Colouring tiles. Paul Hunter. June 2010

Size: px
Start display at page:

Download "Colouring tiles. Paul Hunter. June 2010"

Transcription

1 Colouring tiles Paul Hunter June Introduction We consider the following problem: For each tromino/tetromino, what are the minimum number of colours required to colour the standard tiling of the plane such that any copy of that shape is made up of different coloured tiles? We show that the minimum number of colours for each shape (see Figures 1 and 2 for notation used) is as follows: Shape Minimum number of colours I-tromino 3 L-tromino 4 I,O,S-tetromino 4 T-tetromino 5 L-tetromino 8 2 Lower bounds 2.1 I-tromino, I-tetromino, O-tetromino and S-tetromino Trivially 3 is the minimum number of colours required so that each tile of a tromino is a different colour. Likewise 4 is the minimum number of colours required for tetrominoes. I-tromino L-tromino Figure 1: The trominoes 1

2 I-tetromino O-tetromino L-tetromino T-tetromino S-tetromino Figure 2: The tetrominoes Figure 3: X-pentamino Lemma 1. At least 3 colours are required to validly colour the plane for the I-tromino and at least 4 colours are required to validly colour the plane for the I,O and S-tetrominoes. 2.2 L-tromino Suppose we can colour the plane with 3 colours so that any copy of the L- tromino consists of 3 different colours. Consider any 2 2 square of 4 tiles. By the pigeon-hole principle at least two of these tiles have the same colour and it is easy to see that a single L-tromino can cover these contradicting the validity of the colouring. Thus a valid colouring for the L-tromino must have at least 4 colours. Lemma 2. At least 4 colours are required to validly colour the plane for the L-tromino. 2.3 T-tetromino Suppose we can colour the plane with 4 colours so that any copy of the T- tetromino consists of 4 different colours. Consider any 5 tiles arranged in a cross as pictured in Figure 3. By the pigeon-hole principle at least two of these tiles have the same colour, and it is straightforward to see that any two tiles of an X-pentamino can be covered by a single T-tetromino contradicting the validity of the colouring. Thus a valid colouring for the T-tetromino must have at least 5 colours. 2

3 Lemma 3. At least 5 colours are required to validly colour the plane for the T-tetromino. 2.4 L-tetromino For the L-tetromino we need the following auxillary result. Lemma 4. If the plane can be validly coloured for the L-tetromino with 7 colours, then on any 3 3 square of 9 tiles the diagonally opposite corners (and only these pairs of tiles) have the same colour. Proof. On a 3 3 square of 9 tiles, the only pairs of tiles which cannot be covered by a single L-tetromino are the diagonally opposite corners. If the 3 3 square is coloured with 7 colours, then at least three tiles have a non-unique colour. Thus the only way for this square to be validly coloured is if both pairs of diagonally opposite corners have the same colour. Now suppose the plane is validly coloured for the L-tetromino with 7 colours and consider a 4 4 square of 16 tiles. We can partition these 16 tiles into eight pairs of diagonally opposite corners on a 3 3 sub-square. We note that any 3 3 sub-square contains at least one member of each pair. Applying the above lemma to each of the 3 3 sub-squares asserts that within each pair, both tiles have the same colour. As there are eight pairs and seven colours, by the pigeonhole principle there must be at least two pairs with the same colour. Since the 3 3 sub-square with one of those pairs as the diagonal corners contains at least one tile of the other pair, there exists an L-tetromino which covers two tiles of the same colour contradicting the validity of the colouring. Thus, Lemma 5. At least 8 colours are required to validly colour the plane for the L-tetromino. 3 Upper bounds In this section we give colourings which match the lower bounds of the previous section. For each colouring we give the minimum (non-repeating) block, the full colouring can be obtained by repeating the given colouring in the obvious way. 3.1 I-tromino and I-tetromino The colouring for the I-tromino can be seen in Figure 4 and for the I-tetromino can be seen in Figure 5. We note that in any row or column, tiles of the same colour have two (in Figure 4) or three (in Figure 5) tiles between them. As an I-tromino (I-tetromino) only covers three (four) tiles in the same row or column, it cannot possibly cover two tiles of the same colour. Thus the colourings are valid. Lemma 6. At most 3 colours are required for a valid colouring for the I-tromino and at most 4 colours are required for a valid colouring for the I-tetromino. 3

4 Figure 4: Colouring for the I-tromino Figure 5: Colouring for the I-tetromino 3.2 L-tromino, O-tetromino and S-tetromino The colouring for the L-tromino, O-tetromino and S-tetromino is shown in Figure 6. Since the L-tromino can be seen as a sub-shape of the O-tetromino, a valid colouring for the latter is also a valid colouring for the former. We note that the given colouring identifies odd and even rows and columns. That is, using a standard co-ordinate system for the tiles, each tile s colour is uniquely determined by the parity of each of its co-ordinates. Now any set of 4 tiles covered by an O or S-tetromino consists of either two adjacent tiles in one row and two adjacent tiles in the next row or two adjacent tiles in one column and two adjacent tiles in the next column (in the case of the O-tetromino, both cases occur). Thus each tile in the four has a unique pair of co-ordinates (modulo 2) and is thus coloured by a different colour. Lemma 7. At most 4 colours are required for a valid colouring of the L-tromino, O-tetromino and S-tetromino. Figure 6: Colouring for the L-tromino, O-tetromino and S-tetromino 4

5 Figure 7: Colouring for the T-tetromino 3.3 T-tetromino The colouring for the T-tetromino is shown in Figure 7. Using integer coordinates to identify tiles and the set [5] := {0,1,2,3,4} to identify colours, this colouring can be described by the function f(x,y) = 3x + y mod 5. We observe that for any x and y, f is a bijection from {(x,y),(x±1,y),(x,y±1)} to [5]. This means that for any set of 5 tiles covered by an X-pentamino, each is coloured uniquely. That is, the given colouring is a valid colouring for the X-pentamino. As a T-tetromino is a sub-shape of the X-pentamino, it follows that this is also a valid colouring for the T-tetromino. Lemma 8. At most 5 colours are required to validly colour the plane for the T-tetromino. 3.4 L-tetromino The colouring for the L-tetromino is shown in Figure 8. Using integer coordinates for tiles on the plane, we note that the Manhattan-distance (sum of difference between x-co-ordinates and difference between y-co-ordinates) between any two identically coloured tiles under this colouring is at least 4. As a single L-tetromino (indeed, any single tetromino) can only cover tiles with Manhattan-distance at most 3, there is no L-tetromino which covers two identically coloured tiles. Thus this is a valid colouring for the L-tetromino. Lemma 9. At most 8 colours are required to validly colour the plane for the L-tetromino. 5

6 Figure 8: Colouring for the L-tetromino 6

THE PIGEONHOLE PRINCIPLE. MARK FLANAGAN School of Electrical and Electronic Engineering University College Dublin

THE PIGEONHOLE PRINCIPLE. MARK FLANAGAN School of Electrical and Electronic Engineering University College Dublin THE PIGEONHOLE PRINCIPLE MARK FLANAGAN School of Electrical and Electronic Engineering University College Dublin The Pigeonhole Principle: If n + 1 objects are placed into n boxes, then some box contains

More information

Tilings with T and Skew Tetrominoes

Tilings with T and Skew Tetrominoes Quercus: Linfield Journal of Undergraduate Research Volume 1 Article 3 10-8-2012 Tilings with T and Skew Tetrominoes Cynthia Lester Linfield College Follow this and additional works at: http://digitalcommons.linfield.edu/quercus

More information

Notice: Individual students, nonprofit libraries, or schools are permitted to make fair use of the papers and its solutions.

Notice: Individual students, nonprofit libraries, or schools are permitted to make fair use of the papers and its solutions. Notice: Individual students, nonprofit libraries, or schools are permitted to make fair use of the papers and its solutions. Republication, systematic copying, or multiple reproduction of any part of this

More information

TILLING A DEFICIENT RECTANGLE WITH T-TETROMINOES. 1. Introduction

TILLING A DEFICIENT RECTANGLE WITH T-TETROMINOES. 1. Introduction TILLING A DEFICIENT RECTANGLE WITH T-TETROMINOES SHUXIN ZHAN Abstract. In this paper, we will prove that no deficient rectangles can be tiled by T-tetrominoes.. Introduction The story of the mathematics

More information

MATHEMATICS ON THE CHESSBOARD

MATHEMATICS ON THE CHESSBOARD MATHEMATICS ON THE CHESSBOARD Problem 1. Consider a 8 8 chessboard and remove two diametrically opposite corner unit squares. Is it possible to cover (without overlapping) the remaining 62 unit squares

More information

Minimal tilings of a unit square

Minimal tilings of a unit square arxiv:1607.00660v1 [math.mg] 3 Jul 2016 Minimal tilings of a unit square Iwan Praton Franklin & Marshall College Lancaster, PA 17604 Abstract Tile the unit square with n small squares. We determine the

More information

The Tilings of Deficient Squares by Ribbon L-Tetrominoes Are Diagonally Cracked

The Tilings of Deficient Squares by Ribbon L-Tetrominoes Are Diagonally Cracked Open Journal of Discrete Mathematics, 217, 7, 165-176 http://wwwscirporg/journal/ojdm ISSN Online: 2161-763 ISSN Print: 2161-7635 The Tilings of Deficient Squares by Ribbon L-Tetrominoes Are Diagonally

More information

Lecture 1, CS 2050, Intro Discrete Math for Computer Science

Lecture 1, CS 2050, Intro Discrete Math for Computer Science Lecture 1, 08--11 CS 050, Intro Discrete Math for Computer Science S n = 1++ 3+... +n =? Note: Recall that for the above sum we can also use the notation S n = n i. We will use a direct argument, in this

More information

1 Introduction. 2 An Easy Start. KenKen. Charlotte Teachers Institute, 2015

1 Introduction. 2 An Easy Start. KenKen. Charlotte Teachers Institute, 2015 1 Introduction R is a puzzle whose solution requires a combination of logic and simple arithmetic and combinatorial skills 1 The puzzles range in difficulty from very simple to incredibly difficult Students

More information

INSTRUCTION BOOKLET SUDOKU MASTERS 2008 NATIONAL SUDOKU CHAMPIONSHIP FINALS Q&A SESSION 10:30 10:50 PART 1 CLASSICS 11:00 11:35

INSTRUCTION BOOKLET SUDOKU MASTERS 2008 NATIONAL SUDOKU CHAMPIONSHIP FINALS Q&A SESSION 10:30 10:50 PART 1 CLASSICS 11:00 11:35 SUDOKU MASTERS 2008 NATIONAL SUDOKU CHAMPIONSHIP FINALS BANGALORE 23 MARCH 2008 INSTRUCTION BOOKLET http://www.sudokumasters.in Q&A SESSION 10:30 10:50 PART 1 CLASSICS 11:00 11:35 PART 2 SUDOKU MIX 11:50

More information

NAME : SUDOKU MASTERS 2008 FINALS PART 1 CLASSICS. 1. Classic Sudoku Classic Sudoku Classic Sudoku 50

NAME : SUDOKU MASTERS 2008 FINALS PART 1 CLASSICS. 1. Classic Sudoku Classic Sudoku Classic Sudoku 50 NAME : FINALS PART 1 SUDOKU MASTERS 2008 FINALS PART 1 CLASSICS 35 minutes Maximum score : 380 1. Classic Sudoku 25 2. Classic Sudoku 40 3. Classic Sudoku 50 SUDOKU MASTERS 2008 NATIONAL SUDOKU CHAMPIONSHIP

More information

Tile Number and Space-Efficient Knot Mosaics

Tile Number and Space-Efficient Knot Mosaics Tile Number and Space-Efficient Knot Mosaics Aaron Heap and Douglas Knowles arxiv:1702.06462v1 [math.gt] 21 Feb 2017 February 22, 2017 Abstract In this paper we introduce the concept of a space-efficient

More information

and problem sheet 7

and problem sheet 7 1-18 and 15-151 problem sheet 7 Solutions to the following five exercises and optional bonus problem are to be submitted through gradescope by 11:30PM on Friday nd November 018. Problem 1 Let A N + and

More information

Week 1. 1 What Is Combinatorics?

Week 1. 1 What Is Combinatorics? 1 What Is Combinatorics? Week 1 The question that what is combinatorics is similar to the question that what is mathematics. If we say that mathematics is about the study of numbers and figures, then combinatorics

More information

Determinants, Part 1

Determinants, Part 1 Determinants, Part We shall start with some redundant definitions. Definition. Given a matrix A [ a] we say that determinant of A is det A a. Definition 2. Given a matrix a a a 2 A we say that determinant

More information

Asymptotic Results for the Queen Packing Problem

Asymptotic Results for the Queen Packing Problem Asymptotic Results for the Queen Packing Problem Daniel M. Kane March 13, 2017 1 Introduction A classic chess problem is that of placing 8 queens on a standard board so that no two attack each other. This

More information

Math 127: Equivalence Relations

Math 127: Equivalence Relations Math 127: Equivalence Relations Mary Radcliffe 1 Equivalence Relations Relations can take many forms in mathematics. In these notes, we focus especially on equivalence relations, but there are many other

More information

12th Bay Area Mathematical Olympiad

12th Bay Area Mathematical Olympiad 2th Bay Area Mathematical Olympiad February 2, 200 Problems (with Solutions) We write {a,b,c} for the set of three different positive integers a, b, and c. By choosing some or all of the numbers a, b and

More information

arxiv: v2 [math.gt] 21 Mar 2018

arxiv: v2 [math.gt] 21 Mar 2018 Tile Number and Space-Efficient Knot Mosaics arxiv:1702.06462v2 [math.gt] 21 Mar 2018 Aaron Heap and Douglas Knowles March 22, 2018 Abstract In this paper we introduce the concept of a space-efficient

More information

Chapter 1. The alternating groups. 1.1 Introduction. 1.2 Permutations

Chapter 1. The alternating groups. 1.1 Introduction. 1.2 Permutations Chapter 1 The alternating groups 1.1 Introduction The most familiar of the finite (non-abelian) simple groups are the alternating groups A n, which are subgroups of index 2 in the symmetric groups S n.

More information

1. Non-Adaptive Weighing

1. Non-Adaptive Weighing 1. Non-Adaptive Weighing We consider the following classical problem. We have a set of N coins of which exactly one of them is different in weight from the others, all of which are identical. We want to

More information

IMOK Maclaurin Paper 2014

IMOK Maclaurin Paper 2014 IMOK Maclaurin Paper 2014 1. What is the largest three-digit prime number whose digits, and are different prime numbers? We know that, and must be three of,, and. Let denote the largest of the three digits,

More information

Some forbidden rectangular chessboards with an (a, b)-knight s move

Some forbidden rectangular chessboards with an (a, b)-knight s move The 22 nd Annual Meeting in Mathematics (AMM 2017) Department of Mathematics, Faculty of Science Chiang Mai University, Chiang Mai, Thailand Some forbidden rectangular chessboards with an (a, b)-knight

More information

Lower Bounds for the Number of Bends in Three-Dimensional Orthogonal Graph Drawings

Lower Bounds for the Number of Bends in Three-Dimensional Orthogonal Graph Drawings ÂÓÙÖÒÐ Ó ÖÔ ÐÓÖØÑ Ò ÔÔÐØÓÒ ØØÔ»»ÛÛÛº ºÖÓÛÒºÙ»ÔÙÐØÓÒ»» vol.?, no.?, pp. 1 44 (????) Lower Bounds for the Number of Bends in Three-Dimensional Orthogonal Graph Drawings David R. Wood School of Computer Science

More information

Lecture 2: Sum rule, partition method, difference method, bijection method, product rules

Lecture 2: Sum rule, partition method, difference method, bijection method, product rules Lecture 2: Sum rule, partition method, difference method, bijection method, product rules References: Relevant parts of chapter 15 of the Math for CS book. Discrete Structures II (Summer 2018) Rutgers

More information

Solitaire Games. MATH 171 Freshman Seminar for Mathematics Majors. J. Robert Buchanan. Department of Mathematics. Fall 2010

Solitaire Games. MATH 171 Freshman Seminar for Mathematics Majors. J. Robert Buchanan. Department of Mathematics. Fall 2010 Solitaire Games MATH 171 Freshman Seminar for Mathematics Majors J. Robert Buchanan Department of Mathematics Fall 2010 Standard Checkerboard Challenge 1 Suppose two diagonally opposite corners of the

More information

LESSON 2: THE INCLUSION-EXCLUSION PRINCIPLE

LESSON 2: THE INCLUSION-EXCLUSION PRINCIPLE LESSON 2: THE INCLUSION-EXCLUSION PRINCIPLE The inclusion-exclusion principle (also known as the sieve principle) is an extended version of the rule of the sum. It states that, for two (finite) sets, A

More information

16 Alternating Groups

16 Alternating Groups 16 Alternating Groups In this paragraph, we examine an important subgroup of S n, called the alternating group on n letters. We begin with a definition that will play an important role throughout this

More information

Rosen, Discrete Mathematics and Its Applications, 6th edition Extra Examples

Rosen, Discrete Mathematics and Its Applications, 6th edition Extra Examples Rosen, Discrete Mathematics and Its Applications, 6th edition Extra Examples Section 1.7 Proof Methods and Strategy Page references correspond to locations of Extra Examples icons in the textbook. p.87,

More information

A few chessboards pieces: 2 for each student, to play the role of knights.

A few chessboards pieces: 2 for each student, to play the role of knights. Parity Party Returns, Starting mod 2 games Resources A few sets of dominoes only for the break time! A few chessboards pieces: 2 for each student, to play the role of knights. Small coins, 16 per group

More information

What is counting? (how many ways of doing things) how many possible ways to choose 4 people from 10?

What is counting? (how many ways of doing things) how many possible ways to choose 4 people from 10? Chapter 5. Counting 5.1 The Basic of Counting What is counting? (how many ways of doing things) combinations: how many possible ways to choose 4 people from 10? how many license plates that start with

More information

Which Rectangular Chessboards Have a Bishop s Tour?

Which Rectangular Chessboards Have a Bishop s Tour? Which Rectangular Chessboards Have a Bishop s Tour? Gabriela R. Sanchis and Nicole Hundley Department of Mathematical Sciences Elizabethtown College Elizabethtown, PA 17022 November 27, 2004 1 Introduction

More information

To be able to determine the quadratic character of an arbitrary number mod p (p an odd prime), we. The first (and most delicate) case concerns 2

To be able to determine the quadratic character of an arbitrary number mod p (p an odd prime), we. The first (and most delicate) case concerns 2 Quadratic Reciprocity To be able to determine the quadratic character of an arbitrary number mod p (p an odd prime), we need to be able to evaluate q for any prime q. The first (and most delicate) case

More information

A Grid of Liars. Ryan Morrill University of Alberta

A Grid of Liars. Ryan Morrill University of Alberta A Grid of Liars Ryan Morrill rmorrill@ualberta.ca University of Alberta Say you have a row of 15 people, each can be either a knight or a knave. Knights always tell the truth, while Knaves always lie.

More information

BMT 2018 Combinatorics Test Solutions March 18, 2018

BMT 2018 Combinatorics Test Solutions March 18, 2018 . Bob has 3 different fountain pens and different ink colors. How many ways can he fill his fountain pens with ink if he can only put one ink in each pen? Answer: 0 Solution: He has options to fill his

More information

TROMPING GAMES: TILING WITH TROMINOES. Saúl A. Blanco 1 Department of Mathematics, Cornell University, Ithaca, NY 14853, USA

TROMPING GAMES: TILING WITH TROMINOES. Saúl A. Blanco 1 Department of Mathematics, Cornell University, Ithaca, NY 14853, USA INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY x (200x), #Axx TROMPING GAMES: TILING WITH TROMINOES Saúl A. Blanco 1 Department of Mathematics, Cornell University, Ithaca, NY 14853, USA sabr@math.cornell.edu

More information

STRATEGY AND COMPLEXITY OF THE GAME OF SQUARES

STRATEGY AND COMPLEXITY OF THE GAME OF SQUARES STRATEGY AND COMPLEXITY OF THE GAME OF SQUARES FLORIAN BREUER and JOHN MICHAEL ROBSON Abstract We introduce a game called Squares where the single player is presented with a pattern of black and white

More information

Solutions for the Practice Questions

Solutions for the Practice Questions Solutions for the Practice Questions Question 1. Find all solutions to the congruence 13x 12 (mod 35). Also, answer the following questions about the solutions to the above congruence. Are there solutions

More information

I.M.O. Winter Training Camp 2008: Invariants and Monovariants

I.M.O. Winter Training Camp 2008: Invariants and Monovariants I.M.. Winter Training Camp 2008: Invariants and Monovariants n math contests, you will often find yourself trying to analyze a process of some sort. For example, consider the following two problems. Sample

More information

25 C3. Rachel gave half of her money to Howard. Then Howard gave a third of all his money to Rachel. They each ended up with the same amount of money.

25 C3. Rachel gave half of her money to Howard. Then Howard gave a third of all his money to Rachel. They each ended up with the same amount of money. 24 s to the Olympiad Cayley Paper C1. The two-digit integer 19 is equal to the product of its digits (1 9) plus the sum of its digits (1 + 9). Find all two-digit integers with this property. If such a

More information

12. 6 jokes are minimal.

12. 6 jokes are minimal. Pigeonhole Principle Pigeonhole Principle: When you organize n things into k categories, one of the categories has at least n/k things in it. Proof: If each category had fewer than n/k things in it then

More information

PARITY, SYMMETRY, AND FUN PROBLEMS 1. April 16, 2017

PARITY, SYMMETRY, AND FUN PROBLEMS 1. April 16, 2017 PARITY, SYMMETRY, AND FUN PROBLEMS 1 April 16, 2017 Warm Up Problems Below are 11 numbers - six zeros and ve ones. Perform the following operation: cross out any two numbers. If they were equal, write

More information

An elementary study of Goldbach Conjecture

An elementary study of Goldbach Conjecture An elementary study of Goldbach Conjecture Denise Chemla 26/5/2012 Goldbach Conjecture (7 th, june 1742) states that every even natural integer greater than 4 is the sum of two odd prime numbers. If we

More information

Heuristic Search with Pre-Computed Databases

Heuristic Search with Pre-Computed Databases Heuristic Search with Pre-Computed Databases Tsan-sheng Hsu tshsu@iis.sinica.edu.tw http://www.iis.sinica.edu.tw/~tshsu 1 Abstract Use pre-computed partial results to improve the efficiency of heuristic

More information

#A3 INTEGERS 17 (2017) A NEW CONSTRAINT ON PERFECT CUBOIDS. Thomas A. Plick

#A3 INTEGERS 17 (2017) A NEW CONSTRAINT ON PERFECT CUBOIDS. Thomas A. Plick #A3 INTEGERS 17 (2017) A NEW CONSTRAINT ON PERFECT CUBOIDS Thomas A. Plick tomplick@gmail.com Received: 10/5/14, Revised: 9/17/16, Accepted: 1/23/17, Published: 2/13/17 Abstract We show that out of the

More information

arxiv: v1 [math.gt] 11 Feb 2016

arxiv: v1 [math.gt] 11 Feb 2016 KNOT MOSAIC TABULATION HWA JEONG LEE, LEWIS D. LUDWIG, JOSEPH S. PAAT, AND AMANDA PEIFFER arxiv:1602.03733v1 [math.gt] 11 Feb 2016 Abstract. In 2008, Lomonaco and Kauffman introduced a knot mosaic system

More information

Solution Algorithm to the Sam Loyd (n 2 1) Puzzle

Solution Algorithm to the Sam Loyd (n 2 1) Puzzle Solution Algorithm to the Sam Loyd (n 2 1) Puzzle Kyle A. Bishop Dustin L. Madsen December 15, 2009 Introduction The Sam Loyd puzzle was a 4 4 grid invented in the 1870 s with numbers 0 through 15 on each

More information

LECTURE 3: CONGRUENCES. 1. Basic properties of congruences We begin by introducing some definitions and elementary properties.

LECTURE 3: CONGRUENCES. 1. Basic properties of congruences We begin by introducing some definitions and elementary properties. LECTURE 3: CONGRUENCES 1. Basic properties of congruences We begin by introducing some definitions and elementary properties. Definition 1.1. Suppose that a, b Z and m N. We say that a is congruent to

More information

Introduction to Pentominoes. Pentominoes

Introduction to Pentominoes. Pentominoes Pentominoes Pentominoes are those shapes consisting of five congruent squares joined edge-to-edge. It is not difficult to show that there are only twelve possible pentominoes, shown below. In the literature,

More information

1.6 Congruence Modulo m

1.6 Congruence Modulo m 1.6 Congruence Modulo m 47 5. Let a, b 2 N and p be a prime. Prove for all natural numbers n 1, if p n (ab) and p - a, then p n b. 6. In the proof of Theorem 1.5.6 it was stated that if n is a prime number

More information

Senior Math Circles February 10, 2010 Game Theory II

Senior Math Circles February 10, 2010 Game Theory II 1 University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Senior Math Circles February 10, 2010 Game Theory II Take-Away Games Last Wednesday, you looked at take-away

More information

Counting Problems

Counting Problems Counting Problems Counting problems are generally encountered somewhere in any mathematics course. Such problems are usually easy to state and even to get started, but how far they can be taken will vary

More information

GEOGRAPHY PLAYED ON AN N-CYCLE TIMES A 4-CYCLE

GEOGRAPHY PLAYED ON AN N-CYCLE TIMES A 4-CYCLE GEOGRAPHY PLAYED ON AN N-CYCLE TIMES A 4-CYCLE M. S. Hogan 1 Department of Mathematics and Computer Science, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada D. G. Horrocks 2 Department

More information

Magic Squares. Lia Malato Leite Victoria Jacquemin Noemie Boillot

Magic Squares. Lia Malato Leite Victoria Jacquemin Noemie Boillot Magic Squares Lia Malato Leite Victoria Jacquemin Noemie Boillot Experimental Mathematics University of Luxembourg Faculty of Sciences, Tecnology and Communication 2nd Semester 2015/2016 Table des matières

More information

Characterization of Domino Tilings of. Squares with Prescribed Number of. Nonoverlapping 2 2 Squares. Evangelos Kranakis y.

Characterization of Domino Tilings of. Squares with Prescribed Number of. Nonoverlapping 2 2 Squares. Evangelos Kranakis y. Characterization of Domino Tilings of Squares with Prescribed Number of Nonoverlapping 2 2 Squares Evangelos Kranakis y (kranakis@scs.carleton.ca) Abstract For k = 1; 2; 3 we characterize the domino tilings

More information

MATH 433 Applied Algebra Lecture 12: Sign of a permutation (continued). Abstract groups.

MATH 433 Applied Algebra Lecture 12: Sign of a permutation (continued). Abstract groups. MATH 433 Applied Algebra Lecture 12: Sign of a permutation (continued). Abstract groups. Permutations Let X be a finite set. A permutation of X is a bijection from X to itself. The set of all permutations

More information

Graphs of Tilings. Patrick Callahan, University of California Office of the President, Oakland, CA

Graphs of Tilings. Patrick Callahan, University of California Office of the President, Oakland, CA Graphs of Tilings Patrick Callahan, University of California Office of the President, Oakland, CA Phyllis Chinn, Department of Mathematics Humboldt State University, Arcata, CA Silvia Heubach, Department

More information

The Classification of Quadratic Rook Polynomials of a Generalized Three Dimensional Board

The Classification of Quadratic Rook Polynomials of a Generalized Three Dimensional Board Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 13, Number 3 (2017), pp. 1091-1101 Research India Publications http://www.ripublication.com The Classification of Quadratic Rook Polynomials

More information

Assignment 1, due Monday September 19, 2005

Assignment 1, due Monday September 19, 2005 Assignment 1, due Monday September 19, 2005 Problem 1. Four people are being pursued by a menacing beast. It is nighttime, and they need to cross a bridge to reach safety. It is pitch black, and only two

More information

On Variants of Nim and Chomp

On Variants of Nim and Chomp The Minnesota Journal of Undergraduate Mathematics On Variants of Nim and Chomp June Ahn 1, Benjamin Chen 2, Richard Chen 3, Ezra Erives 4, Jeremy Fleming 3, Michael Gerovitch 5, Tejas Gopalakrishna 6,

More information

PRIMES STEP Plays Games

PRIMES STEP Plays Games PRIMES STEP Plays Games arxiv:1707.07201v1 [math.co] 22 Jul 2017 Pratik Alladi Neel Bhalla Tanya Khovanova Nathan Sheffield Eddie Song William Sun Andrew The Alan Wang Naor Wiesel Kevin Zhang Kevin Zhao

More information

Solutions to the European Kangaroo Pink Paper

Solutions to the European Kangaroo Pink Paper Solutions to the European Kangaroo Pink Paper 1. The calculation can be approximated as follows: 17 0.3 20.16 999 17 3 2 1000 2. A y plotting the points, it is easy to check that E is a square. Since any

More information

CSE 20 DISCRETE MATH. Fall

CSE 20 DISCRETE MATH. Fall CSE 20 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Today's learning goals Define and compute the cardinality of a set. Use functions to compare the sizes of sets. Classify sets

More information

SOLUTIONS FOR PROBLEM SET 4

SOLUTIONS FOR PROBLEM SET 4 SOLUTIONS FOR PROBLEM SET 4 A. A certain integer a gives a remainder of 1 when divided by 2. What can you say about the remainder that a gives when divided by 8? SOLUTION. Let r be the remainder that a

More information

Polyominoes. n

Polyominoes. n Polyominoes A polyonmino is the name given to plane figures created by groups of squares touching at their edges. Polyominoes are generally referred to in groups, sharing a characteristic number of sides,

More information

Puzzles ANIL KUMAR C P. The Institute of Mathematical Sciences, Chennai. Puzzles for kids. Date: May 4, 2014

Puzzles ANIL KUMAR C P. The Institute of Mathematical Sciences, Chennai. Puzzles for kids. Date: May 4, 2014 Puzzles By ANIL KUMAR C P The Institute of Mathematical Sciences, Chennai Puzzles for kids Date: May 4, 2014 To my School Teachers Gurur Brahma Gurur V ishnu, Gurur Devoh M aheswaraha Gurur Sakshath P

More information

NON-OVERLAPPING PERMUTATION PATTERNS. To Doron Zeilberger, for his Sixtieth Birthday

NON-OVERLAPPING PERMUTATION PATTERNS. To Doron Zeilberger, for his Sixtieth Birthday NON-OVERLAPPING PERMUTATION PATTERNS MIKLÓS BÓNA Abstract. We show a way to compute, to a high level of precision, the probability that a randomly selected permutation of length n is nonoverlapping. As

More information

THE NUMBER OF PERMUTATIONS WHICH FORM ARITHMETIC PROGRESSIONS MODULO m

THE NUMBER OF PERMUTATIONS WHICH FORM ARITHMETIC PROGRESSIONS MODULO m ANALELE ŞTIINŢIFICE ALE UNIVERSITĂŢII AL.I. CUZA DIN IAŞI (S.N.) MATEMATICĂ, Tomul LXI, 2015, f.2 THE NUMBER OF PERMUTATIONS WHICH FORM ARITHMETIC PROGRESSIONS MODULO m BY FLORIAN LUCA and AUGUSTINE O.

More information

Second Annual University of Oregon Programming Contest, 1998

Second Annual University of Oregon Programming Contest, 1998 A Magic Magic Squares A magic square of order n is an arrangement of the n natural numbers 1,...,n in a square array such that the sums of the entries in each row, column, and each of the two diagonals

More information

Intriguing Problems for Students in a Proofs Class

Intriguing Problems for Students in a Proofs Class Intriguing Problems for Students in a Proofs Class Igor Minevich Boston College AMS - MAA Joint Mathematics Meetings January 5, 2017 Outline 1 Induction 2 Numerical Invariant 3 Pigeonhole Principle Induction:

More information

Weighted Polya Theorem. Solitaire

Weighted Polya Theorem. Solitaire Weighted Polya Theorem. Solitaire Sasha Patotski Cornell University ap744@cornell.edu December 15, 2015 Sasha Patotski (Cornell University) Weighted Polya Theorem. Solitaire December 15, 2015 1 / 15 Cosets

More information

Three Pile Nim with Move Blocking. Arthur Holshouser. Harold Reiter.

Three Pile Nim with Move Blocking. Arthur Holshouser. Harold Reiter. Three Pile Nim with Move Blocking Arthur Holshouser 3600 Bullard St Charlotte, NC, USA Harold Reiter Department of Mathematics, University of North Carolina Charlotte, Charlotte, NC 28223, USA hbreiter@emailunccedu

More information

EXPLAINING THE SHAPE OF RSK

EXPLAINING THE SHAPE OF RSK EXPLAINING THE SHAPE OF RSK SIMON RUBINSTEIN-SALZEDO 1. Introduction There is an algorithm, due to Robinson, Schensted, and Knuth (henceforth RSK), that gives a bijection between permutations σ S n and

More information

PROOFS OF SOME BINOMIAL IDENTITIES USING THE METHOD OF LAST SQUARES

PROOFS OF SOME BINOMIAL IDENTITIES USING THE METHOD OF LAST SQUARES PROOFS OF SOME BINOMIAL IDENTITIES USING THE METHOD OF LAST SQUARES MARK SHATTUCK AND TAMÁS WALDHAUSER Abstract. We give combinatorial proofs for some identities involving binomial sums that have no closed

More information

Generating trees and pattern avoidance in alternating permutations

Generating trees and pattern avoidance in alternating permutations Generating trees and pattern avoidance in alternating permutations Joel Brewster Lewis Massachusetts Institute of Technology jblewis@math.mit.edu Submitted: Aug 6, 2011; Accepted: Jan 10, 2012; Published:

More information

Non-overlapping permutation patterns

Non-overlapping permutation patterns PU. M. A. Vol. 22 (2011), No.2, pp. 99 105 Non-overlapping permutation patterns Miklós Bóna Department of Mathematics University of Florida 358 Little Hall, PO Box 118105 Gainesville, FL 326118105 (USA)

More information

Solving Triangular Peg Solitaire

Solving Triangular Peg Solitaire 1 2 3 47 23 11 Journal of Integer Sequences, Vol. 11 (2008), Article 08.4.8 arxiv:math/070385v [math.co] 17 Jan 2009 Solving Triangular Peg Solitaire George I. Bell Tech-X Corporation 521 Arapahoe Ave,

More information

completing Magic Squares

completing Magic Squares University of Liverpool Maths Club November 2014 completing Magic Squares Peter Giblin (pjgiblin@liv.ac.uk) 1 First, a 4x4 magic square to remind you what it is: 8 11 14 1 13 2 7 12 3 16 9 6 10 5 4 15

More information

A STUDY OF EULERIAN NUMBERS FOR PERMUTATIONS IN THE ALTERNATING GROUP

A STUDY OF EULERIAN NUMBERS FOR PERMUTATIONS IN THE ALTERNATING GROUP INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A31 A STUDY OF EULERIAN NUMBERS FOR PERMUTATIONS IN THE ALTERNATING GROUP Shinji Tanimoto Department of Mathematics, Kochi Joshi University

More information

Math 255 Spring 2017 Solving x 2 a (mod n)

Math 255 Spring 2017 Solving x 2 a (mod n) Math 255 Spring 2017 Solving x 2 a (mod n) Contents 1 Lifting 1 2 Solving x 2 a (mod p k ) for p odd 3 3 Solving x 2 a (mod 2 k ) 5 4 Solving x 2 a (mod n) for general n 9 1 Lifting Definition 1.1. Let

More information

A variation on the game SET

A variation on the game SET A variation on the game SET David Clark 1, George Fisk 2, and Nurullah Goren 3 1 Grand Valley State University 2 University of Minnesota 3 Pomona College June 25, 2015 Abstract Set is a very popular card

More information

Once you get a solution draw it below, showing which three pennies you moved and where you moved them to. My Solution:

Once you get a solution draw it below, showing which three pennies you moved and where you moved them to. My Solution: Arrange 10 pennies on your desk as shown in the diagram below. The challenge in this puzzle is to change the direction of that the triangle is pointing by moving only three pennies. Once you get a solution

More information

POSSIBILITIES AND IMPOSSIBILITIES IN SQUARE-TILING

POSSIBILITIES AND IMPOSSIBILITIES IN SQUARE-TILING International Journal of Computational Geometry & Applications Vol. 21, No. 5 (2011) 545 558 c World Scientific Publishing Company DOI: 10.1142/S0218195911003792 POSSIBILITIES AND IMPOSSIBILITIES IN SQUARE-TILING

More information

UNIVERSITY OF NORTHERN COLORADO MATHEMATICS CONTEST

UNIVERSITY OF NORTHERN COLORADO MATHEMATICS CONTEST UNIVERSITY OF NORTHERN COLORADO MATHEMATICS CONTEST First Round For all Colorado Students Grades 7-12 October 31, 2009 You have 90 minutes no calculators allowed The average of n numbers is their sum divided

More information

Wilson s Theorem and Fermat s Theorem

Wilson s Theorem and Fermat s Theorem Wilson s Theorem and Fermat s Theorem 7-27-2006 Wilson s theorem says that p is prime if and only if (p 1)! = 1 (mod p). Fermat s theorem says that if p is prime and p a, then a p 1 = 1 (mod p). Wilson

More information

Recovery and Characterization of Non-Planar Resistor Networks

Recovery and Characterization of Non-Planar Resistor Networks Recovery and Characterization of Non-Planar Resistor Networks Julie Rowlett August 14, 1998 1 Introduction In this paper we consider non-planar conductor networks. A conductor is a two-sided object which

More information

Optimal Results in Staged Self-Assembly of Wang Tiles

Optimal Results in Staged Self-Assembly of Wang Tiles Optimal Results in Staged Self-Assembly of Wang Tiles Rohil Prasad Jonathan Tidor January 22, 2013 Abstract The subject of self-assembly deals with the spontaneous creation of ordered systems from simple

More information

100 (mod ) (3) [Section 1.3 Gauss s trick ]. Find the sum = Explain your method of solution:

100 (mod ) (3) [Section 1.3 Gauss s trick ]. Find the sum = Explain your method of solution: Math 46 Sample Test 1 Fall 2008 The first test will have about ten problems, similar to ten of the problems here. We might not have covered all the material here, but will do so by the next class! Open

More information

Exploring Concepts with Cubes. A resource book

Exploring Concepts with Cubes. A resource book Exploring Concepts with Cubes A resource book ACTIVITY 1 Gauss s method Gauss s method is a fast and efficient way of determining the sum of an arithmetic series. Let s illustrate the method using the

More information

Solutions of problems for grade R5

Solutions of problems for grade R5 International Mathematical Olympiad Formula of Unity / The Third Millennium Year 016/017. Round Solutions of problems for grade R5 1. Paul is drawing points on a sheet of squared paper, at intersections

More information

LAMC Beginners Circle April 27, Oleg Gleizer. Warm-up

LAMC Beginners Circle April 27, Oleg Gleizer. Warm-up LAMC Beginners Circle April 27, 2014 Oleg Gleizer oleg1140@gmail.com Warm-up Problem 1 Take a two-digit number and write it down three times to form a six-digit number. For example, the two-digit number

More information

Hamming Codes as Error-Reducing Codes

Hamming Codes as Error-Reducing Codes Hamming Codes as Error-Reducing Codes William Rurik Arya Mazumdar Abstract Hamming codes are the first nontrivial family of error-correcting codes that can correct one error in a block of binary symbols.

More information

Counting Cube Colorings with the Cauchy-Frobenius Formula and Further Friday Fun

Counting Cube Colorings with the Cauchy-Frobenius Formula and Further Friday Fun Counting Cube Colorings with the Cauchy-Frobenius Formula and Further Friday Fun Daniel Frohardt Wayne State University December 3, 2010 We have a large supply of squares of in 3 different colors and an

More information

NIM Games: Handout 1

NIM Games: Handout 1 NIM Games: Handout 1 Based on notes by William Gasarch 1 One-Pile NIM Games Consider the following two-person game in which players alternate making moves. There are initially n stones on the board. During

More information

Aesthetically Pleasing Azulejo Patterns

Aesthetically Pleasing Azulejo Patterns Bridges 2009: Mathematics, Music, Art, Architecture, Culture Aesthetically Pleasing Azulejo Patterns Russell Jay Hendel Mathematics Department, Room 312 Towson University 7800 York Road Towson, MD, 21252,

More information

The Product Rule The Product Rule: A procedure can be broken down into a sequence of two tasks. There are n ways to do the first task and n

The Product Rule The Product Rule: A procedure can be broken down into a sequence of two tasks. There are n ways to do the first task and n Chapter 5 Chapter Summary 5.1 The Basics of Counting 5.2 The Pigeonhole Principle 5.3 Permutations and Combinations 5.5 Generalized Permutations and Combinations Section 5.1 The Product Rule The Product

More information

MC215: MATHEMATICAL REASONING AND DISCRETE STRUCTURES

MC215: MATHEMATICAL REASONING AND DISCRETE STRUCTURES MC215: MATHEMATICAL REASONING AND DISCRETE STRUCTURES Thursday, 4/17/14 The Addition Principle The Inclusion-Exclusion Principle The Pigeonhole Principle Reading: [J] 6.1, 6.8 [H] 3.5, 12.3 Exercises:

More information

Permutation Groups. Every permutation can be written as a product of disjoint cycles. This factorization is unique up to the order of the factors.

Permutation Groups. Every permutation can be written as a product of disjoint cycles. This factorization is unique up to the order of the factors. Permutation Groups 5-9-2013 A permutation of a set X is a bijective function σ : X X The set of permutations S X of a set X forms a group under function composition The group of permutations of {1,2,,n}

More information

BAND SURGERY ON KNOTS AND LINKS, III

BAND SURGERY ON KNOTS AND LINKS, III BAND SURGERY ON KNOTS AND LINKS, III TAIZO KANENOBU Abstract. We give two criteria of links concerning a band surgery: The first one is a condition on the determinants of links which are related by a band

More information

THE ASSOCIATION OF MATHEMATICS TEACHERS OF NEW JERSEY 2018 ANNUAL WINTER CONFERENCE FOSTERING GROWTH MINDSETS IN EVERY MATH CLASSROOM

THE ASSOCIATION OF MATHEMATICS TEACHERS OF NEW JERSEY 2018 ANNUAL WINTER CONFERENCE FOSTERING GROWTH MINDSETS IN EVERY MATH CLASSROOM THE ASSOCIATION OF MATHEMATICS TEACHERS OF NEW JERSEY 2018 ANNUAL WINTER CONFERENCE FOSTERING GROWTH MINDSETS IN EVERY MATH CLASSROOM CREATING PRODUCTIVE LEARNING ENVIRONMENTS WEDNESDAY, FEBRUARY 7, 2018

More information