ECS 289G UC Davis Paper Presenta6on #1

Size: px
Start display at page:

Download "ECS 289G UC Davis Paper Presenta6on #1"

Transcription

1 ECS 289G UC Davis Paper Presenta6on #1 ImageNet Classifica6on with Deep Convolu6onal Neural Networks Mohammad Motamedi Mohammad Motamedi ECS 289G PAPER PRESENTATION - UC DAVIS 1

2 Convolu6onal Neural Networks (CNNs) Easier to Train Much Fewer ConnecEon Using locality of pixel dependency Capacity is funceon of depth and breadth Image source: stackexchange.com Mohammad Motamedi ECS 289G PAPER PRESENTATION - UC DAVIS 2

3 Training Examples ImageNet Dataset of 15 million labeled high resolueon images categories Various image resolueons Data size 1.2 million training examples validaeon images teseng images Preprocessing Down- sampled to SubtracEng mean acevity over training set from each pixel Mohammad Motamedi Image source: image- net.org ECS 289G PAPER PRESENTATION - UC DAVIS 3

4 The Architecture Innova6ons and Details Mohammad Motamedi ECS 289G PAPER PRESENTATION - UC DAVIS 4

5 Rec6fied Linear Units (ReLU) Using f(x)=max (0, x) instead of tanh (x) No input normalizaeon is required for saturaeon preveneon Image source: cs231n.github.io Mohammad Motamedi ECS 289G PAPER PRESENTATION - UC DAVIS 5

6 Local Response Normaliza6on Normalizing over n adjacent feature maps at the same spaeal posieon. It is performed ayer applying ReLU. Effect Reduces top 1 error by 1.4 % Reduces top 5 error by 1.2 % Image source: computer.org Mohammad Motamedi ECS 289G PAPER PRESENTATION - UC DAVIS 6

7 Overlapping Pooling Pooling grid of space 2 are used for summarizing neighborhoods of size 3 3. Effects Reduces the top 1 error rate by 0.4 % Reduces the top 5 error rate by 0.4 % Mohammad Motamedi ECS 289G PAPER PRESENTATION - UC DAVIS 7

8 Architecture Response normalizaeon: AYer first and Second Layer Max Pooling: AYer both response normalizaeons and fiyh layer ReLU: AYer each layer Mohammad Motamedi ECS 289G PAPER PRESENTATION - UC DAVIS 8

9 OverfiQng Techniques to Reduce OverfiQng Mohammad Motamedi ECS 289G PAPER PRESENTATION - UC DAVIS 9

10 Data Augmenta6on Data is augmented by ExtracEng random patches Using both patches and their horizontal refleceon The same approaches is used in the test Eme (10 patches) Altering the intensity of RGB channels Add found principle components Emes a random variable proporeonal to the corresponding eigenvalue Effect Reduces the top 1 error by over 1% Mohammad Motamedi ECS 289G PAPER PRESENTATION - UC DAVIS 10

11 Dropout Sedng the output of each hidden neuron with probability of 0.5 This neuron is not effeceve in the forward path and does not play a role in the backpropagaeon. Reduces complex co- adapeon No neuron can rely on the presence of another neuron Mohammad Motamedi ECS 289G PAPER PRESENTATION - UC DAVIS 11

12 Implementa6on Training Eme: six days on two GTX GB GPUs Effect on network It is required to minimize the inter chip communicaeon AugmenEng the data on CPU in parallel with training on GPU Augmented data does not need to be stored on the disk Effect: Reduces the top 1 error by 1.7 % Reduces the top 5 error by 1.2 % Mohammad Motamedi ECS 289G PAPER PRESENTATION - UC DAVIS 12

13 Training Network is trained with stochasec gradient descent Weight decay: Momentum: 0.9 Weights are iniealized by random numbers from a zero mean Gaussian distribueon with standard deviaeon of 0.01 Divide learning rate by 10 when error stops improving Mohammad Motamedi ECS 289G PAPER PRESENTATION - UC DAVIS 13

14 Results Mohammad Motamedi ECS 289G PAPER PRESENTATION - UC DAVIS 14

15 Kernel values ater training Mohammad Motamedi ECS 289G PAPER PRESENTATION - UC DAVIS 15

16 ILSVRC 2010 Error (%) Top - 1 Top - 5 CNN SIFT + FVs [24] Sparse coding [2] Mohammad Motamedi ECS 289G PAPER PRESENTATION - UC DAVIS 16

17 ILSVRC Error (%) Model Top 1 Error (Val) Top 5 Error (test) SIFT + FVs [7] % 1 CNN 18.2% - 5 CNNs 16.4% 16.4% 7 CNNs 15.4% 15.3% 0 Top 5 SIFT + FVs [7] 5 CNNs 7 CNNs Mohammad Motamedi ECS 289G PAPER PRESENTATION - UC DAVIS 17

18 ILSVRC 2010 Mohammad Motamedi ECS 289G PAPER PRESENTATION - UC DAVIS 18

19 ILSVRC Mohammad Motamedi ECS 289G PAPER PRESENTATION - UC DAVIS 19

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Deep Learning Barnabás Póczos Credits Many of the pictures, results, and other materials are taken from: Ruslan Salakhutdinov Joshua Bengio Geoffrey Hinton Yann LeCun 2

More information

Lesson 08. Convolutional Neural Network. Ing. Marek Hrúz, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni.

Lesson 08. Convolutional Neural Network. Ing. Marek Hrúz, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni. Lesson 08 Convolutional Neural Network Ing. Marek Hrúz, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Lesson 08 Convolution we will consider 2D convolution the result

More information

CONVOLUTIONAL NEURAL NETWORKS: MOTIVATION, CONVOLUTION OPERATION, ALEXNET

CONVOLUTIONAL NEURAL NETWORKS: MOTIVATION, CONVOLUTION OPERATION, ALEXNET CONVOLUTIONAL NEURAL NETWORKS: MOTIVATION, CONVOLUTION OPERATION, ALEXNET MOTIVATION Fully connected neural network Example 1000x1000 image 1M hidden units 10 12 (= 10 6 10 6 ) parameters! Observation

More information

Vehicle Color Recognition using Convolutional Neural Network

Vehicle Color Recognition using Convolutional Neural Network Vehicle Color Recognition using Convolutional Neural Network Reza Fuad Rachmadi and I Ketut Eddy Purnama Multimedia and Network Engineering Department, Institut Teknologi Sepuluh Nopember, Keputih Sukolilo,

More information

Research on Hand Gesture Recognition Using Convolutional Neural Network

Research on Hand Gesture Recognition Using Convolutional Neural Network Research on Hand Gesture Recognition Using Convolutional Neural Network Tian Zhaoyang a, Cheng Lee Lung b a Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China E-mail address:

More information

Convolu'onal Neural Networks. November 17, 2015

Convolu'onal Neural Networks. November 17, 2015 Convolu'onal Neural Networks November 17, 2015 Ar'ficial Neural Networks Feedforward neural networks Ar'ficial Neural Networks Feedforward, fully-connected neural networks Ar'ficial Neural Networks Feedforward,

More information

An Introduction to Convolutional Neural Networks. Alessandro Giusti Dalle Molle Institute for Artificial Intelligence Lugano, Switzerland

An Introduction to Convolutional Neural Networks. Alessandro Giusti Dalle Molle Institute for Artificial Intelligence Lugano, Switzerland An Introduction to Convolutional Neural Networks Alessandro Giusti Dalle Molle Institute for Artificial Intelligence Lugano, Switzerland Sources & Resources - Andrej Karpathy, CS231n http://cs231n.github.io/convolutional-networks/

More information

یادآوری: خالصه CNN. ConvNet

یادآوری: خالصه CNN. ConvNet 1 ConvNet یادآوری: خالصه CNN شبکه عصبی کانولوشنال یا Convolutional Neural Networks یا نوعی از شبکههای عصبی عمیق مدل یادگیری آن باناظر.اصالح وزنها با الگوریتم back-propagation مناسب برای داده های حجیم و

More information

Lecture 11-1 CNN introduction. Sung Kim

Lecture 11-1 CNN introduction. Sung Kim Lecture 11-1 CNN introduction Sung Kim 'The only limit is your imagination' http://itchyi.squarespace.com/thelatest/2012/5/17/the-only-limit-is-your-imagination.html Lecture 7: Convolutional

More information

Tiny ImageNet Challenge Investigating the Scaling of Inception Layers for Reduced Scale Classification Problems

Tiny ImageNet Challenge Investigating the Scaling of Inception Layers for Reduced Scale Classification Problems Tiny ImageNet Challenge Investigating the Scaling of Inception Layers for Reduced Scale Classification Problems Emeric Stéphane Boigné eboigne@stanford.edu Jan Felix Heyse heyse@stanford.edu Abstract Scaling

More information

Deep Learning. Dr. Johan Hagelbäck.

Deep Learning. Dr. Johan Hagelbäck. Deep Learning Dr. Johan Hagelbäck johan.hagelback@lnu.se http://aiguy.org Image Classification Image classification can be a difficult task Some of the challenges we have to face are: Viewpoint variation:

More information

Biologically Inspired Computation

Biologically Inspired Computation Biologically Inspired Computation Deep Learning & Convolutional Neural Networks Joe Marino biologically inspired computation biological intelligence flexible capable of detecting/ executing/reasoning about

More information

A Deep Learning Approach To Universal Image Manipulation Detection Using A New Convolutional Layer

A Deep Learning Approach To Universal Image Manipulation Detection Using A New Convolutional Layer A Deep Learning Approach To Universal Image Manipulation Detection Using A New Convolutional Layer ABSTRACT Belhassen Bayar Drexel University Dept. of ECE Philadelphia, PA, USA bb632@drexel.edu When creating

More information

LANDMARK recognition is an important feature for

LANDMARK recognition is an important feature for 1 NU-LiteNet: Mobile Landmark Recognition using Convolutional Neural Networks Chakkrit Termritthikun, Surachet Kanprachar, Paisarn Muneesawang arxiv:1810.01074v1 [cs.cv] 2 Oct 2018 Abstract The growth

More information

arxiv: v1 [cs.ce] 9 Jan 2018

arxiv: v1 [cs.ce] 9 Jan 2018 Predict Forex Trend via Convolutional Neural Networks Yun-Cheng Tsai, 1 Jun-Hao Chen, 2 Jun-Jie Wang 3 arxiv:1801.03018v1 [cs.ce] 9 Jan 2018 1 Center for General Education 2,3 Department of Computer Science

More information

INFORMATION about image authenticity can be used in

INFORMATION about image authenticity can be used in 1 Constrained Convolutional Neural Networs: A New Approach Towards General Purpose Image Manipulation Detection Belhassen Bayar, Student Member, IEEE, and Matthew C. Stamm, Member, IEEE Abstract Identifying

More information

Counterfeit Bill Detection Algorithm using Deep Learning

Counterfeit Bill Detection Algorithm using Deep Learning Counterfeit Bill Detection Algorithm using Deep Learning Soo-Hyeon Lee 1 and Hae-Yeoun Lee 2,* 1 Undergraduate Student, 2 Professor 1,2 Department of Computer Software Engineering, Kumoh National Institute

More information

Lecture 17 Convolutional Neural Networks

Lecture 17 Convolutional Neural Networks Lecture 17 Convolutional Neural Networks 30 March 2016 Taylor B. Arnold Yale Statistics STAT 365/665 1/22 Notes: Problem set 6 is online and due next Friday, April 8th Problem sets 7,8, and 9 will be due

More information

Classification Accuracies of Malaria Infected Cells Using Deep Convolutional Neural Networks Based on Decompressed Images

Classification Accuracies of Malaria Infected Cells Using Deep Convolutional Neural Networks Based on Decompressed Images Classification Accuracies of Malaria Infected Cells Using Deep Convolutional Neural Networks Based on Decompressed Images Yuhang Dong, Zhuocheng Jiang, Hongda Shen, W. David Pan Dept. of Electrical & Computer

More information

CSC 578 Neural Networks and Deep Learning

CSC 578 Neural Networks and Deep Learning CSC 578 Neural Networks and Deep Learning Fall 2018/19 6. Convolutional Neural Networks (Some figures adapted from NNDL book) 1 Convolution Neural Networks 1. Convolutional Neural Networks Convolution,

More information

Image Manipulation Detection using Convolutional Neural Network

Image Manipulation Detection using Convolutional Neural Network Image Manipulation Detection using Convolutional Neural Network Dong-Hyun Kim 1 and Hae-Yeoun Lee 2,* 1 Graduate Student, 2 PhD, Professor 1,2 Department of Computer Software Engineering, Kumoh National

More information

Image Recognition of Tea Leaf Diseases Based on Convolutional Neural Network

Image Recognition of Tea Leaf Diseases Based on Convolutional Neural Network Image Recognition of Tea Leaf Diseases Based on Convolutional Neural Network Xiaoxiao SUN 1,Shaomin MU 1,Yongyu XU 2,Zhihao CAO 1,Tingting SU 1 College of Information Science and Engineering, Shandong

More information

Author(s) Corr, Philip J.; Silvestre, Guenole C.; Bleakley, Christopher J. The Irish Pattern Recognition & Classification Society

Author(s) Corr, Philip J.; Silvestre, Guenole C.; Bleakley, Christopher J. The Irish Pattern Recognition & Classification Society Provided by the author(s) and University College Dublin Library in accordance with publisher policies. Please cite the published version when available. Title Open Source Dataset and Deep Learning Models

More information

Comparison of Google Image Search and ResNet Image Classification Using Image Similarity Metrics

Comparison of Google Image Search and ResNet Image Classification Using Image Similarity Metrics University of Arkansas, Fayetteville ScholarWorks@UARK Computer Science and Computer Engineering Undergraduate Honors Theses Computer Science and Computer Engineering 5-2018 Comparison of Google Image

More information

Camera Model Identification With The Use of Deep Convolutional Neural Networks

Camera Model Identification With The Use of Deep Convolutional Neural Networks Camera Model Identification With The Use of Deep Convolutional Neural Networks Amel TUAMA 2,3, Frédéric COMBY 2,3, and Marc CHAUMONT 1,2,3 (1) University of Nîmes, France (2) University Montpellier, France

More information

Deep Neural Networks (2) Tanh & ReLU layers; Generalisation and Regularisation

Deep Neural Networks (2) Tanh & ReLU layers; Generalisation and Regularisation Deep Neural Networks (2) Tanh & ReLU layers; Generalisation and Regularisation Steve Renals Machine Learning Practical MLP Lecture 4 9 October 2018 MLP Lecture 4 / 9 October 2018 Deep Neural Networks (2)

More information

Sketch-a-Net that Beats Humans

Sketch-a-Net that Beats Humans Sketch-a-Net that Beats Humans Qian Yu SketchLab@QMUL Queen Mary University of London 1 Authors Qian Yu Yongxin Yang Yi-Zhe Song Tao Xiang Timothy Hospedales 2 Let s play a game! Round 1 Easy fish face

More information

CS221 Project Final Report Deep Q-Learning on Arcade Game Assault

CS221 Project Final Report Deep Q-Learning on Arcade Game Assault CS221 Project Final Report Deep Q-Learning on Arcade Game Assault Fabian Chan (fabianc), Xueyuan Mei (xmei9), You Guan (you17) Joint-project with CS229 1 Introduction Atari 2600 Assault is a game environment

More information

DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition. ECE 289G: Paper Presentation #3 Philipp Gysel

DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition. ECE 289G: Paper Presentation #3 Philipp Gysel DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition ECE 289G: Paper Presentation #3 Philipp Gysel Autonomous Car ECE 289G Paper Presentation, Philipp Gysel Slide 2 Source: maps.google.com

More information

The Art of Neural Nets

The Art of Neural Nets The Art of Neural Nets Marco Tavora marcotav65@gmail.com Preamble The challenge of recognizing artists given their paintings has been, for a long time, far beyond the capability of algorithms. Recent advances

More information

Fully Convolutional Networks for Semantic Segmentation

Fully Convolutional Networks for Semantic Segmentation Fully Convolutional Networks for Semantic Segmentation Jonathan Long* Evan Shelhamer* Trevor Darrell UC Berkeley Presented by: Gordon Christie 1 Overview Reinterpret standard classification convnets as

More information

DYNAMIC CONVOLUTIONAL NEURAL NETWORK FOR IMAGE SUPER- RESOLUTION

DYNAMIC CONVOLUTIONAL NEURAL NETWORK FOR IMAGE SUPER- RESOLUTION Journal of Advanced College of Engineering and Management, Vol. 3, 2017 DYNAMIC CONVOLUTIONAL NEURAL NETWORK FOR IMAGE SUPER- RESOLUTION Anil Bhujel 1, Dibakar Raj Pant 2 1 Ministry of Information and

More information

Study Impact of Architectural Style and Partial View on Landmark Recognition

Study Impact of Architectural Style and Partial View on Landmark Recognition Study Impact of Architectural Style and Partial View on Landmark Recognition Ying Chen smileyc@stanford.edu 1. Introduction Landmark recognition in image processing is one of the important object recognition

More information

Semantic Segmentation on Resource Constrained Devices

Semantic Segmentation on Resource Constrained Devices Semantic Segmentation on Resource Constrained Devices Sachin Mehta University of Washington, Seattle In collaboration with Mohammad Rastegari, Anat Caspi, Linda Shapiro, and Hannaneh Hajishirzi Project

More information

Deep Learning for Human Activity Recognition: A Resource Efficient Implementation on Low-Power Devices

Deep Learning for Human Activity Recognition: A Resource Efficient Implementation on Low-Power Devices Deep Learning for Human Activity Recognition: A Resource Efficient Implementation on Low-Power Devices Daniele Ravì, Charence Wong, Benny Lo and Guang-Zhong Yang To appear in the proceedings of the IEEE

More information

Google DeepMind s AlphaGo vs. world Go champion Lee Sedol

Google DeepMind s AlphaGo vs. world Go champion Lee Sedol Google DeepMind s AlphaGo vs. world Go champion Lee Sedol Review of Nature paper: Mastering the game of Go with Deep Neural Networks & Tree Search Tapani Raiko Thanks to Antti Tarvainen for some slides

More information

Number Plate Detection with a Multi-Convolutional Neural Network Approach with Optical Character Recognition for Mobile Devices

Number Plate Detection with a Multi-Convolutional Neural Network Approach with Optical Character Recognition for Mobile Devices J Inf Process Syst, Vol.12, No.1, pp.100~108, March 2016 http://dx.doi.org/10.3745/jips.04.0022 ISSN 1976-913X (Print) ISSN 2092-805X (Electronic) Number Plate Detection with a Multi-Convolutional Neural

More information

Compact Deep Convolutional Neural Networks for Image Classification

Compact Deep Convolutional Neural Networks for Image Classification 1 Compact Deep Convolutional Neural Networks for Image Classification Zejia Zheng, Zhu Li, Abhishek Nagar 1 and Woosung Kang 2 Abstract Convolutional Neural Network is efficient in learning hierarchical

More information

On the Use of Convolutional Neural Networks for Specific Emitter Identification

On the Use of Convolutional Neural Networks for Specific Emitter Identification On the Use of Convolutional Neural Networks for Specific Emitter Identification Lauren Joy Wong Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment

More information

arxiv: v1 [stat.ml] 10 Nov 2017

arxiv: v1 [stat.ml] 10 Nov 2017 Poverty Prediction with Public Landsat 7 Satellite Imagery and Machine Learning arxiv:1711.03654v1 [stat.ml] 10 Nov 2017 Anthony Perez Department of Computer Science Stanford, CA 94305 aperez8@stanford.edu

More information

Deep Neural Network Architectures for Modulation Classification

Deep Neural Network Architectures for Modulation Classification Deep Neural Network Architectures for Modulation Classification Xiaoyu Liu, Diyu Yang, and Aly El Gamal School of Electrical and Computer Engineering Purdue University Email: {liu1962, yang1467, elgamala}@purdue.edu

More information

Coursework 2. MLP Lecture 7 Convolutional Networks 1

Coursework 2. MLP Lecture 7 Convolutional Networks 1 Coursework 2 MLP Lecture 7 Convolutional Networks 1 Coursework 2 - Overview and Objectives Overview: Use a selection of the techniques covered in the course so far to train accurate multi-layer networks

More information

Radio Deep Learning Efforts Showcase Presentation

Radio Deep Learning Efforts Showcase Presentation Radio Deep Learning Efforts Showcase Presentation November 2016 hume@vt.edu www.hume.vt.edu Tim O Shea Senior Research Associate Program Overview Program Objective: Rethink fundamental approaches to how

More information

GESTURE RECOGNITION FOR ROBOTIC CONTROL USING DEEP LEARNING

GESTURE RECOGNITION FOR ROBOTIC CONTROL USING DEEP LEARNING 2017 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM AUTONOMOUS GROUND SYSTEMS (AGS) TECHNICAL SESSION AUGUST 8-10, 2017 - NOVI, MICHIGAN GESTURE RECOGNITION FOR ROBOTIC CONTROL USING

More information

Automated Image Timestamp Inference Using Convolutional Neural Networks

Automated Image Timestamp Inference Using Convolutional Neural Networks Automated Image Timestamp Inference Using Convolutional Neural Networks Prafull Sharma prafull7@stanford.edu Michel Schoemaker michel92@stanford.edu Stanford University David Pan napdivad@stanford.edu

More information

Neural Networks The New Moore s Law

Neural Networks The New Moore s Law Neural Networks The New Moore s Law Chris Rowen, PhD, FIEEE CEO Cognite Ventures December 216 Outline Moore s Law Revisited: Efficiency Drives Productivity Embedded Neural Network Product Segments Efficiency

More information

GESTURE RECOGNITION WITH 3D CNNS

GESTURE RECOGNITION WITH 3D CNNS April 4-7, 2016 Silicon Valley GESTURE RECOGNITION WITH 3D CNNS Pavlo Molchanov Xiaodong Yang Shalini Gupta Kihwan Kim Stephen Tyree Jan Kautz 4/6/2016 Motivation AGENDA Problem statement Selecting the

More information

Generating an appropriate sound for a video using WaveNet.

Generating an appropriate sound for a video using WaveNet. Australian National University College of Engineering and Computer Science Master of Computing Generating an appropriate sound for a video using WaveNet. COMP 8715 Individual Computing Project Taku Ueki

More information

Convolutional Networks for Image Segmentation: U-Net 1, DeconvNet 2, and SegNet 3

Convolutional Networks for Image Segmentation: U-Net 1, DeconvNet 2, and SegNet 3 Convolutional Networks for Image Segmentation: U-Net 1, DeconvNet 2, and SegNet 3 1 Olaf Ronneberger, Philipp Fischer, Thomas Brox (Freiburg, Germany) 2 Hyeonwoo Noh, Seunghoon Hong, Bohyung Han (POSTECH,

More information

arxiv: v2 [cs.mm] 12 Jan 2018

arxiv: v2 [cs.mm] 12 Jan 2018 Paper accepted to Media Watermarking, Security, and Forensics, IS&T Int. Symp. on Electronic Imaging, SF, California, USA, 14-18 Feb. 2016. Deep learning is a good steganalysis tool when embedding key

More information

Creating an Agent of Doom: A Visual Reinforcement Learning Approach

Creating an Agent of Doom: A Visual Reinforcement Learning Approach Creating an Agent of Doom: A Visual Reinforcement Learning Approach Michael Lowney Department of Electrical Engineering Stanford University mlowney@stanford.edu Robert Mahieu Department of Electrical Engineering

More information

Convolutional Networks Overview

Convolutional Networks Overview Convolutional Networks Overview Sargur Srihari 1 Topics Limitations of Conventional Neural Networks The convolution operation Convolutional Networks Pooling Convolutional Network Architecture Advantages

More information

sensors Jin Kyu Kang, Hyung Gil Hong and Kang Ryoung Park *

sensors Jin Kyu Kang, Hyung Gil Hong and Kang Ryoung Park * sensors Article Pedestrian Detection Based on Adaptive Selection of Visible Light or Far-Infrared Light Camera Image by Fuzzy Inference System and Convolutional Neural Network-Based Verification Jin Kyu

More information

Learning Pixel-Distribution Prior with Wider Convolution for Image Denoising

Learning Pixel-Distribution Prior with Wider Convolution for Image Denoising Learning Pixel-Distribution Prior with Wider Convolution for Image Denoising Peng Liu University of Florida pliu1@ufl.edu Ruogu Fang University of Florida ruogu.fang@bme.ufl.edu arxiv:177.9135v1 [cs.cv]

More information

Are there alternatives to Sigmoid Hidden Units? MLP Lecture 6 Hidden Units / Initialisation 1

Are there alternatives to Sigmoid Hidden Units? MLP Lecture 6 Hidden Units / Initialisation 1 Are there alternatives to Sigmoid Hidden Units? MLP Lecture 6 Hidden Units / Initialisation 1 Hidden Unit Transfer Functions Initialising Deep Networks Steve Renals Machine Learning Practical MLP Lecture

More information

PROJECT REPORT. Using Deep Learning to Classify Malignancy Associated Changes

PROJECT REPORT. Using Deep Learning to Classify Malignancy Associated Changes Using Deep Learning to Classify Malignancy Associated Changes Hakan Wieslander, Gustav Forslid Project in Computational Science: Report January 2017 PROJECT REPORT Department of Information Technology

More information

Cómo estructurar un buen proyecto de Machine Learning? Anna Bosch Rue VP Data Launchmetrics

Cómo estructurar un buen proyecto de Machine Learning? Anna Bosch Rue VP Data Launchmetrics Cómo estructurar un buen proyecto de Machine Learning? Anna Bosch Rue VP Data Intelligence @ Launchmetrics annaboschrue@gmail.com Motivating example 90% Accuracy and you want to do better IDEAS: - Collect

More information

CS 4501: Introduction to Computer Vision. Filtering and Edge Detection

CS 4501: Introduction to Computer Vision. Filtering and Edge Detection CS 451: Introduction to Computer Vision Filtering and Edge Detection Connelly Barnes Slides from Jason Lawrence, Fei Fei Li, Juan Carlos Niebles, Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein,

More information

6. Convolutional Neural Networks

6. Convolutional Neural Networks 6. Convolutional Neural Networks CS 519 Deep Learning, Winter 2016 Fuxin Li With materials from Zsolt Kira Quiz coming up Next Tuesday (1/26) 15 minutes Topics: Optimization Basic neural networks No Convolutional

More information

CSC321 Lecture 11: Convolutional Networks

CSC321 Lecture 11: Convolutional Networks CSC321 Lecture 11: Convolutional Networks Roger Grosse Roger Grosse CSC321 Lecture 11: Convolutional Networks 1 / 35 Overview What makes vision hard? Vison needs to be robust to a lot of transformations

More information

Thermal Image Enhancement Using Convolutional Neural Network

Thermal Image Enhancement Using Convolutional Neural Network SEOUL Oct.7, 2016 Thermal Image Enhancement Using Convolutional Neural Network Visual Perception for Autonomous Driving During Day and Night Yukyung Choi Soonmin Hwang Namil Kim Jongchan Park In So Kweon

More information

Deep Learning for Launching and Mitigating Wireless Jamming Attacks

Deep Learning for Launching and Mitigating Wireless Jamming Attacks Deep Learning for Launching and Mitigating Wireless Jamming Attacks Tugba Erpek, Yalin E. Sagduyu, and Yi Shi arxiv:1807.02567v2 [cs.ni] 13 Dec 2018 Abstract An adversarial machine learning approach is

More information

SIMULATION-BASED MODEL CONTROL USING STATIC HAND GESTURES IN MATLAB

SIMULATION-BASED MODEL CONTROL USING STATIC HAND GESTURES IN MATLAB SIMULATION-BASED MODEL CONTROL USING STATIC HAND GESTURES IN MATLAB S. Kajan, J. Goga Institute of Robotics and Cybernetics, Faculty of Electrical Engineering and Information Technology, Slovak University

More information

Synthetic View Generation for Absolute Pose Regression and Image Synthesis: Supplementary material

Synthetic View Generation for Absolute Pose Regression and Image Synthesis: Supplementary material Synthetic View Generation for Absolute Pose Regression and Image Synthesis: Supplementary material Pulak Purkait 1 pulak.cv@gmail.com Cheng Zhao 2 irobotcheng@gmail.com Christopher Zach 1 christopher.m.zach@gmail.com

More information

AUGMENTED CONVOLUTIONAL FEATURE MAPS FOR ROBUST CNN-BASED CAMERA MODEL IDENTIFICATION. Belhassen Bayar and Matthew C. Stamm

AUGMENTED CONVOLUTIONAL FEATURE MAPS FOR ROBUST CNN-BASED CAMERA MODEL IDENTIFICATION. Belhassen Bayar and Matthew C. Stamm AUGMENTED CONVOLUTIONAL FEATURE MAPS FOR ROBUST CNN-BASED CAMERA MODEL IDENTIFICATION Belhassen Bayar and Matthew C. Stamm Department of Electrical and Computer Engineering, Drexel University, Philadelphia,

More information

Can you tell a face from a HEVC bitstream?

Can you tell a face from a HEVC bitstream? Can you tell a face from a HEVC bitstream? Saeed Ranjbar Alvar, Hyomin Choi and Ivan V. Bajić School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada Email: {saeedr,chyomin, ibajic}@sfu.ca

More information

Colorful Image Colorizations Supplementary Material

Colorful Image Colorizations Supplementary Material Colorful Image Colorizations Supplementary Material Richard Zhang, Phillip Isola, Alexei A. Efros {rich.zhang, isola, efros}@eecs.berkeley.edu University of California, Berkeley 1 Overview This document

More information

Convolutional Neural Network-based Steganalysis on Spatial Domain

Convolutional Neural Network-based Steganalysis on Spatial Domain Convolutional Neural Network-based Steganalysis on Spatial Domain Dong-Hyun Kim, and Hae-Yeoun Lee Abstract Steganalysis has been studied to detect the existence of hidden messages by steganography. However,

More information

arxiv: v2 [cs.cv] 11 Oct 2016

arxiv: v2 [cs.cv] 11 Oct 2016 Xception: Deep Learning with Depthwise Separable Convolutions arxiv:1610.02357v2 [cs.cv] 11 Oct 2016 François Chollet Google, Inc. fchollet@google.com Monday 10 th October, 2016 Abstract We present an

More information

Playing CHIP-8 Games with Reinforcement Learning

Playing CHIP-8 Games with Reinforcement Learning Playing CHIP-8 Games with Reinforcement Learning Niven Achenjang, Patrick DeMichele, Sam Rogers Stanford University Abstract We begin with some background in the history of CHIP-8 games and the use of

More information

Multi-frame convolutional neural networks for object detection in temporal data

Multi-frame convolutional neural networks for object detection in temporal data Calhoun: The NPS Institutional Archive DSpace Repository Theses and Dissertations Thesis and Dissertation Collection 2017-03 Multi-frame convolutional neural networks for object detection in temporal data

More information

Impact of Automatic Feature Extraction in Deep Learning Architecture

Impact of Automatic Feature Extraction in Deep Learning Architecture Impact of Automatic Feature Extraction in Deep Learning Architecture Fatma Shaheen, Brijesh Verma and Md Asafuddoula Centre for Intelligent Systems Central Queensland University, Brisbane, Australia {f.shaheen,

More information

On the Use of Fully Convolutional Networks on Evaluation of Infrared Breast Image Segmentations

On the Use of Fully Convolutional Networks on Evaluation of Infrared Breast Image Segmentations 17º WIM - Workshop de Informática Médica On the Use of Fully Convolutional Networks on Evaluation of Infrared Breast Image Segmentations Rafael H. C. de Melo, Aura Conci, Cristina Nader Vasconcelos Computer

More information

Xception: Deep Learning with Depthwise Separable Convolutions

Xception: Deep Learning with Depthwise Separable Convolutions Xception: Deep Learning with Depthwise Separable Convolutions François Chollet Google, Inc. fchollet@google.com 1 A variant of the process is to independently look at width-wise correarxiv:1610.02357v3

More information

arxiv: v1 [cs.cv] 15 Apr 2016

arxiv: v1 [cs.cv] 15 Apr 2016 High-performance Semantic Segmentation Using Very Deep Fully Convolutional Networks arxiv:1604.04339v1 [cs.cv] 15 Apr 2016 Zifeng Wu, Chunhua Shen, Anton van den Hengel The University of Adelaide, SA 5005,

More information

IBM SPSS Neural Networks

IBM SPSS Neural Networks IBM Software IBM SPSS Neural Networks 20 IBM SPSS Neural Networks New tools for building predictive models Highlights Explore subtle or hidden patterns in your data. Build better-performing models No programming

More information

Convolution Engine: Balancing Efficiency and Flexibility in Specialized Computing

Convolution Engine: Balancing Efficiency and Flexibility in Specialized Computing Convolution Engine: Balancing Efficiency and Flexibility in Specialized Computing Paper by: Wajahat Qadeer Rehan Hameed Ofer Shacham Preethi Venkatesan Christos Kozyrakis Mark Horowitz Presentation by:

More information

Convolutional Neural Network-Based Infrared Image Super Resolution Under Low Light Environment

Convolutional Neural Network-Based Infrared Image Super Resolution Under Low Light Environment Convolutional Neural Network-Based Infrared Super Resolution Under Low Light Environment Tae Young Han, Yong Jun Kim, Byung Cheol Song Department of Electronic Engineering Inha University Incheon, Republic

More information

Use Nvidia Performance Primitives (NPP) in Deep Learning Training. Yang Song

Use Nvidia Performance Primitives (NPP) in Deep Learning Training. Yang Song Use Nvidia Performance Primitives (NPP) in Deep Learning Training Yang Song Outline Introduction Function Categories Performance Results Deep Learning Specific Further Information What is NPP? Image+Signal

More information

CS 7643: Deep Learning

CS 7643: Deep Learning CS 7643: Deep Learning Topics: Toeplitz matrices and convolutions = matrix-mult Dilated/a-trous convolutions Backprop in conv layers Transposed convolutions Dhruv Batra Georgia Tech HW1 extension 09/22

More information

Pre-Trained Convolutional Neural Network for Classification of Tanning Leather Image

Pre-Trained Convolutional Neural Network for Classification of Tanning Leather Image Pre-Trained Convolutional Neural Network for Classification of Tanning Leather Image Sri Winiarti, Adhi Prahara, Murinto, Dewi Pramudi Ismi Informatics Department Universitas Ahmad Dahlan Yogyakarta, Indonesia

More information

360 Panorama Super-resolution using Deep Convolutional Networks

360 Panorama Super-resolution using Deep Convolutional Networks 360 Panorama Super-resolution using Deep Convolutional Networks Vida Fakour-Sevom 1,2, Esin Guldogan 1 and Joni-Kristian Kämäräinen 2 1 Nokia Technologies, Finland 2 Laboratory of Signal Processing, Tampere

More information

ROAD RECOGNITION USING FULLY CONVOLUTIONAL NEURAL NETWORKS

ROAD RECOGNITION USING FULLY CONVOLUTIONAL NEURAL NETWORKS Bulletin of the Transilvania University of Braşov Vol. 10 (59) No. 2-2017 Series I: Engineering Sciences ROAD RECOGNITION USING FULLY CONVOLUTIONAL NEURAL NETWORKS E. HORVÁTH 1 C. POZNA 2 Á. BALLAGI 3

More information

GPU ACCELERATED DEEP LEARNING WITH CUDNN

GPU ACCELERATED DEEP LEARNING WITH CUDNN GPU ACCELERATED DEEP LEARNING WITH CUDNN Larry Brown Ph.D. March 2015 AGENDA 1 Introducing cudnn and GPUs 2 Deep Learning Context 3 cudnn V2 4 Using cudnn 2 Introducing cudnn and GPUs 3 HOW GPU ACCELERATION

More information

Distributed Systems. Mobile networking. Rik Sarkar. University of Edinburgh Fall 2016

Distributed Systems. Mobile networking. Rik Sarkar. University of Edinburgh Fall 2016 Distributed Systems Mobile networking Rik Sarkar University of Edinburgh Fall 2016 How do mobile phones work? Cellular base staeons (antennas + cpu) with hexagonal cells Channel assignments Each base staeon

More information

Free-hand Sketch Recognition Classification

Free-hand Sketch Recognition Classification Free-hand Sketch Recognition Classification Wayne Lu Stanford University waynelu@stanford.edu Elizabeth Tran Stanford University eliztran@stanford.edu Abstract People use sketches to express and record

More information

Comparing Time and Frequency Domain for Audio Event Recognition Using Deep Learning

Comparing Time and Frequency Domain for Audio Event Recognition Using Deep Learning Comparing Time and Frequency Domain for Audio Event Recognition Using Deep Learning Lars Hertel, Huy Phan and Alfred Mertins Institute for Signal Processing, University of Luebeck, Germany Graduate School

More information

DeepStack: Expert-Level AI in Heads-Up No-Limit Poker. Surya Prakash Chembrolu

DeepStack: Expert-Level AI in Heads-Up No-Limit Poker. Surya Prakash Chembrolu DeepStack: Expert-Level AI in Heads-Up No-Limit Poker Surya Prakash Chembrolu AI and Games AlphaGo Go Watson Jeopardy! DeepBlue -Chess Chinook -Checkers TD-Gammon -Backgammon Perfect Information Games

More information

Robust Chinese Traffic Sign Detection and Recognition with Deep Convolutional Neural Network

Robust Chinese Traffic Sign Detection and Recognition with Deep Convolutional Neural Network 2015 11th International Conference on Natural Computation (ICNC) Robust Chinese Traffic Sign Detection and Recognition with Deep Convolutional Neural Network Rongqiang Qian, Bailing Zhang, Yong Yue Department

More information

Automatic tumor segmentation in breast ultrasound images using a dilated fully convolutional network combined with an active contour model

Automatic tumor segmentation in breast ultrasound images using a dilated fully convolutional network combined with an active contour model Automatic tumor segmentation in breast ultrasound images using a dilated fully convolutional network combined with an active contour model Yuzhou Hu Departmentof Electronic Engineering, Fudan University,

More information

Machine Intelligence for Accurate X-ray Screening and Read-out Prioritization: PICC Line Detection Study

Machine Intelligence for Accurate X-ray Screening and Read-out Prioritization: PICC Line Detection Study Machine Intelligence for Accurate X-ray Screening and Read-out Prioritization: PICC Line Detection Study Laboratory of Medical Imaging and Computation Massachusetts General Hospital Hyunkwang Lee, Jordan

More information

Automated Planetary Terrain Mapping of Mars Using Image Pattern Recognition

Automated Planetary Terrain Mapping of Mars Using Image Pattern Recognition Automated Planetary Terrain Mapping of Mars Using Image Pattern Recognition Design Document Version 2.0 Team Strata: Sean Baquiro Matthew Enright Jorge Felix Tsosie Schneider 2 Table of Contents 1 Introduction.3

More information

arxiv: v2 [cs.lg] 13 Oct 2018

arxiv: v2 [cs.lg] 13 Oct 2018 A Systematic Comparison of Deep Learning Architectures in an Autonomous Vehicle Michael Teti 1, William Edward Hahn 1, Shawn Martin 2, Christopher Teti 3, and Elan Barenholtz 1 arxiv:1803.09386v2 [cs.lg]

More information

An Iterative BP-CNN Architecture for Channel Decoding

An Iterative BP-CNN Architecture for Channel Decoding 1 An Iterative BP-CNN Architecture for Channel Decoding Fei Liang, Cong Shen, and Feng Wu arxiv:1707.05697v1 [stat.ml] 18 Jul 2017 Abstract Inspired by recent advances in deep learning, we propose a novel

More information

Deep filter banks for texture recognition and segmentation

Deep filter banks for texture recognition and segmentation Deep filter banks for texture recognition and segmentation Mircea Cimpoi, University of Oxford Subhransu Maji, UMASS Amherst Andrea Vedaldi, University of Oxford Texture understanding 2 Indicator of materials

More information

Analyzing features learned for Offline Signature Verification using Deep CNNs

Analyzing features learned for Offline Signature Verification using Deep CNNs Accepted as a conference paper for ICPR 2016 Analyzing features learned for Offline Signature Verification using Deep CNNs Luiz G. Hafemann, Robert Sabourin Lab. d imagerie, de vision et d intelligence

More information

Multi-task Learning of Dish Detection and Calorie Estimation

Multi-task Learning of Dish Detection and Calorie Estimation Multi-task Learning of Dish Detection and Calorie Estimation Department of Informatics, The University of Electro-Communications, Tokyo 1-5-1 Chofugaoka, Chofu-shi, Tokyo 182-8585 JAPAN ABSTRACT In recent

More information

ChannelNets: Compact and Efficient Convolutional Neural Networks via Channel-Wise Convolutions

ChannelNets: Compact and Efficient Convolutional Neural Networks via Channel-Wise Convolutions ChannelNets: Compact and Efficient Convolutional Neural Networks via Channel-Wise Convolutions Hongyang Gao Texas A&M University College Station, TX hongyang.gao@tamu.edu Zhengyang Wang Texas A&M University

More information

En ny æra for uthenting av informasjon fra satellittbilder ved hjelp av maskinlæring

En ny æra for uthenting av informasjon fra satellittbilder ved hjelp av maskinlæring En ny æra for uthenting av informasjon fra satellittbilder ved hjelp av maskinlæring Mathilde Ørstavik og Terje Midtbø Mathilde Ørstavik and Terje Midtbø, A New Era for Feature Extraction in Remotely Sensed

More information

DEEP LEARNING ON RF DATA. Adam Thompson Senior Solutions Architect March 29, 2018

DEEP LEARNING ON RF DATA. Adam Thompson Senior Solutions Architect March 29, 2018 DEEP LEARNING ON RF DATA Adam Thompson Senior Solutions Architect March 29, 2018 Background Information Signal Processing and Deep Learning Radio Frequency Data Nuances AGENDA Complex Domain Representations

More information