstrate understanding of factors of whole numbers by determining the prime factors, greatest common factor, least common multiple, square root and

More information

Odd-Prime Number Detector The table of minterms is represented. Table 13.1

Odd-Prime Number Detector The table of minterms is represented. Table 13.1 Odd-Prime Number Detector The table of minterms is represented. Table 13.1 Minterm A B C D E 1 0 0 0 0 1 3 0 0 0 1 1 5 0 0 1 0 1 7 0 0 1 1 1 11 0 1 0 1 1 13 0 1 1 0 1 17 1 0 0 0 1 19 1 0 0 1 1 23 1 0 1

More information

Modular Arithmetic. claserken. July 2016

Modular Arithmetic. claserken. July 2016 Modular Arithmetic claserken July 2016 Contents 1 Introduction 2 2 Modular Arithmetic 2 2.1 Modular Arithmetic Terminology.................. 2 2.2 Properties of Modular Arithmetic.................. 2 2.3

More information

Q.1 Is 225 a perfect square? If so, find the number whose square is 225.

Q.1 Is 225 a perfect square? If so, find the number whose square is 225. Chapter 6 Q.1 Is 225 a perfect square? If so, find the number whose square is 225. Q2.Show that 63504 is a perfect square. Also, find the number whose square is 63504. Q3.Show that 17640 is not a perfect

More information

A natural number is called a perfect cube if it is the cube of some. some natural number.

A natural number is called a perfect cube if it is the cube of some. some natural number. A natural number is called a perfect square if it is the square of some natural number. i.e., if m = n 2, then m is a perfect square where m and n are natural numbers. A natural number is called a perfect

More information

Meet #3 January Intermediate Mathematics League of Eastern Massachusetts

Meet #3 January Intermediate Mathematics League of Eastern Massachusetts Meet #3 January 2009 Intermediate Mathematics League of Eastern Massachusetts Meet #3 January 2009 Category 1 Mystery 1. How many two-digit multiples of four are there such that the number is still a

More information

Published in India by. MRP: Rs Copyright: Takshzila Education Services

Published in India by.   MRP: Rs Copyright: Takshzila Education Services NUMBER SYSTEMS Published in India by www.takshzila.com MRP: Rs. 350 Copyright: Takshzila Education Services All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,

More information

Modular arithmetic Math 2320

Modular arithmetic Math 2320 Modular arithmetic Math 220 Fix an integer m 2, called the modulus. For any other integer a, we can use the division algorithm to write a = qm + r. The reduction of a modulo m is the remainder r resulting

More information

1999 Gauss Solutions 11 GRADE 8 (C) 1 5

1999 Gauss Solutions 11 GRADE 8 (C) 1 5 1999 Gauss s 11 Part GRDE 8 3 1. 10 + 10 + 10 equals () 1110 () 101 010 (C) 111 (D) 100 010 010 (E) 11 010 3 10 + 10 + 10 = 1000 + 100 + 10 = 1110 NSWER: (). 1 1 + is equal to 3 () () 1 (C) 1 (D) 3 (E)

More information

Meet # 1 October, Intermediate Mathematics League of Eastern Massachusetts

Meet # 1 October, Intermediate Mathematics League of Eastern Massachusetts Meet # 1 October, 2000 Intermediate Mathematics League of Eastern Massachusetts Meet # 1 October, 2000 Category 1 Mystery 1. In the picture shown below, the top half of the clock is obstructed from view

More information

(1) 2 x 6. (2) 5 x 8. (3) 9 x 12. (4) 11 x 14. (5) 13 x 18. Soln: Initial quantity of rice is x. After 1st customer, rice available In the Same way

(1) 2 x 6. (2) 5 x 8. (3) 9 x 12. (4) 11 x 14. (5) 13 x 18. Soln: Initial quantity of rice is x. After 1st customer, rice available In the Same way 1. A shop stores x kg of rice. The first customer buys half this amount plus half a kg of rice. The second customer buys half the remaining amount plus half a kg of rice. Then the third customer also buys

More information

Bilbo s New Adventures

Bilbo s New Adventures Bilbo s New Adventures Problem 1 Solve the equation: x + x + 1 x + = 0 Solution The left side of the equation is defined for x 0 Moving x + to the right hand side of the equation one gets: x + x + 1 =

More information

Squares and Square roots

Squares and Square roots Squares and Square roots Introduction of Squares and Square Roots: LECTURE - 1 If a number is multiplied by itsely, then the product is said to be the square of that number. i.e., If m and n are two natural

More information

Georgia Tech HSMC 2010

Georgia Tech HSMC 2010 Georgia Tech HSMC 2010 Junior Varsity Multiple Choice February 27 th, 2010 1. A box contains nine balls, labeled 1, 2,,..., 9. Suppose four balls are drawn simultaneously. What is the probability that

More information

6.2 Modular Arithmetic

6.2 Modular Arithmetic 6.2 Modular Arithmetic Every reader is familiar with arithmetic from the time they are three or four years old. It is the study of numbers and various ways in which we can combine them, such as through

More information

Determinants, Part 1

Determinants, Part 1 Determinants, Part We shall start with some redundant definitions. Definition. Given a matrix A [ a] we say that determinant of A is det A a. Definition 2. Given a matrix a a a 2 A we say that determinant

More information

4th Pui Ching Invitational Mathematics Competition. Final Event (Secondary 1)

4th Pui Ching Invitational Mathematics Competition. Final Event (Secondary 1) 4th Pui Ching Invitational Mathematics Competition Final Event (Secondary 1) 2 Time allowed: 2 hours Instructions to Contestants: 1. 100 This paper is divided into Section A and Section B. The total score

More information

12th Bay Area Mathematical Olympiad

12th Bay Area Mathematical Olympiad 2th Bay Area Mathematical Olympiad February 2, 200 Problems (with Solutions) We write {a,b,c} for the set of three different positive integers a, b, and c. By choosing some or all of the numbers a, b and

More information

1.6 Congruence Modulo m

1.6 Congruence Modulo m 1.6 Congruence Modulo m 47 5. Let a, b 2 N and p be a prime. Prove for all natural numbers n 1, if p n (ab) and p - a, then p n b. 6. In the proof of Theorem 1.5.6 it was stated that if n is a prime number

More information

MEASURING SHAPES M.K. HOME TUITION. Mathematics Revision Guides. Level: GCSE Foundation Tier

MEASURING SHAPES M.K. HOME TUITION. Mathematics Revision Guides. Level: GCSE Foundation Tier Mathematics Revision Guides Measuring Shapes Page 1 of 17 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Foundation Tier MEASURING SHAPES Version: 2.2 Date: 16-11-2015 Mathematics Revision Guides

More information

The Richard Stockton College of New Jersey Mathematical Mayhem 2013 Group Round

The Richard Stockton College of New Jersey Mathematical Mayhem 2013 Group Round The Richard Stockton College of New Jersey Mathematical Mayhem 2013 Group Round March 23, 2013 Name: Name: Name: High School: Instructions: This round consists of 5 problems worth 16 points each for a

More information

Your Task. Unit 3 (Chapter 1): Number Relationships. The 5 Goals of Chapter 1

Your Task. Unit 3 (Chapter 1): Number Relationships. The 5 Goals of Chapter 1 Unit 3 (Chapter 1): Number Relationships The 5 Goals of Chapter 1 I will be able to: model perfect squares and square roots use a variety of strategies to recognize perfect squares use a variety of strategies

More information

Bishop Domination on a Hexagonal Chess Board

Bishop Domination on a Hexagonal Chess Board Bishop Domination on a Hexagonal Chess Board Authors: Grishma Alakkat Austin Ferguson Jeremiah Collins Faculty Advisor: Dr. Dan Teague Written at North Carolina School of Science and Mathematics Completed

More information

Solving Big Problems

Solving Big Problems Solving Big Problems A 3-Week Book of Big Problems, Solved Solving Big Problems Students July 25 SPMPS/BEAM Contents Challenge Problems 2. Palindromes.................................... 2.2 Pick Your

More information

Whole Numbers. Predecessor and successor Given any natural number, you can add 1 to that number and get the next number i.e. you

Whole Numbers. Predecessor and successor Given any natural number, you can add 1 to that number and get the next number i.e. you Whole Numbers Chapter.1 Introduction As we know, we use 1,, 3, 4,... when we begin to count. They come naturally when we start counting. Hence, mathematicians call the counting numbers as Natural numbers.

More information

Class 8: Square Roots & Cube Roots (Lecture Notes)

Class 8: Square Roots & Cube Roots (Lecture Notes) Class 8: Square Roots & Cube Roots (Lecture Notes) SQUARE OF A NUMBER: The Square of a number is that number raised to the power. Examples: Square of 9 = 9 = 9 x 9 = 8 Square of 0. = (0.) = (0.) x (0.)

More information

28,800 Extremely Magic 5 5 Squares Arthur Holshouser. Harold Reiter.

28,800 Extremely Magic 5 5 Squares Arthur Holshouser. Harold Reiter. 28,800 Extremely Magic 5 5 Squares Arthur Holshouser 3600 Bullard St. Charlotte, NC, USA Harold Reiter Department of Mathematics, University of North Carolina Charlotte, Charlotte, NC 28223, USA hbreiter@uncc.edu

More information

Name Date. Chapter 15 Final Review

Name Date. Chapter 15 Final Review Name Date Chapter 15 Final Review Tell whether the events are independent or dependent. Explain. 9) You spin a spinner twice. First Spin: You spin a 2. Second Spin: You spin an odd number. 10) Your committee

More information

Welcome to Norwalk High School!

Welcome to Norwalk High School! Welcome to Norwalk High School! You are about to embark on the next journey in your educational career. We are looking forward to a year-long adventure with you in Algebra. There are a team of teachers

More information

Teacher s Notes. Problem of the Month: Courtney s Collection

Teacher s Notes. Problem of the Month: Courtney s Collection Teacher s Notes Problem of the Month: Courtney s Collection Overview: In the Problem of the Month, Courtney s Collection, students use number theory, number operations, organized lists and counting methods

More information

P1 Chapter 10 :: Trigonometric Identities & Equations

P1 Chapter 10 :: Trigonometric Identities & Equations P1 Chapter 10 :: Trigonometric Identities & Equations jfrost@tiffin.kingston.sch.uk www.drfrostmaths.com @DrFrostMaths Last modified: 20 th August 2017 Use of DrFrostMaths for practice Register for free

More information

25 C3. Rachel gave half of her money to Howard. Then Howard gave a third of all his money to Rachel. They each ended up with the same amount of money.

25 C3. Rachel gave half of her money to Howard. Then Howard gave a third of all his money to Rachel. They each ended up with the same amount of money. 24 s to the Olympiad Cayley Paper C1. The two-digit integer 19 is equal to the product of its digits (1 9) plus the sum of its digits (1 + 9). Find all two-digit integers with this property. If such a

More information

Puzzles ANIL KUMAR C P. The Institute of Mathematical Sciences, Chennai. Puzzles for kids. Date: May 4, 2014

Puzzles ANIL KUMAR C P. The Institute of Mathematical Sciences, Chennai. Puzzles for kids. Date: May 4, 2014 Puzzles By ANIL KUMAR C P The Institute of Mathematical Sciences, Chennai Puzzles for kids Date: May 4, 2014 To my School Teachers Gurur Brahma Gurur V ishnu, Gurur Devoh M aheswaraha Gurur Sakshath P

More information

YGB #2: Aren t You a Square?

YGB #2: Aren t You a Square? YGB #2: Aren t You a Square? Problem Statement How can one mathematically determine the total number of squares on a chessboard? Counting them is certainly subject to error, so is it possible to know if

More information

2005 Galois Contest Wednesday, April 20, 2005

2005 Galois Contest Wednesday, April 20, 2005 Canadian Mathematics Competition An activity of the Centre for Education in Mathematics and Computing, University of Waterloo, Waterloo, Ontario 2005 Galois Contest Wednesday, April 20, 2005 Solutions

More information

UKMT UKMT UKMT. Junior Kangaroo Mathematical Challenge. Tuesday 13th June 2017

UKMT UKMT UKMT. Junior Kangaroo Mathematical Challenge. Tuesday 13th June 2017 UKMT UKMT UKMT Junior Kangaroo Mathematical Challenge Tuesday 3th June 207 Organised by the United Kingdom Mathematics Trust The Junior Kangaroo allows students in the UK to test themselves on questions

More information

SMT 2014 Advanced Topics Test Solutions February 15, 2014

SMT 2014 Advanced Topics Test Solutions February 15, 2014 1. David flips a fair coin five times. Compute the probability that the fourth coin flip is the first coin flip that lands heads. 1 Answer: 16 ( ) 1 4 Solution: David must flip three tails, then heads.

More information

Simple Counting Problems

Simple Counting Problems Appendix F Counting Principles F1 Appendix F Counting Principles What You Should Learn 1 Count the number of ways an event can occur. 2 Determine the number of ways two or three events can occur using

More information

Representing Square Numbers. Use materials to represent square numbers. A. Calculate the number of counters in this square array.

Representing Square Numbers. Use materials to represent square numbers. A. Calculate the number of counters in this square array. 1.1 Student book page 4 Representing Square Numbers You will need counters a calculator Use materials to represent square numbers. A. Calculate the number of counters in this square array. 5 5 25 number

More information

Activity 1: Play comparison games involving fractions, decimals and/or integers.

Activity 1: Play comparison games involving fractions, decimals and/or integers. Students will be able to: Lesson Fractions, Decimals, Percents and Integers. Play comparison games involving fractions, decimals and/or integers,. Complete percent increase and decrease problems, and.

More information

Name Date. Chapter 15 Final Review

Name Date. Chapter 15 Final Review Name Date Chapter 15 Final Review Tell whether the events are independent or dependent. Explain. 9) You spin a spinner twice. First Spin: You spin a 2. Second Spin: You spin an odd number. 10) Your committee

More information

2-1 Inductive Reasoning and Conjecture

2-1 Inductive Reasoning and Conjecture Write a conjecture that describes the pattern in each sequence. Then use your conjecture to find the next item in the sequence. 18. 1, 4, 9, 16 1 = 1 2 4 = 2 2 9 = 3 2 16 = 4 2 Each element is the square

More information

Combinatorial Proofs

Combinatorial Proofs Combinatorial Proofs Two Counting Principles Some proofs concerning finite sets involve counting the number of elements of the sets, so we will look at the basics of counting. Addition Principle: If A

More information

14th Bay Area Mathematical Olympiad. BAMO Exam. February 28, Problems with Solutions

14th Bay Area Mathematical Olympiad. BAMO Exam. February 28, Problems with Solutions 14th Bay Area Mathematical Olympiad BAMO Exam February 28, 2012 Problems with Solutions 1 Hugo plays a game: he places a chess piece on the top left square of a 20 20 chessboard and makes 10 moves with

More information

2014 Edmonton Junior High Math Contest ANSWER KEY

2014 Edmonton Junior High Math Contest ANSWER KEY Print ID # School Name Student Name (Print First, Last) 100 2014 Edmonton Junior High Math Contest ANSWER KEY Part A: Multiple Choice Part B (short answer) Part C(short answer) 1. C 6. 10 15. 9079 2. B

More information

March 5, What is the area (in square units) of the region in the first quadrant defined by 18 x + y 20?

March 5, What is the area (in square units) of the region in the first quadrant defined by 18 x + y 20? March 5, 007 1. We randomly select 4 prime numbers without replacement from the first 10 prime numbers. What is the probability that the sum of the four selected numbers is odd? (A) 0.1 (B) 0.30 (C) 0.36

More information

Review I. October 14, 2008

Review I. October 14, 2008 Review I October 14, 008 If you put n + 1 pigeons in n pigeonholes then at least one hole would have more than one pigeon. If n(r 1 + 1 objects are put into n boxes, then at least one of the boxes contains

More information

Whole Numbers WHOLE NUMBERS PASSPORT.

Whole Numbers WHOLE NUMBERS PASSPORT. WHOLE NUMBERS PASSPORT www.mathletics.co.uk It is important to be able to identify the different types of whole numbers and recognise their properties so that we can apply the correct strategies needed

More information

Kettering University 14 th Mathematics Olympiad. November 22, Problems and Solutions

Kettering University 14 th Mathematics Olympiad. November 22, Problems and Solutions Kettering University 14 th Mathematics Olympiad November, 014 Problems and Solutions Problem 1. Solve the equation x x cos y + 1.5 = 0. Solution. x x cos y + 1.5 = x x + 0.5 + 1 cos y = (x 0.5) + (1 cos

More information

The Four Numbers Game

The Four Numbers Game University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 7-2007 The Four Numbers Game Tina Thompson University

More information

Problem A To and Fro (Problem appeared in the 2004/2005 Regional Competition in North America East Central.)

Problem A To and Fro (Problem appeared in the 2004/2005 Regional Competition in North America East Central.) Problem A To and Fro (Problem appeared in the 2004/2005 Regional Competition in North America East Central.) Mo and Larry have devised a way of encrypting messages. They first decide secretly on the number

More information

Trigonometric Identities. Copyright 2017, 2013, 2009 Pearson Education, Inc.

Trigonometric Identities. Copyright 2017, 2013, 2009 Pearson Education, Inc. 5 Trigonometric Identities Copyright 2017, 2013, 2009 Pearson Education, Inc. 1 5.5 Double-Angle Double-Angle Identities An Application Product-to-Sum and Sum-to-Product Identities Copyright 2017, 2013,

More information