LAMC Junior Circle January 22, Oleg Gleizer. The Hanoi Tower. Part 2

Size: px
Start display at page:

Download "LAMC Junior Circle January 22, Oleg Gleizer. The Hanoi Tower. Part 2"

Transcription

1 LAMC Junior Circle January 22, 2012 Oleg Gleizer The Hanoi Tower Part 2 Definition 1 An algorithm is a finite set of clear instructions to solve a problem. An algorithm is called optimal, if the solution it provides is the shortest possible. In this class, we shall find an optimal algorithm that solves the Hanoi tower puzzle. Consider the original arrangement with all the disks on the left rod. Let us number the disks 1 through n from the top to the bottom. Let us name the rods A, B, and C from the left to the right. Let us write down the moves in three-symbol words, first the number of the disk, then the name of the rod it is moved from, and finally the name of the rod the disk is moved to. For example, the move that shifts the second disk from rod A to rod C will be denoted as 2AC. Problem 1 Using the above notations, write down the following move: disk five from rod B to rod C. Let us first solve the Hanoi tower puzzle with two disks. In this case, it s easy to figure out the algorithm: the first disk goes 1

2 from rod A to rod B, then the second disk is moved from rod A to rod C, and finally the first disk goes from rod B to rod C. Let us call the algorithm HT 2 (AC). In the above notations, it can be written down as follows. HT 2 (AC) = 1AB 2AC 1BC (1) HT 2 (AC) not only solves the Hanoi tower puzzle with two disks, but also does it the shortest possible way and thus is optimal. (Why?) Problem 2 Write down the shortest algorithm, HT 2 (AB), that moves two disks from rod A to rod B. Note that the formula you get is nothing but formula 1 with letters B and C switched. Problem 3 Rewrite formula 1 with letters A and B switched. Write down the optimal algorithm, HT 2 (BC), that moves two disks from rod B to rod C. Do you get the same formula? Why? 2

3 Let us consider the three-disk case. To move the third disk from rod A to rod C, we first need to move the upper two disks from rod A to rod B. This is done by the algorithm HT 2 (AB) from Problem 2. Further on, the move 3AC shifts the third disk from rod A to rod C. Finally, we need to move the first two disks from rod B to rod C. The algorithm doing just that, HT 2 (BC), is found in Problem 3. So here comes the algorithm for three disks: HT 3 (AC) = HT 2 (AB) 3AC HT 2 (BC) (2) or explicitly, HT 3 (AC) = 1AC 2AB 1CB 3AC 1BA 2BC 1AC (3) Problem 4 Use the actual puzzle to check if the above algorithm really works for three disks. Problem 5 Is the algorithm HT 3 (AC) optimal? Why or why not? Let us call the number of moves needed to solve the puzzle with n disks N(n). Then N(2) = 3 and N(3) = N(2) N(2) = = 7. Problem 6 Write down the optimal algorithm, HT 3 (BC), that moves three disks from rod B to rod C. Problem 7 Write down the optimal algorithm, HT 3 (AB), that moves three disks from rod A to rod B. 3

4 Problem 8 Using Problems 6 and 7 combined, write down the optimal algorithm, HT 4 (AC), that moves four disk from rod A to rod C. To see whether it really works, apply the algorithm to the actual puzzle. Problem 9 Find N(4). Problem 10 Write down the optimal algorithm that solves the puzzle for n = 5. Apply the algorithm to the actual puzzle. Find N(5). It s time to generalize: once we know the optimal algorithm HT n (AC) to move n disks from rod A to rod C, we can construct 4

5 the algorithm HT n+1 (AC) optimal for solving the puzzle with n + 1 disks. HT n (AB), the algorithm obtained from HT n (AC) by switching letters B and C in every three-symbol word, moves the top n disks from rod A to rod B. The next move, (n+1)ac, shifts the largest disk from rod A to rod C. Finally, the algorithm HT n (BC), that is HT n (AC) with letters A and B replacing each other, moves the upper n disks from rod B to rod C. HT n+1 (AC) = HT n (AB) (n + 1)AC HT n (BC) (4) HT n+1 (AC) is optimal as well. (Why?) Its length Problem 11 Find N(10). N(n + 1) = N(n) N(n) (5) HT n is an example of a recursive algorithm. In order to solve the puzzle with n disks, we need to apply our solution procedure to the problem with n 1 disks. HT n (AC) = HT n 1 (AB) nac HT n 1 (BC) 5

6 To solve the latter, we run the algorithm for n 2 disks, HT n (AC) = HT n 2 (AC) (n 1)AB HT n 2 (CB) }{{} HT n 1 (AB) nac HT n 2 (BA) (n 1)BC HT n 2 (AC) }{{} HT n 1 (BC) and so forth. Problem 12 Find the optimal algorithm to solve the Hanoi tower puzzle with eight disks having the following initial arrangement: the eighth disk is on rod B, the seventh on rod A, the first six disks on rod C. How many moves will it take? 6

7 Consider the Hanoi tower puzzle with four rods (also known as Reve s puzzle). We can easily come with the following winning algorithm for n disks. Choose 0 < k < n. Use the optimal algorithm for three rods and k disks to move the first k disks to any rod except for the last one. Keeping the first k disks still, move the remaining n k disks to the last rod by using the optimal algorithm for three rods and n k disks. The problem is reduced to a similar one, but with k disks instead of n. For any k = 1, 2,..., n 1, the algorithm solves the puzzle, but is any of the above n 1 algorithms optimal? We don t know! The problem of finding an optimal solution for the Hanoi tower puzzle with more than three rods is still open. Quite often, a path from an elementary school problem to the frontier of the ongoing research is not too long. Problem 13 Using a pencil as the forth rod, solve the Hanoi tower puzzle with four rods and five disks. Suppose that the monks move a disk every second. Using formula 5, it is not too hard to find N(64). The computation shows that the monks will need more than 500, 000, 000, 000 years, that is five hundred billion years, to solve the puzzle. Our world will not end in quite some time! 7

= (2 3 ) = c LAMC Beginners Circle September 29, Oleg Gleizer. Warm-up

= (2 3 ) = c LAMC Beginners Circle September 29, Oleg Gleizer. Warm-up LAMC Beginners Circle September 29, 2013 Oleg Gleizer oleg1140@gmail.com Warm-up Problem 1 Simplify the following expressions as much as possible. a. b. 9 3 3 6 = (2 3 ) 4 2 3 2 4 = c. 23 4 2 3 2 4 = d.

More information

Finite Math - Fall 2016

Finite Math - Fall 2016 Finite Math - Fall 206 Lecture Notes - /28/206 Section 7.4 - Permutations and Combinations There are often situations in which we have to multiply many consecutive numbers together, for example, in examples

More information

Lesson Plan for Teachers

Lesson Plan for Teachers Grade level recommendation: 8 th grade Lesson Plan for Teachers Learning goals: Problem solving Reasoning Basic algebra Exponents Recursive equations Explicit equations NCTM standards correlation: http://www.nctm.org/standards/

More information

LAMC Junior Circle February 3, Oleg Gleizer. Warm-up

LAMC Junior Circle February 3, Oleg Gleizer. Warm-up LAMC Junior Circle February 3, 2013 Oleg Gleizer oleg1140@gmail.com Warm-up Problem 1 Compute the following. 2 3 ( 4) + 6 2 Problem 2 Can the value of a fraction increase, if we add one to the numerator

More information

COUNTING AND PROBABILITY

COUNTING AND PROBABILITY CHAPTER 9 COUNTING AND PROBABILITY Copyright Cengage Learning. All rights reserved. SECTION 9.2 Possibility Trees and the Multiplication Rule Copyright Cengage Learning. All rights reserved. Possibility

More information

1111: Linear Algebra I

1111: Linear Algebra I 1111: Linear Algebra I Dr. Vladimir Dotsenko (Vlad) Lecture 7 Dr. Vladimir Dotsenko (Vlad) 1111: Linear Algebra I Lecture 7 1 / 8 Invertible matrices Theorem. 1. An elementary matrix is invertible. 2.

More information

Permutations and Combinations Problems

Permutations and Combinations Problems Permutations and Combinations Problems Permutations and combinations are used to solve problems. Factorial Example 1: How many 3 digit numbers can you make using the digits 1, 2 and 3 without method (1)

More information

CS 32 Puzzles, Games & Algorithms Fall 2013

CS 32 Puzzles, Games & Algorithms Fall 2013 CS 32 Puzzles, Games & Algorithms Fall 2013 Study Guide & Scavenger Hunt #2 November 10, 2014 These problems are chosen to help prepare you for the second midterm exam, scheduled for Friday, November 14,

More information

Section 8.1. Sequences and Series

Section 8.1. Sequences and Series Section 8.1 Sequences and Series Sequences Definition A sequence is a list of numbers. Definition A sequence is a list of numbers. A sequence could be finite, such as: 1, 2, 3, 4 Definition A sequence

More information

Games of Skill ANSWERS Lesson 1 of 9, work in pairs

Games of Skill ANSWERS Lesson 1 of 9, work in pairs Lesson 1 of 9, work in pairs 21 (basic version) The goal of the game is to get the other player to say the number 21. The person who says 21 loses. The first person starts by saying 1. At each turn, the

More information

Coding Theory on the Generalized Towers of Hanoi

Coding Theory on the Generalized Towers of Hanoi Coding Theory on the Generalized Towers of Hanoi Danielle Arett August 1999 Figure 1 1 Coding Theory on the Generalized Towers of Hanoi Danielle Arett Augsburg College Minneapolis, MN arettd@augsburg.edu

More information

Permutations and Combinations

Permutations and Combinations Motivating question Permutations and Combinations A) Rosen, Chapter 5.3 B) C) D) Permutations A permutation of a set of distinct objects is an ordered arrangement of these objects. : (1, 3, 2, 4) is a

More information

Tree Diagrams and the Fundamental Counting Principle

Tree Diagrams and the Fundamental Counting Principle Objective: In this lesson, you will use permutations and combinations to compute probabilities of compound events and to solve problems. Read this knowledge article and answer the following: Tree Diagrams

More information

Elementary Combinatorics

Elementary Combinatorics 184 DISCRETE MATHEMATICAL STRUCTURES 7 Elementary Combinatorics 7.1 INTRODUCTION Combinatorics deals with counting and enumeration of specified objects, patterns or designs. Techniques of counting are

More information

Permutations and Combinations

Permutations and Combinations Permutations and Combinations Rosen, Chapter 5.3 Motivating question In a family of 3, how many ways can we arrange the members of the family in a line for a photograph? 1 Permutations A permutation of

More information

Enumerative Combinatoric Algorithms. Gray code

Enumerative Combinatoric Algorithms. Gray code Enumerative Combinatoric Algorithms Gray code Oswin Aichholzer (slides TH): Enumerative Combinatoric Algorithms, 27 Standard binary code: Ex, 3 bits: b = b = b = 2 b = 3 b = 4 b = 5 b = 6 b = 7 Binary

More information

MATH 2420 Discrete Mathematics Lecture notes

MATH 2420 Discrete Mathematics Lecture notes MATH 2420 Discrete Mathematics Lecture notes Series and Sequences Objectives: Introduction. Find the explicit formula for a sequence. 2. Be able to do calculations involving factorial, summation and product

More information

Games of Skill Lesson 1 of 9, work in pairs

Games of Skill Lesson 1 of 9, work in pairs Lesson 1 of 9, work in pairs 21 (basic version) The goal of the game is to get the other player to say the number 21. The person who says 21 loses. The first person starts by saying 1. At each turn, the

More information

Let start by revisiting the standard (recursive) version of the Hanoi towers problem. Figure 1: Initial position of the Hanoi towers.

Let start by revisiting the standard (recursive) version of the Hanoi towers problem. Figure 1: Initial position of the Hanoi towers. Coding Denis TRYSTRAM Lecture notes Maths for Computer Science MOSIG 1 2017 1 Summary/Objective Coding the instances of a problem is a tricky question that has a big influence on the way to obtain the

More information

LAMC Beginners Circle April 27, Oleg Gleizer. Warm-up

LAMC Beginners Circle April 27, Oleg Gleizer. Warm-up LAMC Beginners Circle April 27, 2014 Oleg Gleizer oleg1140@gmail.com Warm-up Problem 1 Take a two-digit number and write it down three times to form a six-digit number. For example, the two-digit number

More information

Number Theory - Divisibility Number Theory - Congruences. Number Theory. June 23, Number Theory

Number Theory - Divisibility Number Theory - Congruences. Number Theory. June 23, Number Theory - Divisibility - Congruences June 23, 2014 Primes - Divisibility - Congruences Definition A positive integer p is prime if p 2 and its only positive factors are itself and 1. Otherwise, if p 2, then p

More information

Concept: The Meaning of Whole Numbers

Concept: The Meaning of Whole Numbers Concept: The Meaning of Whole Numbers COMPUTER COMPONENT Name: Instructions: In follow the Content Menu path: Whole Numbers and Integers > The Meaning of Whole Numbers Work through all Sub Lessons of the

More information

ECS 20 (Spring 2013) Phillip Rogaway Lecture 1

ECS 20 (Spring 2013) Phillip Rogaway Lecture 1 ECS 20 (Spring 2013) Phillip Rogaway Lecture 1 Today: Introductory comments Some example problems Announcements course information sheet online (from my personal homepage: Rogaway ) first HW due Wednesday

More information

PERMUTATIONS - II JUNIOR CIRCLE 11/17/2013

PERMUTATIONS - II JUNIOR CIRCLE 11/17/2013 PERMUTATIONS - II JUNIOR CIRCLE 11/17/2013 Operations on Permutations. Among all the permutations of n objects one stands out as the simplest: all the objects stay in their places. This permutationiscalledthe

More information

17. Symmetries. Thus, the example above corresponds to the matrix: We shall now look at how permutations relate to trees.

17. Symmetries. Thus, the example above corresponds to the matrix: We shall now look at how permutations relate to trees. 7 Symmetries 7 Permutations A permutation of a set is a reordering of its elements Another way to look at it is as a function Φ that takes as its argument a set of natural numbers of the form {, 2,, n}

More information

The puzzle consists of three intersecting discs. As such it is similar to Trio, and the two-disc puzzles Turnstile and Rashkey. Unlike those puzzles however, the pieces are shaped so that they often prevent

More information

Exercise 2. Match. 2-2 Count Things Up to 5

Exercise 2. Match. 2-2 Count Things Up to 5 Exercise 2 Match. Using this page: Have students count and cross out the objects to help them keep track if needed, then match with the fiveframe card. Concept: One-to-one correspondence and cardinality.

More information

Midterm Examination. CSCI 561: Artificial Intelligence

Midterm Examination. CSCI 561: Artificial Intelligence Midterm Examination CSCI 561: Artificial Intelligence October 10, 2002 Instructions: 1. Date: 10/10/2002 from 11:00am 12:20 pm 2. Maximum credits/points for this midterm: 100 points (corresponding to 35%

More information

Module 7 Solving Complex Problems

Module 7 Solving Complex Problems Module 7 Solving Complex Problems The Towers of Hanoi 2 Exercises 3 The Travelling Salesman Problem 4 Exercises 5 End of Module Quiz 7 2013 Lero The Towers of Hanoi Linear Complexity Mowing the lawn is

More information

A light year is 5.9 x miles. Kronos wants to travel from Rigel Kentaurus to Earth. This is the distance light travels in one year.

A light year is 5.9 x miles. Kronos wants to travel from Rigel Kentaurus to Earth. This is the distance light travels in one year. Kronos wants to travel from Rigel Kentaurus to Earth. The distance is 4.3 light years. A light year is 5.9 x 0 2 miles. This is the distance light travels in one year. Centaurus Centaurus Rigel Kentaurus

More information

MATH MILESTONE # A5 DIVISION

MATH MILESTONE # A5 DIVISION MATH MILESTONE # A5 DIVISION The word, milestone, means a point at which a significant change occurs. A Math Milestone refers to a significant point in the understanding of mathematics. To reach this milestone

More information

Binary Continued! November 27, 2013

Binary Continued! November 27, 2013 Binary Tree: 1 Binary Continued! November 27, 2013 1. Label the vertices of the bottom row of your Binary Tree with the numbers 0 through 7 (going from left to right). (You may put numbers inside of the

More information

First Group Second Group Third Group How to determine the next How to determine the next How to determine the next number in the sequence:

First Group Second Group Third Group How to determine the next How to determine the next How to determine the next number in the sequence: MATHEMATICIAN DATE BAND PUZZLES! WHAT COMES NEXT??? PRECALCULUS PACKER COLLEGIATE INSTITUTE Warm Up: 1. You are going to be given a set of cards. The cards have a sequence of numbers on them Although there

More information

LAMC Intermediate I & II December 14, Oleg Gleizer. Math Wrangle

LAMC Intermediate I & II December 14, Oleg Gleizer. Math Wrangle LAMC Intermediate I & II December 14, 2014 Oleg Gleizer prof1140g@math.ucla.edu Math Wrangle The following are the rules and a few comments on them. Please note that some of the rules are different from

More information

MA10103: Foundation Mathematics I. Lecture Notes Week 3

MA10103: Foundation Mathematics I. Lecture Notes Week 3 MA10103: Foundation Mathematics I Lecture Notes Week 3 Indices/Powers In an expression a n, a is called the base and n is called the index or power or exponent. Multiplication/Division of Powers a 3 a

More information

CRACKING THE 15 PUZZLE - PART 2: MORE ON PERMUTATIONS AND TAXICAB GEOMETRY

CRACKING THE 15 PUZZLE - PART 2: MORE ON PERMUTATIONS AND TAXICAB GEOMETRY CRACKING THE 15 PUZZLE - PART 2: MORE ON PERMUTATIONS AND TAXICAB GEOMETRY BEGINNERS 01/31/2016 Warm Up Find the product of the following permutations by first writing the permutations in their expanded

More information

Place Value, Fractions & Decimals

Place Value, Fractions & Decimals Cabarrus 3-5 Workshop February 28, 2017 Concord, NC Greg Tang s Place Value, Fractions & Decimals www.gregtang.com 1 gregtang@gregtang.com copyright www.gregtang.com Gregory Tang Number Nicknames Focus

More information

How Many Mates Can a Latin Square Have?

How Many Mates Can a Latin Square Have? How Many Mates Can a Latin Square Have? Megan Bryant mrlebla@g.clemson.edu Roger Garcia garcroge@kean.edu James Figler figler@live.marshall.edu Yudhishthir Singh ysingh@crimson.ua.edu Marshall University

More information

Permutations. describes the permutation which sends 1! 2, 2! 1, 3! 3.

Permutations. describes the permutation which sends 1! 2, 2! 1, 3! 3. Math 103A Winter,2001 Professor John J Wavrik Permutations A permutation of {1,, n } is a 1-1, onto mapping of the set to itself. Most books initially use a bulky notation to describe a permutation: The

More information

Section Summary. Permutations Combinations Combinatorial Proofs

Section Summary. Permutations Combinations Combinatorial Proofs Section 6.3 Section Summary Permutations Combinations Combinatorial Proofs Permutations Definition: A permutation of a set of distinct objects is an ordered arrangement of these objects. An ordered arrangement

More information

Week 1: Probability models and counting

Week 1: Probability models and counting Week 1: Probability models and counting Part 1: Probability model Probability theory is the mathematical toolbox to describe phenomena or experiments where randomness occur. To have a probability model

More information

ENGR170 Assignment Problem Solving with Recursion Dr Michael M. Marefat

ENGR170 Assignment Problem Solving with Recursion Dr Michael M. Marefat ENGR170 Assignment Problem Solving with Recursion Dr Michael M. Marefat Overview The goal of this assignment is to find solutions for the 8-queen puzzle/problem. The goal is to place on a 8x8 chess board

More information

CALCULATING SQUARE ROOTS BY HAND By James D. Nickel

CALCULATING SQUARE ROOTS BY HAND By James D. Nickel By James D. Nickel Before the invention of electronic calculators, students followed two algorithms to approximate the square root of any given number. First, we are going to investigate the ancient Babylonian

More information

An Efficient Implementation of Tower of Hanoi using Gray Codes

An Efficient Implementation of Tower of Hanoi using Gray Codes GRD Journals Global Research and Development Journal for Engineering National Conference on Computational Intelligence Systems (NCCIS 17) March 2017 e-issn: 2455-5703 An Efficient Implementation of Tower

More information

COLLEGE ALGEBRA. Arithmetic & Geometric Sequences

COLLEGE ALGEBRA. Arithmetic & Geometric Sequences COLLEGE ALGEBRA By: Sister Mary Rebekah www.survivormath.weebly.com Cornell-Style Fill in the Blank Notes and Teacher s Key Arithmetic & Geometric Sequences 1 Topic: Discrete Functions main ideas & questions

More information

ALGEBRA: Chapter I: QUESTION BANK

ALGEBRA: Chapter I: QUESTION BANK 1 ALGEBRA: Chapter I: QUESTION BANK Elements of Number Theory Congruence One mark questions: 1 Define divisibility 2 If a b then prove that a kb k Z 3 If a b b c then PT a/c 4 If a b are two non zero integers

More information

John H. Conway, Richard Esterle Princeton University, Artist.

John H. Conway, Richard Esterle Princeton University, Artist. Games and Puzzles The Tetraball Puzzle John H. Conway, Richard Esterle Princeton University, Artist r.esterle@gmail.com Abstract: In this paper, the Tetraball Puzzle, a spatial puzzle involving tetrahedral

More information

PERMUTATIONS - II JUNIOR CIRCLE 05/01/2011

PERMUTATIONS - II JUNIOR CIRCLE 05/01/2011 PERMUTATIONS - II JUNIOR CIRCLE 05/01/2011 (1) Play the following game with your partner several times: Take 5 cards with numbers 1, 2, 3, 4, 5 written on them; Mix the order of the cards and put them

More information

Module 7 Solving Complex Problems

Module 7 Solving Complex Problems Module 7 Solving Complex Problems The Towers of Hanoi 2 Exercises 3 The Travelling Salesman Problem 4 Exercises 5 End of Module Quiz 7 This workbook is available for free download for personal and educational

More information

Contents. Introduction Place Value up to Billions... 6 Powers and Exponents... 9 Place Value... 12

Contents. Introduction Place Value up to Billions... 6 Powers and Exponents... 9 Place Value... 12 Contents Introduction... 4 Place Value up to Billions... 6 Powers and Exponents... 9 Place Value... 12 Counting and Adding Large Numbers... 16 Rounding 1... 19 Rounding 2... 22 Scientific Notation... 24

More information

Mathematical Foundations of Computer Science Lecture Outline August 30, 2018

Mathematical Foundations of Computer Science Lecture Outline August 30, 2018 Mathematical Foundations of omputer Science Lecture Outline ugust 30, 2018 ounting ounting is a part of combinatorics, an area of mathematics which is concerned with the arrangement of objects of a set

More information

The Apprentices Tower of Hanoi

The Apprentices Tower of Hanoi Journal of Mathematical Sciences (2016) 1-6 ISSN 272-5214 Betty Jones & Sisters Publishing http://www.bettyjonespub.com Cory B. H. Ball 1, Robert A. Beeler 2 1. Department of Mathematics, Florida Atlantic

More information

Week 1. 1 What Is Combinatorics?

Week 1. 1 What Is Combinatorics? 1 What Is Combinatorics? Week 1 The question that what is combinatorics is similar to the question that what is mathematics. If we say that mathematics is about the study of numbers and figures, then combinatorics

More information

Compressing Pattern Databases

Compressing Pattern Databases Compressing Pattern Databases Ariel Felner and Ram Meshulam Computer Science Department Bar-Ilan University Ramat-Gan, Israel 92500 Email: ffelner,meshulr1g@cs.biu.ac.il Robert C. Holte Computing Science

More information

English Version. Instructions: Team Contest

English Version. Instructions: Team Contest Team Contest Instructions: Do not turn to the first page until you are told to do so. Remember to write down your team name in the space indicated on the first page. There are 10 problems in the Team Contest,

More information

TOPIC 2: HOW TO COUNT

TOPIC 2: HOW TO COUNT TOPIC 2: HOW TO COUNT Problems and solutions on 'How many ways?' (Combinatorics). These start with very simple situations and illustrate how the methods can be extended to more difficult cases. 2. How

More information

Sec$on Summary. Permutations Combinations Combinatorial Proofs

Sec$on Summary. Permutations Combinations Combinatorial Proofs Section 6.3 Sec$on Summary Permutations Combinations Combinatorial Proofs 2 Coun$ng ordered arrangements Ex: How many ways can we select 3 students from a group of 5 students to stand in line for a picture?

More information

JUST THE MATHS UNIT NUMBER PROBABILITY 2 (Permutations and combinations) A.J.Hobson

JUST THE MATHS UNIT NUMBER PROBABILITY 2 (Permutations and combinations) A.J.Hobson JUST THE MATHS UNIT NUMBER 19.2 PROBABILITY 2 (Permutations and combinations) by A.J.Hobson 19.2.1 Introduction 19.2.2 Rules of permutations and combinations 19.2.3 Permutations of sets with some objects

More information

1. The sides of a cube are increased by 100%. By how many percent 1. percent does the volume of the cube increase?

1. The sides of a cube are increased by 100%. By how many percent 1. percent does the volume of the cube increase? Blitz, Page 1 1. The sides of a cube are increased by 100%. By how many percent 1. percent does the volume of the cube increase? 2. How many primes are there between 90 and 100? 2. 3. Approximately how

More information

lecture notes September 2, Batcher s Algorithm

lecture notes September 2, Batcher s Algorithm 18.310 lecture notes September 2, 2013 Batcher s Algorithm Lecturer: Michel Goemans Perhaps the most restrictive version of the sorting problem requires not only no motion of the keys beyond compare-and-switches,

More information

Probability. Engr. Jeffrey T. Dellosa.

Probability. Engr. Jeffrey T. Dellosa. Probability Engr. Jeffrey T. Dellosa Email: jtdellosa@gmail.com Outline Probability 2.1 Sample Space 2.2 Events 2.3 Counting Sample Points 2.4 Probability of an Event 2.5 Additive Rules 2.6 Conditional

More information

1.6 Congruence Modulo m

1.6 Congruence Modulo m 1.6 Congruence Modulo m 47 5. Let a, b 2 N and p be a prime. Prove for all natural numbers n 1, if p n (ab) and p - a, then p n b. 6. In the proof of Theorem 1.5.6 it was stated that if n is a prime number

More information

Mathematics Competition Practice Session 6. Hagerstown Community College: STEM Club November 20, :00 pm - 1:00 pm STC-170

Mathematics Competition Practice Session 6. Hagerstown Community College: STEM Club November 20, :00 pm - 1:00 pm STC-170 2015-2016 Mathematics Competition Practice Session 6 Hagerstown Community College: STEM Club November 20, 2015 12:00 pm - 1:00 pm STC-170 1 Warm-Up (2006 AMC 10B No. 17): Bob and Alice each have a bag

More information

METHOD 1: METHOD 2: 4D METHOD 1: METHOD 2:

METHOD 1: METHOD 2: 4D METHOD 1: METHOD 2: 4A Strategy: Count how many times each digit appears. There are sixteen 4s, twelve 3s, eight 2s, four 1s, and one 0. The sum of the digits is (16 4) + + (8 2) + (4 1) = 64 + 36 +16+4= 120. 4B METHOD 1:

More information

Extended Introduction to Computer Science CS1001.py

Extended Introduction to Computer Science CS1001.py Extended Introduction to Computer Science CS1001.py Lecture 13: Recursion (4) - Hanoi Towers, Munch! Instructors: Daniel Deutch, Amir Rubinstein, Teaching Assistants: Amir Gilad, Michal Kleinbort School

More information

Problem Solving Problems for Group 1(Due by EOC Sep. 13)

Problem Solving Problems for Group 1(Due by EOC Sep. 13) Problem Solving Problems for Group (Due by EOC Sep. 3) Caution, This Induction May Induce Vomiting! 3 35. a) Observe that 3, 3 3, and 3 3 56 3 3 5. 3 Use inductive reasoning to make a conjecture about

More information

of Nebraska - Lincoln

of Nebraska - Lincoln University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Honors Expanded Learning Clubs Honors Program 2018 Space Venture Mickey Tran Follow this and additional works at: http://digitalcommons.unl.edu/honorshelc

More information

How to Calculate the Probabilities of Winning the Nine Cash4Life Prize Levels:

How to Calculate the Probabilities of Winning the Nine Cash4Life Prize Levels: How to Calculate the Probabilities of Winning the Nine Cash4Life Prize Levels: CASH4LIFE numbers are drawn from two sets of numbers. Five numbers are drawn from one set of 60 numbered white balls and one

More information

Factors and Products. Jamie is 12 years old. Her cousin, 6 Prime Time

Factors and Products. Jamie is 12 years old. Her cousin, 6 Prime Time Factors and Products Jamie is years old. Her cousin, Emilio, is years old. Her brother, Cam, is. Her neighbor, Esther, is. The following number sentences say that Jamie is times as old as Emilio, times

More information

Counting Snakes, Differentiating the Tangent Function, and Investigating the Bernoulli-Euler Triangle by Harold Reiter

Counting Snakes, Differentiating the Tangent Function, and Investigating the Bernoulli-Euler Triangle by Harold Reiter Counting Snakes, Differentiating the Tangent Function, and Investigating the Bernoulli-Euler Triangle by Harold Reiter In this paper we will examine three apparently unrelated mathematical objects One

More information

Theory of Probability - Brett Bernstein

Theory of Probability - Brett Bernstein Theory of Probability - Brett Bernstein Lecture 3 Finishing Basic Probability Review Exercises 1. Model flipping two fair coins using a sample space and a probability measure. Compute the probability of

More information

Magnetic Towers of Hanoi and their Optimal Solutions

Magnetic Towers of Hanoi and their Optimal Solutions Magnetic Towers of Hanoi and their Optimal olutions Uri Levy Atlantium Technologies, Har-Tuv Industrial Park, Israel uril@atlantium.com August 5, 00 Abstract The Magnetic Tower of Hanoi puzzle a modified

More information

Three Pile Nim with Move Blocking. Arthur Holshouser. Harold Reiter.

Three Pile Nim with Move Blocking. Arthur Holshouser. Harold Reiter. Three Pile Nim with Move Blocking Arthur Holshouser 3600 Bullard St Charlotte, NC, USA Harold Reiter Department of Mathematics, University of North Carolina Charlotte, Charlotte, NC 28223, USA hbreiter@emailunccedu

More information

2014 MATH Olympiad [Grade1]

2014 MATH Olympiad [Grade1] 2014 MATH Olympiad [Grade1] 1 25 11 19 21 140 31 24 41 2 21 12 21 22 607 32 8 42 6 3 7 13 8 23 802 33 18 43 3 4 7 14 9 24 35 34 16 44 23 28 5 8 15 16 25 667 35 9 45 6 5 16 3 26 268 36 83 46 3 7 17 17 9

More information

6.2 Modular Arithmetic

6.2 Modular Arithmetic 6.2 Modular Arithmetic Every reader is familiar with arithmetic from the time they are three or four years old. It is the study of numbers and various ways in which we can combine them, such as through

More information

NUMBER THEORY AMIN WITNO

NUMBER THEORY AMIN WITNO NUMBER THEORY AMIN WITNO.. w w w. w i t n o. c o m Number Theory Outlines and Problem Sets Amin Witno Preface These notes are mere outlines for the course Math 313 given at Philadelphia

More information

PUZZLES ON GRAPHS: THE TOWERS OF HANOI, THE SPIN-OUT PUZZLE, AND THE COMBINATION PUZZLE

PUZZLES ON GRAPHS: THE TOWERS OF HANOI, THE SPIN-OUT PUZZLE, AND THE COMBINATION PUZZLE PUZZLES ON GRAPHS: THE TOWERS OF HANOI, THE SPIN-OUT PUZZLE, AND THE COMBINATION PUZZLE LINDSAY BAUN AND SONIA CHAUHAN ADVISOR: PAUL CULL OREGON STATE UNIVERSITY ABSTRACT. The Towers of Hanoi is a well

More information

SELECTED GEOMETRICAL CONSTRUCTIONS

SELECTED GEOMETRICAL CONSTRUCTIONS FACULTY OF NATURAL SCIENCES CONSTANTINE THE PHILOSOPHER UNIVERSITY IN NITRA ACTA MATHEMATICA 17 SELECTED GEOMETRICAL CONSTRUCTIONS ABSTRACT. This article deals with selected classical geometric constructions

More information

MTEL General Curriculum Mathematics 03 Multiple Choice Practice Test B Debra K. Borkovitz, Wheelock College

MTEL General Curriculum Mathematics 03 Multiple Choice Practice Test B Debra K. Borkovitz, Wheelock College MTEL General Curriculum Mathematics 03 Multiple Choice Practice Test B Debra K. Borkovitz, Wheelock College Note: This test is the same length as the multiple choice part of the official test, and the

More information

2009 Philippine Elementary Mathematics International Contest Page 1

2009 Philippine Elementary Mathematics International Contest Page 1 2009 Philippine Elementary Mathematics International Contest Page 1 Individual Contest 1. Find the smallest positive integer whose product after multiplication by 543 ends in 2009. It is obvious that the

More information

Combinatorics. Chapter Permutations. Counting Problems

Combinatorics. Chapter Permutations. Counting Problems Chapter 3 Combinatorics 3.1 Permutations Many problems in probability theory require that we count the number of ways that a particular event can occur. For this, we study the topics of permutations and

More information

2014 MATHOlympiad [Grade

2014 MATHOlympiad [Grade 2014 MATHOlympiad [Grade 1 25 11 19 21 140 31 24 2 21 12 21 22 607 32 8 42 6 3 7 13 8 23 802 33 18 43 3 4 7 14 9 24 35 34 16 44 23 28 5 8 15 16 25 667 35 9 45 6 5 16 3 26 268 36 83 46 3 7 17 17 9 27 98

More information

UK Junior Mathematical Challenge

UK Junior Mathematical Challenge UK Junior Mathematical Challenge THURSDAY 28th APRIL 2016 Organised by the United Kingdom Mathematics Trust from the School of Mathematics, University of Leeds http://www.ukmt.org.uk Institute and Faculty

More information

An Optimal Algorithm for a Strategy Game

An Optimal Algorithm for a Strategy Game International Conference on Materials Engineering and Information Technology Applications (MEITA 2015) An Optimal Algorithm for a Strategy Game Daxin Zhu 1, a and Xiaodong Wang 2,b* 1 Quanzhou Normal University,

More information

Computer Science Scholarship Puzzle Packet

Computer Science Scholarship Puzzle Packet Computer Science Scholarship Puzzle Packet Please set aside about two hours for working on these problems. Feel free to use a calculator on any problem you wish. But if you do, just make a note. By Calc.

More information

Sec. 4.2: Introducing Permutations and Factorial notation

Sec. 4.2: Introducing Permutations and Factorial notation Sec. 4.2: Introducing Permutations and Factorial notation Permutations: The # of ways distinguishable objects can be arranged, where the order of the objects is important! **An arrangement of objects in

More information

Lesson 1: Place Value of Whole Numbers. Place Value, Value, and Reading Numbers in the Billions

Lesson 1: Place Value of Whole Numbers. Place Value, Value, and Reading Numbers in the Billions Place Value of Whole Numbers Lesson 1: Place Value, Value, and Reading Numbers in the Billions Jul 15 9:37 PM Jul 16 10:55 PM Numbers vs. Digits Let's begin with some basic vocabulary. First of all, what

More information

How to Calculate the Probabilities of Winning the Nine Mega Millions Prize Levels:

How to Calculate the Probabilities of Winning the Nine Mega Millions Prize Levels: How to Calculate the Probabilities of Winning the Nine Mega Millions Prize Levels: Mega Millions numbers are drawn from two sets of numbers. Five numbers are drawn from one set of 70 numbered white balls

More information

Free GK Alerts- JOIN OnlineGK to NUMBERS IMPORTANT FACTS AND FORMULA

Free GK Alerts- JOIN OnlineGK to NUMBERS IMPORTANT FACTS AND FORMULA Free GK Alerts- JOIN OnlineGK to 9870807070 1. NUMBERS IMPORTANT FACTS AND FORMULA I..Numeral : In Hindu Arabic system, we use ten symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 called digits to represent any number.

More information

A Group-theoretic Approach to Human Solving Strategies in Sudoku

A Group-theoretic Approach to Human Solving Strategies in Sudoku Colonial Academic Alliance Undergraduate Research Journal Volume 3 Article 3 11-5-2012 A Group-theoretic Approach to Human Solving Strategies in Sudoku Harrison Chapman University of Georgia, hchaps@gmail.com

More information

1. Answer (B): Brianna is half as old as Aunt Anna, so Brianna is 21 years old. Caitlin is 5 years younger than Brianna, so Caitlin is 16 years old.

1. Answer (B): Brianna is half as old as Aunt Anna, so Brianna is 21 years old. Caitlin is 5 years younger than Brianna, so Caitlin is 16 years old. Solutions 2000 6 th AMC 8 2. Answer (B): Brianna is half as old as Aunt Anna, so Brianna is 2 years old. Caitlin is 5 years younger than Brianna, so Caitlin is 6 years old. 2. Answer (A): The number 0

More information

Sets, Venn Diagrams & Counting

Sets, Venn Diagrams & Counting MT 142 College Mathematics Sets, Venn Diagrams & Counting Module SC Terri Miller revised December 13, 2010 What is a set? Sets set is a collection of objects. The objects in the set are called elements

More information

aabb abab abba baab baba bbaa permutations of these. But, there is a lot of duplicity in this list, each distinct word (such as 6! 3!2!1!

aabb abab abba baab baba bbaa permutations of these. But, there is a lot of duplicity in this list, each distinct word (such as 6! 3!2!1! Introduction to COMBINATORICS In how many ways (permutations) can we arrange n distinct objects in a row?answer: n (n ) (n )... def. = n! EXAMPLE (permuting objects): What is the number of different permutations

More information

1 = 3 2 = 3 ( ) = = = 33( ) 98 = = =

1 = 3 2 = 3 ( ) = = = 33( ) 98 = = = Math 115 Discrete Math Final Exam December 13, 2000 Your name It is important that you show your work. 1. Use the Euclidean algorithm to solve the decanting problem for decanters of sizes 199 and 98. In

More information

Puzzling Math, Part 2: The Tower of Hanoi & the End of the World!

Puzzling Math, Part 2: The Tower of Hanoi & the End of the World! Puzzling Math, Part 2: The Tower of Hanoi & the End of the World! by Jeremy Knight, Grants Pass High School, jeremy@knightmath.com The Oregon Mathematics Teacher, Jan./Feb. 2014 Grade Level: 6-12+ Objectives:

More information

Team Round University of South Carolina Math Contest, 2018

Team Round University of South Carolina Math Contest, 2018 Team Round University of South Carolina Math Contest, 2018 1. This is a team round. You have one hour to solve these problems as a team, and you should submit one set of answers for your team as a whole.

More information

Permutations and Combinations. MATH 107: Finite Mathematics University of Louisville. March 3, 2014

Permutations and Combinations. MATH 107: Finite Mathematics University of Louisville. March 3, 2014 Permutations and Combinations MATH 107: Finite Mathematics University of Louisville March 3, 2014 Multiplicative review Non-replacement counting questions 2 / 15 Building strings without repetition A familiar

More information

Introduction to Fractions

Introduction to Fractions DELTA MATH SCIENCE PARTNERSHIP INITIATIVE M 3 Summer Institutes (Math, Middle School, MS Common Core) Introduction to Fractions Hook Problem: How can you share 4 pizzas among 6 people? Final Answer: Goals:

More information

Discrete Mathematics: Logic. Discrete Mathematics: Lecture 15: Counting

Discrete Mathematics: Logic. Discrete Mathematics: Lecture 15: Counting Discrete Mathematics: Logic Discrete Mathematics: Lecture 15: Counting counting combinatorics: the study of the number of ways to put things together into various combinations basic counting principles

More information

39 th JUNIOR HIGH SCHOOL MATHEMATICS CONTEST APRIL 29, 2015

39 th JUNIOR HIGH SCHOOL MATHEMATICS CONTEST APRIL 29, 2015 THE CALGARY MATHEMATICAL ASSOCIATION 39 th JUNIOR HIGH SCHOOL MATHEMATICS CONTEST APRIL 29, 2015 NAME: GENDER: PLEASE PRINT (First name Last name) (optional) SCHOOL: GRADE: (9,8,7,... ) You have 90 minutes

More information