A Framework for Incorporating ilities in Tradespace Studies

Size: px
Start display at page:

Download "A Framework for Incorporating ilities in Tradespace Studies"

Transcription

1 A Framework for Incorporating ilities in Tradespace Studies September 20, 2007 H. McManus, M. Richards, A. Ross, and D. Hastings Massachusetts Institute of Technology

2 Need for ilities Washington, DC in June 2004 According to Dr. Marvin Sambur, Systems Engineering for Robustness means developing systems that are Capable of adapting to changes in mission and requirements Expandable/scalable, and designed to accommodate growth in capability Able to reliably function given changes in threats and environment Effectively/affordably sustainable over their lifecycle Developed using products designed for use in various platforms and systems Easily modified to leverage new technologies Robustness scope expanded beyond classical robustness Experts questioned What does it mean? How can it be measured/analyzed? Who is going to pay for it? How can designers account for these operational ilities *Adapted from Ross, A., Rhodes, D., and Hastings, D., Defining System Changeability: Reconciling Flexibility, Adaptability, Scalability, and Robustness for Maintaining System Lifecycle Value, INCOSE Int l Symposium 2007, San Diego, CA, June 2007 seari.mit.edu 2007 Massachusetts Institute of Technology 2

3 The Ilities design challenge Incorporating operational ilities e.g. robustness, versatility, flexibility, adaptability, scalability, survivability a major challenge for designers/architects Not simple system attributes Not captured by static tradespace models Measure preserved/enhanced value delivery in the presence of change seari.mit.edu 2007 Massachusetts Institute of Technology 3

4 Outline A visual framework for categorizing and defining operational ilities Modification of framework for including ilities in tradespace studies Simple example: Survivability of an orbital transfer vehicle seari.mit.edu 2007 Massachusetts Institute of Technology 4

5 Ilities address the ability of a system to preserve value delivery under change Consider things that change: Needs/ (expectations/req.s, system performance) Visualizing Ilities The Ility Space Context (e.g. environment, peer systems, social context, etc.) Context System (form, boundaries, operational modes, etc.) A visualization: Ilities characterized by motion in these three dimensions A E B S Needs (performance, expectations) System seari.mit.edu 2007 Massachusetts Institute of Technology 5

6 Visualizing Ilities Survivability Context AB: Robust B Minimal Control Performance Operational Performance Needs (performance, expectations) A System seari.mit.edu 2007 Massachusetts Institute of Technology 6

7 Visualizing Ilities Survivability AB: Robust AC: Survivable AX: Failure Context C X B Minimal Control Performance Operational Performance Needs (performance, expectations) A System seari.mit.edu 2007 Massachusetts Institute of Technology 7

8 Visualizing Ilities Survivability AB: Robust AC: Survivable AX: Failure Context C X B D Minimal Control Performance Operational Performance Needs (performance, expectations) A E AD: Survival through adaptation DA: Full Recovery DE: Altered Recovery System seari.mit.edu 2007 Massachusetts Institute of Technology 8

9 Challenge of Incorporating Ilities in Tradespace Studies Temporal system properties that are difficult to represent in a static tradespace Ilities (currently) need to be disaggregated from attributes Attributes need to be independent, but Ilities defined by attribute performance over time So ilities cannot be incorporated into attribute set or aggregated into a multi-attribute utility Abstract view of ilities represented in ility space difficult to implement in tradespace models seari.mit.edu 2007 Massachusetts Institute of Technology 9

10 Alternate Ility Representation* Plot performance/expectations vs. time Context, system, expectations change in epochs * See Ross, A., Managing Unarticulated Value: Changeability in Multi-Attribute Tradespace Exploration, Ph.D. Dissertation, Engineering Systems Division, Massachusetts Institute of Technology, Cambridge, MA, seari.mit.edu 2007 Massachusetts Institute of Technology 10

11 Three-Epoch Model of Survivability Three epochs Initial operations Operation in a harsh environment for a finite duration Return to normal operation Simple Epoch representation allows trade-space modeling of each epoch Operational modeling of Epoch 1 and 3 In this case, simple debris impact model* in Epoch 2 * Lai, S., Murad, E., and McNeil, W., Hazards of Hypervelocity Impacts on Spacecraft, Journal of Spacecraft and Rockets, 39(1), January-February seari.mit.edu 2007 Massachusetts Institute of Technology 11

12 Baseline Study: Space Tug Existing MATE* study of space tug trade space Three attributes Delta-V Capability Response time Three design variables Design Space >Manipulator Mass Low (300kg) Medium (1000kg) High (3000 kg) Extreme (5000 kg) >Propulsion Type Storable bi-prop Cryogenic bi-prop Electric (NSTAR) Nuclear Thermal >Fuel Load - 8 levels >Simple performance model Delta-V calculated from rocket equation Binary response time (electric propulsion slow) Capability solely dependent on manipulator mass Cost calculated from vehicle wet and dry mass * MATE: Multi-Attribute Tradespace Exploration; see McManus, H., and Schuman, T., Understanding the Orbital Transfer Vehicle Tradespace, AIAA , Sept seari.mit.edu 2007 Massachusetts Institute of Technology 12

13 Incorporation of Debris Risk and Bumper Shielding in Tradespace For all Epochs: Add six levels of shielding to design vector For Epoch 2: Compute probability of debris collision 10 years of space tug operating at 800 km apogee Exposed satellite cross-sectional area Existing Debris flux model Given collision, compute probability of surviving impact Simple bumper shield model No active survivability strategies (in this model) seari.mit.edu 2007 Massachusetts Institute of Technology 13

14 Survivable Space Tug Tradespace (Epoch 1) Utility (dimensionless) Cost ($M) Survivability lowers initial utility Mass of shielding (~cost) Loss of Delta-V due to pushing extra mass around (~utility loss) seari.mit.edu 2007 Massachusetts Institute of Technology 14

15 Ility as Independent Decision Factor: Cost-Utility-Survivability Tradespace Survivability (prob. of 10 yr life in LEO) Cost ($M) Utility (dimensionless) Difficult to visualize and understand seari.mit.edu 2007 Massachusetts Institute of Technology 15

16 Exploring Trade Space Requires Creative Display Utility (dimensionless) Cost ($M) seari.mit.edu 2007 Massachusetts Institute of Technology 16

17 Discussion Technical results Small vehicles are intrinsically survivable, badly penalized by shield mass On larger vehicles, shielding may be worthwhile for risk-adverse decision makers Size mix of debris population makes shielding less effective than expected Some vehicles have delta-v headroom that allows shielding without utility penalty Modeling lessons learned Satellite survivability to an environmental disturbance can be parametrically modeled Extreme nonlinearities associated with costs and benefits of shielding in different regions of the tradespace Display of cost, utility, and survivability in tradespaces requires innovative visualizations seari.mit.edu 2007 Massachusetts Institute of Technology 17

18 Conclusions Framework Ility Space added clarity to, and illustration of, ility taxonomy Epoch representation better for planning analysis Lessons from Implementation Example Possible (though not easy) to present decision maker with ility information as part of a tradespace exploration Approach should generalize from our simple example Explicit results and emergent understandings can help improve up-front decision-making seari.mit.edu 2007 Massachusetts Institute of Technology 18

19 Backup Slides

20 Future Survivability Work Current Limitations Single decision maker Binary survivability model, Single survivability design variable considered System-level analysis does not address architectural, sociotechnical issues Next steps Incorporate dual decision makers for survivability performance trades Application of Lawson s decision analysis Improve model fidelity to allow for partially degraded satellite states Incorporate other survivability design variables Space situational awareness Collision avoidance Explore portfolio approach to risks management Contrast Operationally Responsive Space approach with existing monolithic architecture seari.mit.edu 2007 Massachusetts Institute of Technology 20

21 Validation of Space Tug Tradespace Tool Orbital Recovery Corp. Orbital tugboat to supply propulsion, navigation and guidance to maintain a satellite in its orbital slot for 10+ years Electric Cruiser (2002 study) CX-SLES (2009 launch) Wet Mass kg Dry Mass kg * Propellant kg * Equipment kg * DV m/s *** 15900** Utility Cost * seari.mit.edu 2007 Massachusetts Institute of Technology 21

22 NASA ORDEM2000 Model SSN catalog Haystack and Haystack Auxiliary radar data Goldstone radar data Impact measurements from the Long-Duration Exposure Facility (LDEF) Hubble Space Telescope Solar Array (HST-SA) impact data European Retrievable Carrier (EuReCa) impact data Space Shuttle window and radiator impact data Space Flyer Unit (SFU) data Mir impact data Characterizing LEO Debris Environment Debris per cubic kilometer 1.00E E E E E E E E E E E E-10 km/s Spatial Density LEO altitude (km) Average Orbital Velocity seari.mit.edu 2007 Massachusetts Institute of Technology 22 >10um >100um >1mm >1cm >10cm >1m

23 Debris Model cross section flux (collisions/m^2/year) 1.00E E E E E E E E E E-09 data source Remo 2005 tracked debris (NORAD catalog) Orbital Debris Flux in LEO object diameter (cm) cross section flux (collisions/m^2/year) LEO collisions/year result E degradation E damage E damage E severe damage E E-03 severe damage E E-03 severe damage E E-06 severe damage (assuming 10 m^2 LEO satellite cross-sectional area) Regression across heterogeneous data y = 4E-05x debris diameter (cm) seari.mit.edu 2007 Massachusetts Institute of Technology 23

24 Bumper shields are effective for passive protection against fragments smaller than 1 cm in diameter Works by fragmenting or vaporizing projectile in first layer, dispersing impulsive load into particle cloud which hits next layer over larger area Design parameters of bumper system Thickness and material of outer wall Spacing between shield and backup layers Thickness and material of backup layers Survivability Design Variable: Bumper Shielding t b = t b C m V S Cmv 2 S Backup sheet thickness in cm where backup sheet will not deflect, rupture, or spall Empirically-derived constant 41.5±14.0 cm 3 g -1 km -1 s Projective mass in g Projectile velocity in km/s Bumper spacing in cm Lai (2002) seari.mit.edu 2007 Massachusetts Institute of Technology 24

25 Survivability and Costs as Constraints - utility shown by shading Cost ($M) Survivability (prob. of 10 yr life in LEO) Pick the best from the box seari.mit.edu 2007 Massachusetts Institute of Technology 25

Flexibility, Adaptability, Scalability, and Robustness for Maintaining System Lifecycle Value

Flexibility, Adaptability, Scalability, and Robustness for Maintaining System Lifecycle Value 9.4.3 Defining System ability: Reconciling Flexibility, Adaptability, Scalability, and Robustness for Maintaining System Lifecycle Value Dr. Adam M. Ross, Dr. Donna H. Rhodes, and Prof. Daniel E. Hastings

More information

SEAri Short Course Series

SEAri Short Course Series SEAri Short Course Series Course: Lecture: Author: PI.27s Value-driven Tradespace Exploration for System Design Lecture 14: Summary of a New Method Adam Ross and Donna Rhodes Lecture Number: SC-2010-PI27s-14-1

More information

A Framework for Incorporating ilities in Tradespace Studies

A Framework for Incorporating ilities in Tradespace Studies A Framework for Incorporating ilities in Tradespace Studies Hugh L. McManus, * Matthew G. Richards, Adam M. Ross, and Daniel E. Hastings Massachusetts Institute of Technology, Cambridge, MA 02139 Non-traditional

More information

2009 SEAri Annual Research Summit. Research Report. Design for Survivability: Concept Generation and Evaluation in Dynamic Tradespace Exploration

2009 SEAri Annual Research Summit. Research Report. Design for Survivability: Concept Generation and Evaluation in Dynamic Tradespace Exploration 29 Research Report Design for Survivability: Concept Generation and Evaluation in Dynamic Tradespace Exploration Matthew Richards, Ph.D. (Research Affiliate, SEAri) October 2, 29 Cambridge, MA Massachusetts

More information

Socio-Technical Decision Making and Designing for Value Robustness

Socio-Technical Decision Making and Designing for Value Robustness RESEARCH PROFILE Socio-Technical Decision Making and Designing for Value Robustness October 21, 28 Dr. Adam M. Ross Massachusetts Institute of Technology adamross@mit.edu Portfolio RESEARCH PORTFOLIO 1.

More information

Design for Affordability in Complex Systems and Programs Using Tradespace-based Affordability Analysis

Design for Affordability in Complex Systems and Programs Using Tradespace-based Affordability Analysis Design for Affordability in Complex Systems and Programs Using Tradespace-based Affordability Analysis Marcus S. Wu, Adam M. Ross, and Donna H. Rhodes Massachusetts Institute of Technology March 21 22,

More information

Introduction to MATE-CON. Presented By Hugh McManus Metis Design 3/27/03

Introduction to MATE-CON. Presented By Hugh McManus Metis Design 3/27/03 Introduction to MATE-CON Presented By Hugh McManus Metis Design 3/27/03 A method for the front end MATE Architecture Tradespace Exploration A process for understanding complex solutions to complex problems

More information

launch probability of success

launch probability of success Using Architecture Models to Understand Policy Impacts Utility 1 0.995 0.99 Policy increases cost B C D 10 of B-TOS architectures have cost increase under restrictive launch policy for a minimum cost decision

More information

A Method Using Epoch-Era Analysis to Identify Valuable Changeability in System Design

A Method Using Epoch-Era Analysis to Identify Valuable Changeability in System Design A Method Using Epoch-Era Analysis to Identify Valuable Changeability in System Design Matthew E. Fitzgerald Dr. Donna H. Rhodes Dr. Adam M. Ross Massachusetts Institute of Technology CSER 2011 Redondo

More information

Revisiting the Tradespace Exploration Paradigm: Structuring the Exploration Process

Revisiting the Tradespace Exploration Paradigm: Structuring the Exploration Process Revisiting the Tradespace Exploration Paradigm: Structuring the Exploration Process Adam M. Ross, Hugh L. McManus, Donna H. Rhodes, and Daniel E. Hastings August 31, 2010 Track 40-MIL-2: Technology Transition

More information

Evolving Systems Engineering as a Field within Engineering Systems

Evolving Systems Engineering as a Field within Engineering Systems Evolving Systems Engineering as a Field within Engineering Systems Donna H. Rhodes Massachusetts Institute of Technology INCOSE Symposium 2008 CESUN TRACK Topics Systems of Interest are Comparison of SE

More information

The following paper was published and presented at the 3 rd Annual IEEE Systems Conference in Vancouver, Canada, March, 2009.

The following paper was published and presented at the 3 rd Annual IEEE Systems Conference in Vancouver, Canada, March, 2009. The following paper was published and presented at the 3 rd Annual IEEE Systems Conference in Vancouver, Canada, 23-26 March, 2009. The copyright of the final version manuscript has been transferred to

More information

The Tradespace Exploration Paradigm Adam Ross and Daniel Hastings MIT INCOSE International Symposium July 14, 2005

The Tradespace Exploration Paradigm Adam Ross and Daniel Hastings MIT INCOSE International Symposium July 14, 2005 The Tradespace Exploration Paradigm Adam Ross and Daniel Hastings MIT INCOSE International Symposium July 14, 2005 2of 17 Motivation Conceptual Design is a high leverage phase in system development Need

More information

Quantifying Flexibility in the Operationally Responsive Space Paradigm

Quantifying Flexibility in the Operationally Responsive Space Paradigm Executive Summary of Master s Thesis MIT Systems Engineering Advancement Research Initiative Quantifying Flexibility in the Operationally Responsive Space Paradigm Lauren Viscito Advisors: D. H. Rhodes

More information

New Methods for Architecture Selection and Conceptual Design:

New Methods for Architecture Selection and Conceptual Design: New Methods for Architecture Selection and Conceptual Design: Space Systems, Policy, and Architecture Research Consortium (SSPARC) Program Overview Hugh McManus, Joyce Warmkessel, and the SSPARC team For

More information

Using Pareto Trace to Determine System Passive Value Robustness

Using Pareto Trace to Determine System Passive Value Robustness Using Pareto Trace to Determine System Passive Value Robustness The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published

More information

Design Principles for Survivable System Architecture

Design Principles for Survivable System Architecture Design Principles for Survivable System Architecture 1 st IEEE Systems Conference April 10, 2007 Matthew Richards Research Assistant, MIT Engineering Systems Division Daniel Hastings, Ph.D. Professor,

More information

Assessing the Value Proposition for Operationally Responsive Space

Assessing the Value Proposition for Operationally Responsive Space Assessing the Value Proposition for Operationally Responsive Space Lauren Viscito Matthew G. Richards Adam M. Ross Massachusetts Institute of Technology The views expressed in this presentation are those

More information

Agent Model of On-Orbit Servicing Based on Orbital Transfers

Agent Model of On-Orbit Servicing Based on Orbital Transfers Agent Model of On-Orbit Servicing Based on Orbital Transfers September 20, 2007 M. Richards, N. Shah, and D. Hastings Massachusetts Institute of Technology Agenda On-Orbit Servicing (OOS) Overview Model

More information

Shaping Socio-Technical System Innovation Strategies using a Five Aspects Taxonomy

Shaping Socio-Technical System Innovation Strategies using a Five Aspects Taxonomy Shaping Socio-Technical System Innovation Strategies using a Five Aspects Taxonomy Dr. Donna H. Rhodes Dr. Adam M. Ross Massachusetts Institute of Technology Engineering Systems Division seari@mit.edu

More information

Optimization of a Hybrid Satellite Constellation System

Optimization of a Hybrid Satellite Constellation System Multidisciplinary System Design Optimization (MSDO) Optimization of a Hybrid Satellite Constellation System Serena Chan Nirav Shah Ayanna Samuels Jennifer Underwood LIDS 12 May 23 1 12 May 23 Chan, Samuels,

More information

Design for Affordability in Complex Systems and Programs Using Tradespace-based Affordability Analysis

Design for Affordability in Complex Systems and Programs Using Tradespace-based Affordability Analysis Available online at www.sciencedirect.com Procedia Computer Science 00 (2014) 000 000 www.elsevier.com/locate/procedia Conference on Systems Engineering Research (CSER 2014) Eds.: Azad M. Madni, University

More information

System Architecture Pliability and Trading Operations in Tradespace Exploration

System Architecture Pliability and Trading Operations in Tradespace Exploration System Architecture Pliability and Trading Operations in Tradespace Exploration Brian Mekdeci Adam M. Ross, Donna H. Rhodes, Daniel E. Hastings Massachusetts Institute of Technology IEEE International

More information

RESEARCH OVERVIEW Design for Survivability: Concept Generation and Evaluation in Dynamic Tradespace Exploration

RESEARCH OVERVIEW Design for Survivability: Concept Generation and Evaluation in Dynamic Tradespace Exploration RESEARCH OVERVIEW Design for Survivability: Concept Generation and Evaluation in Dynamic Tradespace Exploration Matthew Richards, Doctoral Research Assistant mgr@mit.edu October 21, 2008 Committee: D.

More information

Revisiting the Tradespace Exploration Paradigm: Structuring the Exploration Process

Revisiting the Tradespace Exploration Paradigm: Structuring the Exploration Process Revisiting the Tradespace Exploration Paradigm: Structuring the Exploration Process Adam M. Ross * Massachusetts Institute of Technology, Cambridge, MA, 02139 Hugh L. McManus Metis Design, Cambridge MA

More information

Inter-Agency Space Debris Coordination Committee Space Debris Mitigation Guidelines Update

Inter-Agency Space Debris Coordination Committee Space Debris Mitigation Guidelines Update Inter-Agency Space Debris Coordination Committee (IADC) Inter-Agency Space Debris Coordination Committee Update 45 th Session of the Scientific and Technical Subcommittee United Nations Committee on the

More information

CubeSat Standard Updates

CubeSat Standard Updates CubeSat Standard Updates Justin Carnahan California Polytechnic State University April 25, 2013 CubeSat Developers Workshop Agenda The CubeSat Standard CDS Rev. 12 to Rev. 13 Changes The 6U CubeSat Design

More information

OVERVIEW ON 2010 SPACE DEBRIS ACTIVITIES IN FRANCE F.ALBY

OVERVIEW ON 2010 SPACE DEBRIS ACTIVITIES IN FRANCE F.ALBY OVERVIEW ON 2010 SPACE DEBRIS ACTIVITIES IN FRANCE F.ALBY SUMMARY Atmospheric reentries End of life operations Collision risk monitoring French Space Act Space debris measurements Important meetings 1-ATMOSPHERIC

More information

Addressing Systems Engineering Challenges Through Collaborative Research

Addressing Systems Engineering Challenges Through Collaborative Research Addressing Systems Engineering Challenges Through Collaborative Research June 2008 Dr. Donna H. Rhodes Massachusetts Institute of Technology rhodes@mit.edu Field of Systems Engineering seari.mit.edu 2008

More information

156 JAXA-SP IHI JAXA JAXA ( )QPS ISAS/JAXA JAXA QPS 100 m (QPS ) 10 m ( ) 100 m ( ) BBM This document is provided by JAXA.

156 JAXA-SP IHI JAXA JAXA ( )QPS ISAS/JAXA JAXA QPS 100 m (QPS ) 10 m ( ) 100 m ( ) BBM This document is provided by JAXA. 156 IHI JAXA JAXA ( )QPS ISAS/JAXA JAXA QPS 100 m (QPS ) 10 m ( ) 100 m ( ) BBM 4 157 Background Spacecraft orbit Orbital plan & design M&D Debris environment model Evaluation of Space Environment Extraction

More information

Developing Methods to Design for Evolvability: Research Approach and Preliminary Design Principles

Developing Methods to Design for Evolvability: Research Approach and Preliminary Design Principles Developing Methods to Design for Evolvability: Research Approach and Preliminary Design Principles J. Clark Beesemyer, Daniel O. Fulcoly, Adam M. Ross, Donna H. Rhodes Massachusetts Institute of Technology

More information

Simulation of GPS-based Launch Vehicle Trajectory Estimation using UNSW Kea GPS Receiver

Simulation of GPS-based Launch Vehicle Trajectory Estimation using UNSW Kea GPS Receiver Simulation of GPS-based Launch Vehicle Trajectory Estimation using UNSW Kea GPS Receiver Sanat Biswas Australian Centre for Space Engineering Research, UNSW Australia, s.biswas@unsw.edu.au Li Qiao School

More information

Multi-Attribute Tradespace Exploration for Survivability: Application to Satellite Radar

Multi-Attribute Tradespace Exploration for Survivability: Application to Satellite Radar Multi-Attribute Tradespace Exploration for Survivability: Application to Satellite Radar Matthew G. Richards, * Adam M. Ross, David B. Stein, and Daniel E. Hastings Massachusetts Institute of Technology,

More information

CubeSat Launch and Deployment Accommodations

CubeSat Launch and Deployment Accommodations CubeSat Launch and Deployment Accommodations April 23, 2015 Marissa Stender, Chris Loghry, Chris Pearson, Joe Maly Moog Space Access and Integrated Systems jmaly@moog.com Getting Small Satellites into

More information

Passive Microwave Sensors LIDAR Remote Sensing Laser Altimetry. 28 April 2003

Passive Microwave Sensors LIDAR Remote Sensing Laser Altimetry. 28 April 2003 Passive Microwave Sensors LIDAR Remote Sensing Laser Altimetry 28 April 2003 Outline Passive Microwave Radiometry Rayleigh-Jeans approximation Brightness temperature Emissivity and dielectric constant

More information

Solar Power Satellite, Space Elevator, and Reusable Launch

Solar Power Satellite, Space Elevator, and Reusable Launch AIAA-2010-791690 Solar Power Satellite, Space Elevator, and Reusable Launch Dr. James A. Martin Consultant, Associate Editor JSR Space 2010 Conference Anaheim, CA August 30, 2010 Solar Power Satellites

More information

2011 INCOSE International Symposium June 21, Presented by: Donna Rhodes. seari.mit.edu

2011 INCOSE International Symposium June 21, Presented by: Donna Rhodes. seari.mit.edu Examining Survivability of Systems of Systems Brian Mekdeci, Adam M. Ross, Donna H. Rhodes, and Daniel E. Hastings Massachusetts Institute of Technology Presented by: Donna Rhodes 2011 INCOSE International

More information

Enhancing the Economics of Satellite Constellations via Staged Deployment

Enhancing the Economics of Satellite Constellations via Staged Deployment Enhancing the Economics of Satellite Constellations via Staged Deployment Prof. Olivier de Weck, Prof. Richard de Neufville Mathieu Chaize Unit 4 MIT Industry Systems Study Communications Satellite Constellations

More information

A Taxonomy of Perturbations: Determining the Ways That Systems Lose Value

A Taxonomy of Perturbations: Determining the Ways That Systems Lose Value A Taxonomy of Perturbations: Determining the Ways That Systems Lose Value IEEE International Systems Conference March 21, 2012 Brian Mekdeci, PhD Candidate Dr. Adam M. Ross Dr. Donna H. Rhodes Prof. Daniel

More information

The International Lunar Network (ILN) and the US Anchor Nodes mission

The International Lunar Network (ILN) and the US Anchor Nodes mission The International Lunar Network (ILN) and the US Anchor Nodes mission Update to the LEAG/ILWEG/SRR, 10/30/08 Barbara Cohen, SDT Co-chair NASA Marshall Space Flight Center Barbara.A.Cohen@nasa.gov The ILN

More information

An Empirical Investigation of System Changes to Frame Links between Design Decisions and Ilities

An Empirical Investigation of System Changes to Frame Links between Design Decisions and Ilities An Empirical Investigation of System Changes to Frame Links between Design Decisions and Ilities The MIT Faculty has made this article openly available. Please share how this access benefits you. Your

More information

Office of Chief Technologist - Space Technology Program Dr. Prasun Desai Office of the Chief Technologist May 1, 2012

Office of Chief Technologist - Space Technology Program Dr. Prasun Desai Office of the Chief Technologist May 1, 2012 Office of Chief Technologist - Space Technology Program Dr. Prasun Desai Office of the Chief Technologist May 1, 2012 O f f i c e o f t h e C h i e f T e c h n o l o g i s t Office of the Chief Technologist

More information

Defining Changeability: Reconciling Flexibility, Adaptability, Scalability, Modifiability, and Robustness for Maintaining System Lifecycle Value

Defining Changeability: Reconciling Flexibility, Adaptability, Scalability, Modifiability, and Robustness for Maintaining System Lifecycle Value Defining Changeability: Reconciling Flexibility, Adaptability, Scalability, Modifiability, and Robustness for Maintaining System Lifecycle Value Adam M. Ross 1, Donna H. Rhodes 2, and Daniel E. Hastings

More information

CubeSat Solid Rocket Motor Propulsion Systems providing DVs greater than 500 m/s

CubeSat Solid Rocket Motor Propulsion Systems providing DVs greater than 500 m/s CubeSat Solid Rocket Motor Propulsion Systems providing DVs greater than 500 m/s Kevin L. Zondervan, Jerry Fuller, Darren Rowen, Brian Hardy, Chris Kobel, Shin-Hsing Chen, Phillip Morrison, Timothy Smith,

More information

Understand that technology has different levels of maturity and that lower maturity levels come with higher risks.

Understand that technology has different levels of maturity and that lower maturity levels come with higher risks. Technology 1 Agenda Understand that technology has different levels of maturity and that lower maturity levels come with higher risks. Introduce the Technology Readiness Level (TRL) scale used to assess

More information

OPAL Optical Profiling of the Atmospheric Limb

OPAL Optical Profiling of the Atmospheric Limb OPAL Optical Profiling of the Atmospheric Limb Alan Marchant Chad Fish Erik Stromberg Charles Swenson Jim Peterson OPAL STEADE Mission Storm Time Energy & Dynamics Explorers NASA Mission of Opportunity

More information

; ; IR

; ; IR MS-2-2.5 SATELLITE The MS-2-2.5 satellite is designed for Earth Remote Sensing with the use of high resolution IR and multi-band imager. The satellite performs natural and man-caused disasters monitoring,

More information

SEAri Short Course Series

SEAri Short Course Series SEAri Short Course Series Course: Lecture: Author: PI.26s Epoch-based Thinking: Anticipating System and Enterprise Strategies for Dynamic Futures Lecture 12: Advanced Topics in Epoch-based Thinking Adam

More information

Game-Based Learning for Systems Engineering Concepts

Game-Based Learning for Systems Engineering Concepts Game-Based Learning for Systems Engineering Concepts Adam M. Ross, Matthew E. Fitzgerald, and Donna H. Rhodes Massachusetts Institute of Technology March 21, 2014 Presented to the Conference on Systems

More information

SEAri Short Course Series

SEAri Short Course Series SEAri Short Course Series Course: Lecture: Author: PI.26s Epoch-based Thinking: Anticipating System and Enterprise Strategies for Dynamic Futures Lecture 5: Perceptual Aspects of Epoch-based Thinking Adam

More information

Worst-Case GPS Constellation for Testing Navigation at Geosynchronous Orbit for GOES-R

Worst-Case GPS Constellation for Testing Navigation at Geosynchronous Orbit for GOES-R Worst-Case GPS Constellation for Testing Navigation at Geosynchronous Orbit for GOES-R Kristin Larson, Dave Gaylor, and Stephen Winkler Emergent Space Technologies and Lockheed Martin Space Systems 36

More information

The Colorado Student Space Weather Experiment (CSSWE) On-Orbit Performance

The Colorado Student Space Weather Experiment (CSSWE) On-Orbit Performance The Colorado Student Space Weather Experiment (CSSWE) On-Orbit Performance David Gerhardt 1, Scott Palo 1, Xinlin Li 1,2, Lauren Blum 1,2, Quintin Schiller 1,2, and Rick Kohnert 2 1 University of Colorado

More information

NASA TA-02 In-space Propulsion Roadmap Priorities

NASA TA-02 In-space Propulsion Roadmap Priorities NASA TA-02 In-space Propulsion Roadmap Priorities Russell Joyner Technical Fellow Pratt Whitney Rocketdyne March 22, 2011 TA02 In-space Propulsion Roadmap High Thrust (>1kN or >224-lbf) Focus The Overarching

More information

Analysis and Comparison of CubeSat Lifetime

Analysis and Comparison of CubeSat Lifetime Analysis and Comparison of CubeSat Lifetime Li Qiao, Chris Rizos, Andrew G. Dempster Australian Centre for Space Engineering Research, School of Surveying and Geospatial Engineering, University of New

More information

Space Debris Mitigation

Space Debris Mitigation Space Debris Mitigation The CleanSpace One Project Volker Gass, Claude Nicollier, Anton Ivanov, Muriel Richard Swiss Space Center 27 March 2012 Ref. SSC-CSO-1-0-Generic Presentation 27-03-12.pptx Context

More information

NEO Science and Human Space Activity. Mark V. Sykes Director, Planetary Science Institute Chair, NASA Small Bodies Assessment Group

NEO Science and Human Space Activity. Mark V. Sykes Director, Planetary Science Institute Chair, NASA Small Bodies Assessment Group 1 NEO Science and Human Space Activity Mark V. Sykes Director, Planetary Science Institute Chair, NASA Small Bodies Assessment Group Near-Earth Objects q

More information

14 February 2011 Japan

14 February 2011 Japan Concerning to the ToR on the Long-Term Sustainability of Outer Space Activities of the STSC (A/AC.105/C.1/L.307) Procedure for Risk Assessment & Identification of Best Practices to Support the WG for Sustainability

More information

CubeSat Integration into the Space Situational Awareness Architecture

CubeSat Integration into the Space Situational Awareness Architecture CubeSat Integration into the Space Situational Awareness Architecture Keith Morris, Chris Rice, Mark Wolfson Lockheed Martin Space Systems Company 12257 S. Wadsworth Blvd. Mailstop S6040 Littleton, CO

More information

Shaping Socio-technical System Innovation Strategies using a Five Aspects Taxonomy

Shaping Socio-technical System Innovation Strategies using a Five Aspects Taxonomy Shaping Socio-technical System Innovation Strategies using a Five Aspects Taxonomy Donna H. Rhodes and Adam M. Ross Massachusetts Institute of Technology Systems Engineering Advancement Research Initiative

More information

An Evaluation of CubeSat Orbital Decay

An Evaluation of CubeSat Orbital Decay SSC11-VII-2 An Evaluation of CubeSat Orbital Decay AGI s Center for Space Stds &Innovation CEO, 1Earth Research Dan Oltrogge SRI International, Inc. Kyle Leveque Contents The CubeSat Historical Manifest

More information

Status of Active Debris Removal (ADR) developments at the Swiss Space Center

Status of Active Debris Removal (ADR) developments at the Swiss Space Center Status of Active Debris Removal (ADR) developments at the Swiss Space Center Muriel Richard, Benoit Chamot, Volker Gass, Claude Nicollier muriel.richard@epfl.ch IAF SYMPOSIUM 2013 11 February 2013 Vienna

More information

NanoSwarm: CubeSats Enabling a Discovery Class Mission Jordi Puig-Suari Tyvak Nano-Satellite Systems

NanoSwarm: CubeSats Enabling a Discovery Class Mission Jordi Puig-Suari Tyvak Nano-Satellite Systems NanoSwarm: CubeSats Enabling a Discovery Class Mission Jordi Puig-Suari Tyvak Nano-Satellite Systems TERRAN ORBITAL NanoSwarm Mission Objectives Detailed investigation of Particles and Magnetic Fields

More information

Two Different Views of the Engineering Problem Space Station

Two Different Views of the Engineering Problem Space Station 1 Introduction The idea of a space station, i.e. a permanently habitable orbital structure, has existed since the very early ideas of spaceflight itself were conceived. As early as 1903 the father of cosmonautics,

More information

Analysis of Potential for Venus-Bound Cubesat Scientific Investigations

Analysis of Potential for Venus-Bound Cubesat Scientific Investigations Analysis of Potential for Venus-Bound Cubesat Scientific Investigations Image Sources: Earth Science and Remote Sensing Unit, NASA Johnson Space Center; JAXA / ISAS / DARTS / Damia Bouic / Elsevier inc.

More information

Dream Chaser for European Utilization (DC 4 EU):

Dream Chaser for European Utilization (DC 4 EU): 54th European Space Science Committee Plenary Meeting 22-24 November 2017 German Aerospace Centre DLR Obepfaffenhofen, Germany Presenter: Dr. Marco Berg Dream Chaser for European Utilization (DC 4 EU):

More information

THE SPACE TECHNOLOGY RESEARCH VEHICLE 2 MEDIUM WAVE INFRA RED IMAGER

THE SPACE TECHNOLOGY RESEARCH VEHICLE 2 MEDIUM WAVE INFRA RED IMAGER THE SPACE TECHNOLOGY RESEARCH VEHICLE 2 MEDIUM WAVE INFRA RED IMAGER S J Cawley, S Murphy, A Willig and P S Godfree Space Department The Defence Evaluation and Research Agency Farnborough United Kingdom

More information

An Iterative Subsystem-Generated Approach to Populating a Satellite Constellation Tradespace

An Iterative Subsystem-Generated Approach to Populating a Satellite Constellation Tradespace An Iterative Subsystem-Generated Approach to Populating a Satellite Constellation Tradespace Andrew A. Rader Franz T. Newland COM DEV Mission Development Group Adam M. Ross SEAri, MIT Outline Introduction

More information

Power modeling and budgeting design and validation with in-orbit data of two commercial LEO satellites

Power modeling and budgeting design and validation with in-orbit data of two commercial LEO satellites SSC17-X-08 Power modeling and budgeting design and validation with in-orbit data of two commercial LEO satellites Alan Kharsansky Satellogic Av. Raul Scalabrini Ortiz 3333 piso 2, Argentina; +5401152190100

More information

Architecting Systems of Systems with Ilities: an Overview of the SAI Method

Architecting Systems of Systems with Ilities: an Overview of the SAI Method Architecting Systems of Systems with Ilities: an Overview of the SAI Method Nicola Ricci, MaAhew E. Fitzgerald, Adam M. Ross, and Donna H. Rhodes Massachuse(s Ins,tute of Technology March 21-22, 2014 Presented

More information

Exploration Systems Research & Technology

Exploration Systems Research & Technology Exploration Systems Research & Technology NASA Institute of Advanced Concepts Fellows Meeting 16 March 2005 Dr. Chris Moore Exploration Systems Mission Directorate NASA Headquarters Nation s Vision for

More information

Nanosat Deorbit and Recovery System to Enable New Missions

Nanosat Deorbit and Recovery System to Enable New Missions SSC11-X-3 Nanosat Deorbit and Recovery System to Enable New Missions Jason Andrews, Krissa Watry, Kevin Brown Andrews Space, Inc. 3415 S. 116th Street, Ste 123, Tukwila, WA 98168, (206) 342-9934 jandrews@andrews-space.com,

More information

Space Debris Mitigation Status of China s Launch Vehicle

Space Debris Mitigation Status of China s Launch Vehicle Space Debris Mitigation Status of China s Launch Vehicle SONG Qiang (Beijing Institute of Aerospace Systems Engineering) Abstract: China s launch vehicle has being developed for more than 40 years. Various

More information

The Global Exploration Roadmap International Space Exploration Coordination Group (ISECG)

The Global Exploration Roadmap International Space Exploration Coordination Group (ISECG) The Global Exploration Roadmap International Space Exploration Coordination Group (ISECG) Kathy Laurini NASA/Senior Advisor, Exploration & Space Ops Co-Chair/ISECG Exp. Roadmap Working Group FISO Telecon,

More information

Universal CubeSat Platform Design Technique

Universal CubeSat Platform Design Technique MATEC Web of Conferences 179, 01002 (2018) Universal CubeSat Platform Design Technique Zhiyong Chen 1,a 1 Interligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou,

More information

40 kg to LEO: A Low Cost Launcher for Australia. By Nicholas Jamieson

40 kg to LEO: A Low Cost Launcher for Australia. By Nicholas Jamieson 40 kg to LEO: A Low Cost Launcher for Australia By Nicholas Jamieson Thesis topic: Design of a 40kg to LEO launch vehicle with a hypersonic second stage Supervisors: Dr Graham Doig (University of New South

More information

This document is a preview generated by EVS

This document is a preview generated by EVS INTERNATIONAL STANDARD ISO 16164 First edition 2015-07-01 Space systems Disposal of satellites operating in or crossing Low Earth Orbit Systèmes spatiaux Disposition des satellites opérant dans ou à cheval

More information

Multi-Epoch Analysis of a Satellite Constellation to Identify Value Robust Deployment across Uncertain Futures

Multi-Epoch Analysis of a Satellite Constellation to Identify Value Robust Deployment across Uncertain Futures Multi-Epoch Analysis of a Satellite Constellation to Identify Value Robust Deployment across Uncertain Futures Andrew A. Rader 1 SpaceX, Hawthorne, CA, 90250 and Adam M. Ross 2 and Matthew E. Fitzgerald

More information

Engineered Resilient Systems NDIA Systems Engineering Conference October 29, 2014

Engineered Resilient Systems NDIA Systems Engineering Conference October 29, 2014 Engineered Resilient Systems NDIA Systems Engineering Conference October 29, 2014 Jeffery P. Holland, PhD, PE (SES) ERS Community of Interest (COI) Lead Director, US Army Engineer Research and Development

More information

Program and Portfolio Tradeoffs Under Uncertainty Using Epoch-Era Analysis

Program and Portfolio Tradeoffs Under Uncertainty Using Epoch-Era Analysis Program and Portfolio Tradeoffs Under Uncertainty Using Epoch-Era Analysis Parker D. Vascik, Adam M. Ross, and Donna H. Rhodes Massachusetts Institute of Technology Presentation Outline Motivation Influence

More information

GPS Field Experiment for Balloon-based Operation Vehicle

GPS Field Experiment for Balloon-based Operation Vehicle GPS Field Experiment for Balloon-based Operation Vehicle P.J. Buist, S. Verhagen, Delft University of Technology T. Hashimoto, S. Sakai, N. Bando, JAXA p.j.buist@tudelft.nl 1 Objective of Paper This paper

More information

Developing Countries Perspectives on Implementation Strategies. by Adigun Ade ABIODUN

Developing Countries Perspectives on Implementation Strategies. by Adigun Ade ABIODUN Developing Countries Perspectives on Implementation Strategies by Adigun Ade ABIODUN McGill University Conference on Space Debris Guide Lines Montreal. CANADA May 7-9, 2009 1 OUTLINE Revisiting the Guidelines

More information

Introduction to Space Debris and Hypervelocity Impact Test Facilities at Kyushu Institute of Technology

Introduction to Space Debris and Hypervelocity Impact Test Facilities at Kyushu Institute of Technology Introduction to Space Debris and Hypervelocity Impact Test Facilities at Kyushu Institute of Technology Pauline Faure 大学院工学府機械知能工学研究系宇宙工学コース計算力学研究室博士後期課程二年 Contents Introduction to Space Debris Space Debris?

More information

Satellite Testing. Prepared by. A.Kaviyarasu Assistant Professor Department of Aerospace Engineering Madras Institute Of Technology Chromepet, Chennai

Satellite Testing. Prepared by. A.Kaviyarasu Assistant Professor Department of Aerospace Engineering Madras Institute Of Technology Chromepet, Chennai Satellite Testing Prepared by A.Kaviyarasu Assistant Professor Department of Aerospace Engineering Madras Institute Of Technology Chromepet, Chennai @copyright Solar Panel Deployment Test Spacecraft operating

More information

Airbus DS ESA Phase-0 L5 Spacecraft/Orbital Concept Overview. Emanuele Monchieri 6 th March 2017

Airbus DS ESA Phase-0 L5 Spacecraft/Orbital Concept Overview. Emanuele Monchieri 6 th March 2017 Airbus DS ESA Phase-0 L5 Spacecraft/Orbital Concept Overview Emanuele Monchieri 6 th March 2017 Airbus DS ESA Phase-0 L5 Spacecraft/Orbital Concept Overview Contents L5 Mission Outline Mission Concept

More information

In-Space Transportation Infrastructure Architecture Decisions Using a Weighted Graph Approach

In-Space Transportation Infrastructure Architecture Decisions Using a Weighted Graph Approach In-Space Transportation Infrastructure Architecture Decisions Using a Weighted Graph Approach Peter Davison Massachusetts Institute of Technology 77 Massachusetts Avenue 33-409 Cambridge, MA 0239 830-857-3228

More information

INTRODUCTION The validity of dissertation Object of investigation Subject of investigation The purpose: of the tasks The novelty:

INTRODUCTION The validity of dissertation Object of investigation Subject of investigation The purpose: of the tasks The novelty: INTRODUCTION The validity of dissertation. According to the federal target program "Maintenance, development and use of the GLONASS system for 2012-2020 years the following challenges were determined:

More information

A Framework for Understanding Uncertainty and its Mitigation and Exploitation in Complex Systems

A Framework for Understanding Uncertainty and its Mitigation and Exploitation in Complex Systems A Framework for Understanding Uncertainty and its Mitigation and Exploitation in Complex Systems Dr. Hugh McManus Metis Design, 222 Third St. Cambridge MA 02142 hmcmanus@metisdesign.com Prof. Daniel Hastings

More information

Case Studies of Historical Epoch Shifts: Impacts on Space Systems and their Responses

Case Studies of Historical Epoch Shifts: Impacts on Space Systems and their Responses Page 1 of 13 Case Studies of Historical Epoch Shifts: Impacts on Space Systems and their Responses J. Clark Beesemyer *, Adam M. Ross and Donna H. Rhodes Massachusetts Institute of Technology, Cambridge,

More information

Drag and Atmospheric Neutral Density Explorer

Drag and Atmospheric Neutral Density Explorer Drag and Atmospheric Neutral Density Explorer Winner of University Nanosat V Competition Engineering Challenges of Designing a Spherical Spacecraft Colorado Undergraduate Space Research Symposium April

More information

Research by Ukraine of the near Earth space

Research by Ukraine of the near Earth space MEETING BETWEEN YUZHNOYE SDO AND HONEYWELL, DECEMBER 8, 2009 Research by Ukraine of the near Earth space YUZHNOYE SDO PROPOSALS 50 th session FOR of COOPERATION STSC COPUOS WITH HONEYWELL Vienna 11-22

More information

Ballistic limit curves for cylindrical projectiles impacting dual-wall spacecraft systems

Ballistic limit curves for cylindrical projectiles impacting dual-wall spacecraft systems Ballistic limit curves for cylindrical projectiles impacting dual-wall spacecraft systems K. Hu and W.P. Schonberg2 Mechanical Engineering Departnzen~, University of Missow-i-Rolls, Rolls, U.S.A. 2Civil

More information

Iridium NEXT SensorPODs: Global Access For Your Scientific Payloads

Iridium NEXT SensorPODs: Global Access For Your Scientific Payloads Iridium NEXT SensorPODs: Global Access For Your Scientific Payloads 25 th Annual AIAA/USU Conference on Small Satellites August 9th 2011 Dr. Om P. Gupta Iridium Satellite LLC, McLean, VA, USA Iridium 1750

More information

Four Aerospace Issues Addressed by the Kennedy Space Center Applied Physics Lab

Four Aerospace Issues Addressed by the Kennedy Space Center Applied Physics Lab Four Aerospace Issues Addressed by the Kennedy Space Center Applied Physics Lab June 20, 2017 Robert C. Youngquist Four Aerospace Issues at KSC The KSC Applied Physics Lab (formed in 1989) helps the programs

More information

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology QuikSCAT Mission Status QuikSCAT Follow-on Mission 2 QuikSCAT instrument and spacecraft are healthy, but aging June 19, 2009 will be the 10 year launch anniversary We ve had two significant anomalies during

More information

Guiding Cooperative Stakeholders to Compromise Solutions Using an Interactive Tradespace Exploration Process

Guiding Cooperative Stakeholders to Compromise Solutions Using an Interactive Tradespace Exploration Process Guiding Cooperative Stakeholders to Compromise Solutions Using an Interactive Tradespace Exploration Process Matthew E Fitzgerald Adam M Ross CSER 2013 Atlanta, GA March 22, 2013 Outline Motivation for

More information

CNES Presentation: * SPACE DEBRIS ACTIVITIES * REGISTRATION ISSUES. Mario Hucteau Head of Registration Office COPUOS LSC, Vienna - April 2011

CNES Presentation: * SPACE DEBRIS ACTIVITIES * REGISTRATION ISSUES. Mario Hucteau Head of Registration Office COPUOS LSC, Vienna - April 2011 CNES Presentation: * SPACE DEBRIS ACTIVITIES * REGISTRATION ISSUES Mario Hucteau Head of Registration Office COPUOS LSC, Vienna - April 2011 SUMMARY SPACE DEBRIS ACTIVITIES Reentries, End of life operations,

More information

Science Enabled by the Return to the Moon (and the Ares 5 proposal)

Science Enabled by the Return to the Moon (and the Ares 5 proposal) Science Enabled by the Return to the Moon (and the Ares 5 proposal) Harley A. Thronson Exploration Concepts & Applications, Flight Projects Division NASA GSFC and the Future In-Space Operations (FISO)

More information

SNIPE mission for Space Weather Research. CubeSat Developers Workshop 2017 Jaejin Lee (KASI)

SNIPE mission for Space Weather Research. CubeSat Developers Workshop 2017 Jaejin Lee (KASI) SNIPE mission for Space Weather Research CubeSat Developers Workshop 2017 Jaejin Lee (KASI) New Challenge with Nanosatellites In observing small-scale plasma structures, single satellite inherently suffers

More information

Design an Optimum PV System for the Satellite Technology using High Efficiency Solar Cells

Design an Optimum PV System for the Satellite Technology using High Efficiency Solar Cells Design an Optimum PV System for the Satellite Technology using High Efficiency Solar Cells Ahmed Lotfy Wagdy R. Anis Professor M. A. Atalla Professor Alexandria Higher Institute of Engineering and Technology

More information

A Systems Approach to Select a Deployment Scheme to Minimize Re-contact When Deploying Many Satellites During One Launch Mission

A Systems Approach to Select a Deployment Scheme to Minimize Re-contact When Deploying Many Satellites During One Launch Mission A Systems Approach to Select a Deployment Scheme to Minimize Re-contact When Deploying Many Satellites During One Launch Mission Steven J. Buckley, Volunteer Emeritus, Air Force Research Laboratory Bucklesjs@aol.com,

More information