# Probability Warm-Up 2

Size: px
Start display at page:

Transcription

1 Probability Warm-Up 2 Directions Solve to the best of your ability. (1) Write out the sample space (all possible outcomes) for the following situation: A dice is rolled and then a color is chosen, blue or green. (2) How many different meals can you create from two proteins, four vegetables, and four breads? (3) How many unique passwords can you create when choosing four numbers between 0 and 9 if repeated values are not allowed? (4) If 16 students are to take a quiz, are four question enough to make sure that each student s quiz questions are in a different order? (5) The volleyball team will include 6 Juniors and 6 Seniors. How many teams can be created if 10 Junior and 14 Seniors try out? (6) Two dice are rolled, what are the odds that both dice will show even numbers?

2 Guiding Question: How likely is it that I will win the lottery? Hint; Not very! Relevant Vocabulary: Sample space, outcome, event, likelihood, probability, fraction, independence, dependence, complimentary probability, conditional probability Questions: In general, to calculate the probability of an event winning the lottery or any other you have to know or at least be able to estimate all possible outcomes and the number of desirable outcomes: Take the lottery for example Example 1 A simple lottery involves selecting a number between 0 and The winner gets 100 dollars. Each ticket costs a dollar. If you buy 20 tickets how likely are you to win the lottery? Of course most lotteries are much more complex. Example 2 In the Texas Lottery you pick six numbers between 1 and 54 inclusive. Each number may only be used once and the order of the numbers does not influence whether you win or lose. If you match all six numbers you win the jackpot. How likely are you to win the jackpot if you buy ten tickets? First ask yourself How many different ways can you select six numbers from a group of 54 without replacement or concerning yourself with order? Hint; is this a permutation or a combination? Then apply the formula. The complimentary probability is instructive here. Subtract your odds of winning from the number 1. The answer you get is the likelihood of losing the lottery. Summary:

3 Guiding Question: How does driving your car influence the odds that you are allergic to dairy? Hint; it doesn t. Questions: What is the difference between dependent and independent events? Drawing numbers for a lottery is a classic example of dependent events because the lottery numbers are removed from the game after they are drawn. That is, the odds of one of your numbers being picked are slightly higher after each number is called. Considering the previous example more closely: Suppose you are the lucky winner and all of your numbers are called. What were the odds of one of your numbers being drawn on the first pull? The second? The third? Ect Draw 1 Draw 2 Draw 3 Draw 4 Draw 5 Draw 6 Describe the pattern and the reasons for the pattern in the table. Let s consider a different kind of lottery that is based on independent events. In this lottery, the outcome of one event will not influence that of the next. Example 3 Six dice are rolled. You choose one number for each dice. If you guess all six dice values correctly you win the jackpot. What are the odds of guessing the correct numbers for each dice? Roll 1 Roll 2 Roll 3 Roll 4 Roll 5 Roll 6 Describe the pattern and the reasons for the pattern in the table. Summary:

4 Guided Practice 1 A die is rolled and a coin is flipped. Are these events independent? What is the likelihood that the dice roll is even and the coin flip is heads? Guided Practice 2 A bag of assorted candy contains 16 pieces, 4 of which are Jolly Ranchers. You draw two candies without replacement. Are the events independent? How likely is it that both candies are Jolly Ranchers? Guided Practice 3 A bag of assorted candy contains 16 pieces, 4 of which are Jolly Ranchers. You draw two candies with replacement. Are the events independent? How likely is it that both candies are Jolly Ranchers? Guided Practice 4 At the end of the 1930s, roughly 12% of American s owned a car. Also in the 1930s, roughly 2% of people were allergic to dairy. Are these independent events? What was the probability of someone with a dairy allergy owning a car in the 1930s? Summary:

5 M n2n0q1l8\ zkrugtxar VS]oafUtCwwairPeD HLZLMCj.] _ EAylPlL NrxiHggh_tHsF NrzeFsveKrRvce\db. Determine whether the events are independent or dependent. Then find the probability. 1) You roll a fair six-sided die twice. The first roll shows a one and the second roll shows a two. 2) A basket contains eight apples and four peaches. You randomly select one piece of fruit and eat it. Then you randomly select another piece of fruit. Both pieces of fruit are apples. 3) A bag contains eight red marbles and five blue marbles. You randomly pick a marble and then return it to the bag before picking another marble. Both the first and second marbles are red. 4) A bag contains eight red marbles and three blue marbles. Another bag contains seven green marbles and eight yellow marbles. You randomly pick one marble from each bag. One marble is blue and one marble is yellow. 5) A basket contains eight apples and eight peaches. You randomly select a piece of fruit and then return it to the basket. Then you randomly select another piece of fruit. Both pieces of fruit are apples. 6) There are thirteen shirts in your closet, seven blue and six green. You randomly select one to wear on Monday and then a different one on Tuesday. You wear blue shirts both days. 7) You select two cards from a standard shuffled deck of 52 cards. Both selected cards are diamonds. (Note that 13 of the 52 cards are diamonds.) 8) There are twelve shirts in your closet, seven blue and five green. You randomly select one to wear on Monday and then a different one on Tuesday. You wear a blue shirt on Monday and a green shirt on Tuesday. 9) There are six nickels and five dimes in your pocket. You randomly pick a coin out of your pocket and then return it to your pocket. Then you randomly pick another coin. The first coin is a nickel and the second coin is a dime. 10) A cooler contains fourteen bottles of sports drink: eight lemon-lime flavored and six orange flavored. You randomly grab a bottle and give it to your friend. Then, you randomly grab a bottle for yourself. Your friend gets a lemon-lime and you get an orange. k `2\0w1F8X WKcuZtnam TSqoHfjtSwiaKruee ILfLxCx.p U PAblNll _railglhjtysz KrMeIsaeXrtvzexdM.a n emlaudcec YwIijt`hK kisnmfeipnsirtuex qa\lagmebbjrra] ]2d. -1- Worksheet by Kuta Software LLC

### Date Period State if each scenario involves a permutation or a combination. Then find the number of possibilities. ncr or npr

Algebra 2 G h2y0cic pk_ultta` LSeoxfftrwFaPrXeq qlolkco.p E nalltls jroifgvhztdso mrxeosbe^ravyeddt. Ultimate Probability Name Date Period State if each scenario involves a permutation or a combination.

### Independent Events. If we were to flip a coin, each time we flip that coin the chance of it landing on heads or tails will always remain the same.

Independent Events Independent events are events that you can do repeated trials and each trial doesn t have an effect on the outcome of the next trial. If we were to flip a coin, each time we flip that

### Review: Measures of Central Tendency & Probability May 17

Algebra 1 Mrs. J. Millet Name J \f0[1tc lkzuptsah TSgoffqtBwdatrney PLELRCP.[ T kafldlf Kr^iCgPhNtIsq urgehsqekrxvberd_. Review: Measures of Central Tendency & Probability May 17 Show your work on another

### Practice Quiz - Permutations & Combinations

Algebra 2 Practice Quiz - Permutations & Combinations Name Date Period Determine whether the scenario involves independent or dependent events. Then find the probability. 1) A box of chocolates contains

### 7A: I can identify and count the outcomes of an experiment and calculate the theoretical probability of an event.

Geometry ^ t2r0`1c8p QKnuPtha\ esnohfftxwaacrger ililjcs.\ D callklw Jr^iSgDhgtTsD FraeKszerr_vPesdV. Assignment Name ID: 1 Date Period 7A: I can identify and count the outcomes of an experiment and calculate

### Probability, Permutations, & Combinations LESSON 11.1

Probability, Permutations, & Combinations LESSON 11.1 Objective Define probability Use the counting principle Know the difference between combination and permutation Find probability Probability PROBABILITY:

### Name: Probability, Part 1 March 4, 2013

1) Assuming all sections are equal in size, what is the probability of the spinner below stopping on a blue section? Write the probability as a fraction. 2) A bag contains 3 red marbles, 4 blue marbles,

### Probability: introduction

May 6, 2009 Probability: introduction page 1 Probability: introduction Probability is the part of mathematics that deals with the chance or the likelihood that things will happen The probability of an

### Algebra 2 m X2K0n1I6X SKbuStYaX OSRohfHtiwfajrTeB rlsl]ce.y t \APlNlH crjigglhothso argefsnezrhv^egdp. HW #4 Example - Probability of Compound Events

m X2K0n1I6X SKbuStYaX OSRohfHtiwfajrTeB rlsl]ce.y t \APlNlH crjigglhothso argefsnezrhv^egdp. 1) A basket contains seven apples and six peaches. You randomly select a piece of fruit and then return it to

### Conditional Probability Worksheet

Conditional Probability Worksheet EXAMPLE 4. Drug Testing and Conditional Probability Suppose that a company claims it has a test that is 95% effective in determining whether an athlete is using a steroid.

### Most of the time we deal with theoretical probability. Experimental probability uses actual data that has been collected.

AFM Unit 7 Day 3 Notes Theoretical vs. Experimental Probability Name Date Definitions: Experiment: process that gives a definite result Outcomes: results Sample space: set of all possible outcomes Event:

### Tanning: Week 13 C. D.

Tanning: Week 13 Name: 1. Richard is conducting an experiment. Every time he flips a fair two-sided coin, he also rolls a six-sided die. What is the probability that the coin will land on tails and the

### 4.1 Sample Spaces and Events

4.1 Sample Spaces and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment is called an

### Conditional Probability Worksheet

Conditional Probability Worksheet P( A and B) P(A B) = P( B) Exercises 3-6, compute the conditional probabilities P( AB) and P( B A ) 3. P A = 0.7, P B = 0.4, P A B = 0.25 4. P A = 0.45, P B = 0.8, P A

### Unit 14 Probability. Target 3 Calculate the probability of independent and dependent events (compound) AND/THEN statements

Target 1 Calculate the probability of an event Unit 14 Probability Target 2 Calculate a sample space 14.2a Tree Diagrams, Factorials, and Permutations 14.2b Combinations Target 3 Calculate the probability

### Advanced Intermediate Algebra Chapter 12 Summary INTRO TO PROBABILITY

Advanced Intermediate Algebra Chapter 12 Summary INTRO TO PROBABILITY 1. Jack and Jill do not like washing dishes. They decide to use a random method to select whose turn it is. They put some red and blue

### INDEPENDENT AND DEPENDENT EVENTS UNIT 6: PROBABILITY DAY 2

INDEPENDENT AND DEPENDENT EVENTS UNIT 6: PROBABILITY DAY 2 WARM UP Students in a mathematics class pick a card from a standard deck of 52 cards, record the suit, and return the card to the deck. The results

### Name: Class: Date: 6. An event occurs, on average, every 6 out of 17 times during a simulation. The experimental probability of this event is 11

Class: Date: Sample Mastery # Multiple Choice Identify the choice that best completes the statement or answers the question.. One repetition of an experiment is known as a(n) random variable expected value

### Probability Rules. 2) The probability, P, of any event ranges from which of the following?

Name: WORKSHEET : Date: Answer the following questions. 1) Probability of event E occurring is... P(E) = Number of ways to get E/Total number of outcomes possible in S, the sample space....if. 2) The probability,

### Compound Probability. A to determine the likelihood of two events occurring at the. ***Events can be classified as independent or dependent events.

Probability 68B A to determine the likelihood of two events occurring at the. ***Events can be classified as independent or dependent events. Independent Events are events in which the result of event

### Dependence. Math Circle. October 15, 2016

Dependence Math Circle October 15, 2016 1 Warm up games 1. Flip a coin and take it if the side of coin facing the table is a head. Otherwise, you will need to pay one. Will you play the game? Why? 2. If

### Probability Warm-Up 1 (Skills Review)

Probability Warm-Up 1 (Skills Review) Directions Solve to the best of your ability. (1) Graph the line y = 3x 2. (2) 4 3 = (3) 4 9 + 6 7 = (4) Solve for x: 4 5 x 8 = 12? (5) Solve for x: 4(x 6) 3 = 12?

### Name. Is the game fair or not? Prove your answer with math. If the game is fair, play it 36 times and record the results.

Homework 5.1C You must complete table. Use math to decide if the game is fair or not. If Period the game is not fair, change the point system to make it fair. Game 1 Circle one: Fair or Not 2 six sided

### COMPOUND EVENTS. Judo Math Inc.

COMPOUND EVENTS Judo Math Inc. 7 th grade Statistics Discipline: Black Belt Training Order of Mastery: Compound Events 1. What are compound events? 2. Using organized Lists (7SP8) 3. Using tables (7SP8)

### Chapter 1: Sets and Probability

Chapter 1: Sets and Probability Section 1.3-1.5 Recap: Sample Spaces and Events An is an activity that has observable results. An is the result of an experiment. Example 1 Examples of experiments: Flipping

### 4.3 Rules of Probability

4.3 Rules of Probability If a probability distribution is not uniform, to find the probability of a given event, add up the probabilities of all the individual outcomes that make up the event. Example:

### Find the probability of an event by using the definition of probability

LESSON 10-1 Probability Lesson Objectives Find the probability of an event by using the definition of probability Vocabulary experiment (p. 522) trial (p. 522) outcome (p. 522) sample space (p. 522) event

### What is the probability Jordan will pick a red marble out of the bag and land on the red section when spinning the spinner?

Name: Class: Date: Question #1 Jordan has a bag of marbles and a spinner. The bag of marbles has 10 marbles in it, 6 of which are red. The spinner is divided into 4 equal sections: blue, green, red, and

### Math 1313 Section 6.2 Definition of Probability

Math 1313 Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability

### Lesson 16.1 Assignment

Lesson 16.1 Assignment Name Date Rolling, Rolling, Rolling... Defining and Representing Probability 1. Rasheed is getting dressed in the dark. He reaches into his sock drawer to get a pair of socks. He

### Section 7.3 and 7.4 Probability of Independent Events

Section 7.3 and 7.4 Probability of Independent Events Grade 7 Review Two or more events are independent when one event does not affect the outcome of the other event(s). For example, flipping a coin and

### PROBABILITY. Example 1 The probability of choosing a heart from a deck of cards is given by

Classical Definition of Probability PROBABILITY Probability is the measure of how likely an event is. An experiment is a situation involving chance or probability that leads to results called outcomes.

### Algebra 1B notes and problems May 14, 2009 Independent events page 1

May 14, 009 Independent events page 1 Independent events In the last lesson we were finding the probability that a 1st event happens and a nd event happens by multiplying two probabilities For all the

### Mutually Exclusive Events Algebra 1

Name: Mutually Exclusive Events Algebra 1 Date: Mutually exclusive events are two events which have no outcomes in common. The probability that these two events would occur at the same time is zero. Exercise

### Name: Class: Date: ID: A

Class: Date: Chapter 0 review. A lunch menu consists of different kinds of sandwiches, different kinds of soup, and 6 different drinks. How many choices are there for ordering a sandwich, a bowl of soup,

### Directions: Show all of your work. Use units and labels and remember to give complete answers.

AMS II QTR 4 FINAL EXAM REVIEW TRIANGLES/PROBABILITY/UNIT CIRCLE/POLYNOMIALS NAME HOUR This packet will be collected on the day of your final exam. Seniors will turn it in on Friday June 1 st and Juniors

### Welcome! U4H2: Worksheet # s 2-7, 9-13, 16, 20. Updates: U4T is 12/12. Announcement: December 16 th is the last day I will accept late work.

Welcome! U4H2: Worksheet # s 2-7, 9-13, 16, 20 Updates: U4T is 12/12 Announcement: December 16 th is the last day I will accept late work. 1 Review U4H1 2 Theoretical Probability 3 Experimental Probability

### Use Venn diagrams to determine whether the following statements are equal for all sets A and B. 2) A' B', A B Answer: not equal

Test Prep Name Let U = {q, r, s, t, u, v, w, x, y, z} A = {q, s, u, w, y} B = {q, s, y, z} C = {v, w, x, y, z} Determine the following. ) (A' C) B' {r, t, v, w, x} Use Venn diagrams to determine whether

### Section The Multiplication Principle and Permutations

Section 2.1 - The Multiplication Principle and Permutations Example 1: A yogurt shop has 4 flavors (chocolate, vanilla, strawberry, and blueberry) and three sizes (small, medium, and large). How many different

### Chapter 11: Probability and Counting Techniques

Chapter 11: Probability and Counting Techniques Diana Pell Section 11.3: Basic Concepts of Probability Definition 1. A sample space is a set of all possible outcomes of an experiment. Exercise 1. An experiment

### Section 6.1 #16. Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

Section 6.1 #16 What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit? page 1 Section 6.1 #38 Two events E 1 and E 2 are called independent if p(e 1

### 6. In how many different ways can you answer 10 multiple-choice questions if each question has five choices?

Pre-Calculus Section 4.1 Multiplication, Addition, and Complement 1. Evaluate each of the following: a. 5! b. 6! c. 7! d. 0! 2. Evaluate each of the following: a. 10! b. 20! 9! 18! 3. In how many different

### 2 C. 1 D. 2 4 D. 5 3 C. 25 D. 2

Discrete Math Exam Review Name:. A bag contains oranges, grapefruits, and tangerine. A piece of fruit is chosen from the bag at random. What is the probability that a grapefruit will be chosen from the

### SECONDARY 2 Honors ~ Lesson 9.2 Worksheet Intro to Probability

SECONDARY 2 Honors ~ Lesson 9.2 Worksheet Intro to Probability Name Period Write all probabilities as fractions in reduced form! Use the given information to complete problems 1-3. Five students have the

### LC OL Probability. ARNMaths.weebly.com. As part of Leaving Certificate Ordinary Level Math you should be able to complete the following.

A Ryan LC OL Probability ARNMaths.weebly.com Learning Outcomes As part of Leaving Certificate Ordinary Level Math you should be able to complete the following. Counting List outcomes of an experiment Apply

### Probability of Independent and Dependent Events

706 Practice A Probability of In and ependent Events ecide whether each set of events is or. Explain your answer.. A student spins a spinner and rolls a number cube.. A student picks a raffle ticket from

### Answer each of the following problems. Make sure to show your work.

Answer each of the following problems. Make sure to show your work. 1. A board game requires each player to roll a die. The player with the highest number wins. If a player wants to calculate his or her

### Lesson 4: Calculating Probabilities for Chance Experiments with Equally Likely Outcomes

NYS COMMON CORE MAEMAICS CURRICULUM 7 : Calculating Probabilities for Chance Experiments with Equally Likely Classwork Examples: heoretical Probability In a previous lesson, you saw that to find an estimate

### A magician showed a magic trick where he picked one card from a standard deck. Determine What is the probability that the card will be a queen card?

Topic : Probability Word Problems- Worksheet 1 What is the probability? 1. 2. 3. 4. Jill is playing cards with her friend when she draws a card from a pack of 20 cards numbered from 1 to 20. What is the

### Lesson 3 Dependent and Independent Events

Lesson 3 Dependent and Independent Events When working with 2 separate events, we must first consider if the first event affects the second event. Situation 1 Situation 2 Drawing two cards from a deck

### Order the fractions from least to greatest. Use Benchmark Fractions to help you. First try to decide which is greater than ½ and which is less than ½

Outcome G Order the fractions from least to greatest 4 1 7 4 5 3 9 5 8 5 7 10 Use Benchmark Fractions to help you. First try to decide which is greater than ½ and which is less than ½ Likelihood Certain

### MATH CALCULUS & STATISTICS/BUSN - PRACTICE EXAM #1 - SPRING DR. DAVID BRIDGE

MATH 205 - CALCULUS & STATISTICS/BUSN - PRACTICE EXAM # - SPRING 2006 - DR. DAVID BRIDGE TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. Tell whether the statement is

### 6) A) both; happy B) neither; not happy C) one; happy D) one; not happy

MATH 00 -- PRACTICE TEST 2 Millersville University, Spring 202 Ron Umble, Instr. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find all natural

### Unit 7 Central Tendency and Probability

Name: Block: 7.1 Central Tendency 7.2 Introduction to Probability 7.3 Independent Events 7.4 Dependent Events 7.1 Central Tendency A central tendency is a central or value in a data set. We will look at

### Bell Work. Warm-Up Exercises. Two six-sided dice are rolled. Find the probability of each sum or 7

Warm-Up Exercises Two six-sided dice are rolled. Find the probability of each sum. 1. 7 Bell Work 2. 5 or 7 3. You toss a coin 3 times. What is the probability of getting 3 heads? Warm-Up Notes Exercises

### Option 1: You could simply list all the possibilities: wool + red wool + green wool + black. cotton + green cotton + black

ACTIVITY 6.2 CHOICES 713 OBJECTIVES ACTIVITY 6.2 Choices 1. Apply the multiplication principle of counting. 2. Determine the sample space for a probability distribution. 3. Display a sample space with

### CCM6+7+ Unit 11 ~ Page 1. Name Teacher: Townsend ESTIMATED ASSESSMENT DATES:

CCM6+7+ Unit 11 ~ Page 1 CCM6+7+ UNIT 11 PROBABILITY Name Teacher: Townsend ESTIMATED ASSESSMENT DATES: Unit 11 Vocabulary List 2 Simple Event Probability 3-7 Expected Outcomes Making Predictions 8-9 Theoretical

### Lesson 4: Calculating Probabilities for Chance Experiments with Equally Likely Outcomes

Lesson : Calculating Probabilities for Chance Experiments with Equally Likely Outcomes Classwork Example : heoretical Probability In a previous lesson, you saw that to find an estimate of the probability

### MATH CALCULUS & STATISTICS/BUSN - PRACTICE EXAM #2 - FALL DR. DAVID BRIDGE

MATH 2053 - CALCULUS & STATISTICS/BUSN - PRACTICE EXAM #2 - FALL 2009 - DR. DAVID BRIDGE MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the

### The Teachers Circle Mar. 20, 2012 HOW TO GAMBLE IF YOU MUST (I ll bet you \$5 that if you give me \$10, I ll give you \$20.)

The Teachers Circle Mar. 2, 22 HOW TO GAMBLE IF YOU MUST (I ll bet you \$ that if you give me \$, I ll give you \$2.) Instructor: Paul Zeitz (zeitzp@usfca.edu) Basic Laws and Definitions of Probability If

### Student Exploration: Permutations and Combinations

Name: Date: Student Exploration: Permutations and Combinations Vocabulary: combination, factorial, permutation Prior Knowledge Question (Do this BEFORE using the Gizmo.) 1. Suppose you have a quarter,

### Math 1 Unit 4 Mid-Unit Review Chances of Winning

Math 1 Unit 4 Mid-Unit Review Chances of Winning Name My child studied for the Unit 4 Mid-Unit Test. I am aware that tests are worth 40% of my child s grade. Parent Signature MM1D1 a. Apply the addition

### Algebra II- Chapter 12- Test Review

Sections: Counting Principle Permutations Combinations Probability Name Choose the letter of the term that best matches each statement or phrase. 1. An illustration used to show the total number of A.

### Georgia Department of Education Common Core Georgia Performance Standards Framework CCGPS Analytic Geometry Unit 7 PRE-ASSESSMENT

PRE-ASSESSMENT Name of Assessment Task: Compound Probability 1. State a definition for each of the following types of probability: A. Independent B. Dependent C. Conditional D. Mutually Exclusive E. Overlapping

### Probability. Sometimes we know that an event cannot happen, for example, we cannot fly to the sun. We say the event is impossible

Probability Sometimes we know that an event cannot happen, for example, we cannot fly to the sun. We say the event is impossible Impossible In summer, it doesn t rain much in Cape Town, so on a chosen

### KS3 Levels 3-8. Unit 3 Probability. Homework Booklet. Complete this table indicating the homework you have been set and when it is due by.

Name: Maths Group: Tutor Set: Unit 3 Probability Homework Booklet KS3 Levels 3-8 Complete this table indicating the homework you have been set and when it is due by. Date Homework Due By Handed In Please

### Junior Circle Meeting 5 Probability. May 2, ii. In an actual experiment, can one get a different number of heads when flipping a coin 100 times?

Junior Circle Meeting 5 Probability May 2, 2010 1. We have a standard coin with one side that we call heads (H) and one side that we call tails (T). a. Let s say that we flip this coin 100 times. i. How

### Section 11.4: Tree Diagrams, Tables, and Sample Spaces

Section 11.4: Tree Diagrams, Tables, and Sample Spaces Diana Pell Exercise 1. Use a tree diagram to find the sample space for the genders of three children in a family. Exercise 2. (You Try!) A soda machine

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

More 9.-9.3 Practice Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Answer the question. ) In how many ways can you answer the questions on

### Probability. The MEnTe Program Math Enrichment through Technology. Title V East Los Angeles College

Probability The MEnTe Program Math Enrichment through Technology Title V East Los Angeles College 2003 East Los Angeles College. All rights reserved. Topics Introduction Empirical Probability Theoretical

### 10-4 Theoretical Probability

Problem of the Day A spinner is divided into 4 different colored sections. It is designed so that the probability of spinning red is twice the probability of spinning green, the probability of spinning

### WSMA Compound Probability Lesson 10. The combined likelihood of multiple events is called compound probability.

WSMA Compound Probability Lesson 0 Sometimes you need to know the probability of an event which is really the combination of various actions. It may be several dice rolls, or several cards selected from

### Lesson 15.5: Independent and Dependent Events

Lesson 15.5: Independent and Dependent Events Sep 26 10:07 PM 1 Work with a partner. You have three marbles in a bag. There are two green marbles and one purple marble. Randomly draw a marble from the

### A. 15 B. 24 C. 45 D. 54

A spinner is divided into 8 equal sections. Lara spins the spinner 120 times. It lands on purple 30 times. How many more times does Lara need to spin the spinner and have it land on purple for the relative

### Study Island Statistics and Probability

Study Island Statistics and Probability Copyright 2014 Edmentum - All rights reserved. 1. An experiment is broken up into two parts. In the first part of the experiment, a six-sided die is rolled. In the

### The study of probability is concerned with the likelihood of events occurring. Many situations can be analyzed using a simplified model of probability

The study of probability is concerned with the likelihood of events occurring Like combinatorics, the origins of probability theory can be traced back to the study of gambling games Still a popular branch

### Probability Review before Quiz. Unit 6 Day 6 Probability

Probability Review before Quiz Unit 6 Day 6 Probability Warm-up: Day 6 1. A committee is to be formed consisting of 1 freshman, 1 sophomore, 2 juniors, and 2 seniors. How many ways can this committee be

### Chapter 13 Test Review

1. The tree diagrams below show the sample space of choosing a cushion cover or a bedspread in silk or in cotton in red, orange, or green. Write the number of possible outcomes. A 6 B 10 C 12 D 4 Find

### 7.1 Experiments, Sample Spaces, and Events

7.1 Experiments, Sample Spaces, and Events An experiment is an activity that has observable results. Examples: Tossing a coin, rolling dice, picking marbles out of a jar, etc. The result of an experiment

### Classical vs. Empirical Probability Activity

Name: Date: Hour : Classical vs. Empirical Probability Activity (100 Formative Points) For this activity, you will be taking part in 5 different probability experiments: Rolling dice, drawing cards, drawing

### Here are two situations involving chance:

Obstacle Courses 1. Introduction. Here are two situations involving chance: (i) Someone rolls a die three times. (People usually roll dice in pairs, so dice is more common than die, the singular form.)

### MATH CALCULUS & STATISTICS/BUSN - PRACTICE EXAM #1 - SPRING DR. DAVID BRIDGE

MATH 2053 - CALCULUS & STATISTICS/BUSN - PRACTICE EXAM #1 - SPRING 2009 - DR. DAVID BRIDGE MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the

### Data Analysis & Probability Counting Techniques & Probability (Notes)

Data Analysis & Probability Counting Techniques & Probability (Notes) Name I can Date Essential Question(s): Key Concepts Notes Fundamental Counting Principle Factorial Permutations Combinations What is

### Quiz 2 Review - on Notebook Paper Are You Ready For Your Last Quiz In Honors Math II??

Quiz 2 Review - on Notebook Paper Are You Ready For Your Last Quiz In Honors Math II?? Some things to Know, Memorize, AND Understand how to use are n What are the formulas? Pr ncr Fill in the notation

### Unit 6: Probability Summative Assessment. 2. The probability of a given event can be represented as a ratio between what two numbers?

Math 7 Unit 6: Probability Summative Assessment Name Date Knowledge and Understanding 1. Explain the difference between theoretical and experimental probability. 2. The probability of a given event can

### Part 1: I can express probability as a fraction, decimal, and percent

Name: Pattern: Part 1: I can express probability as a fraction, decimal, and percent For #1 to #4, state the probability of each outcome. Write each answer as a) a fraction b) a decimal c) a percent Example:

### Basic Probability. Let! = # 8 # < 13, # N -,., and / are the subsets of! such that - = multiples of four. = factors of 24 / = square numbers

Basic Probability Let! = # 8 # < 13, # N -,., and / are the subsets of! such that - = multiples of four. = factors of 24 / = square numbers (a) List the elements of!. (b) (i) Draw a Venn diagram to show

### 10-1. Combinations. Vocabulary. Lesson. Mental Math. able to compute the number of subsets of size r.

Chapter 10 Lesson 10-1 Combinations BIG IDEA With a set of n elements, it is often useful to be able to compute the number of subsets of size r Vocabulary combination number of combinations of n things

### Course Learning Outcomes for Unit V

UNIT V STUDY GUIDE Counting Reading Assignment See information below. Key Terms 1. Combination 2. Fundamental counting principle 3. Listing 4. Permutation 5. Tree diagrams Course Learning Outcomes for

### Chapter 3: Probability (Part 1)

Chapter 3: Probability (Part 1) 3.1: Basic Concepts of Probability and Counting Types of Probability There are at least three different types of probability Subjective Probability is found through people

### Study Guide Probability SOL s 6.16, 7.9, & 7.10

Study Guide Probability SOL s 6.16, 7.9, & 7.10 What do I need to know for the upcoming assessment? Find the probability of simple events; Determine if compound events are independent or dependent; Find

### Objectives. Determine whether events are independent or dependent. Find the probability of independent and dependent events.

Objectives Determine whether events are independent or dependent. Find the probability of independent and dependent events. independent events dependent events conditional probability Vocabulary Events

### e. Are the probabilities you found in parts (a)-(f) experimental probabilities or theoretical probabilities? Explain.

1. Josh is playing golf. He has 3 white golf balls, 4 yellow golf balls, and 1 red golf ball in his golf bag. At the first hole, he randomly draws a ball from his bag. a. What is the probability he draws

### Unit 1 Day 1: Sample Spaces and Subsets. Define: Sample Space. Define: Intersection of two sets (A B) Define: Union of two sets (A B)

Unit 1 Day 1: Sample Spaces and Subsets Students will be able to (SWBAT) describe events as subsets of sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions,

### Chapter 10 Practice Test Probability

Name: Class: Date: ID: A Chapter 0 Practice Test Probability Multiple Choice Identify the choice that best completes the statement or answers the question. Describe the likelihood of the event given its

### Section Introduction to Sets

Section 1.1 - Introduction to Sets Definition: A set is a well-defined collection of objects usually denoted by uppercase letters. Definition: The elements, or members, of a set are denoted by lowercase

### Probability. Dr. Zhang Fordham Univ.

Probability! Dr. Zhang Fordham Univ. 1 Probability: outline Introduction! Experiment, event, sample space! Probability of events! Calculate Probability! Through counting! Sum rule and general sum rule!

### Review. Natural Numbers: Whole Numbers: Integers: Rational Numbers: Outline Sec Comparing Rational Numbers

FOUNDATIONS Outline Sec. 3-1 Gallo Name: Date: Review Natural Numbers: Whole Numbers: Integers: Rational Numbers: Comparing Rational Numbers Fractions: A way of representing a division of a whole into