On calculating the electric and magnetic elds produced in technological systems at the Earth s surface by a wide electrojet

Size: px
Start display at page:

Download "On calculating the electric and magnetic elds produced in technological systems at the Earth s surface by a wide electrojet"

Transcription

1 Journal of Atmospheric and Solar-Terrestrial Physics 6 ( On calculating the electric and magnetic elds produced in technological systems at the Earth s surface by a wide electrojet D.H. Boteler, R. Pirjola 1, L. Trichtchenko Geomagnetic Laboratory, Geological Survey of Canada, 7 Observatory Crescent, Ottawa, Ont., Canada, K1A Y3 Received 7 July 1999 accepted 1 November 1999 Abstract Forecasting the geomagnetic eects to technological systems on the ground requires rapid calculations of the electric and magnetic elds produced by the auroral electrojet. The electrojet is often modelled as a line current at a height of 1 km, but in reality it has a nite width and is typically spread over 5 or 6 of latitude. We show that the width of the electrojet can easily be included in electric and magnetic eld calculations by assuming that the ionospheric current density has a Cauchy distribution with a half-width a j(=(i=a=( +a, at a height h. It is shown that the electric and magnetic elds produced at the surface of a layered earth by such a current are equivalent to the elds produced by a line current I at a height h+a. This equivalence, combined with the comple image method, leads to simple formulas that provide a method for fast calculation of the electric and magnetic elds that can aect ground-based systems. Crown Copyright c Published by Elsevier Science Ltd. All rights reserved. Keywords: Geo-electric eld Electrojet 1. Introduction Geomagnetic disturbances produce electric elds at the Earth s surface that can give rise to problems with technological systems, such as power systems, pipelines and phone cables (see Boteler et al. (1998 for a review of geomagnetic eects and further references. A major cause of geomagnetic disturbances is the auroral electrojet and an assessment of the eects on technological systems requires that appropriate models of the electrojet are available. For time-critical applications, such as forecasting the levels of geomagnetically induced currents in power systems, it is also important that the electrojet model allow rapid calculations of the Earth-surface electric elds. The complete electrojet Corresponding author. Tel.: fa: address: boteler@geolab.nrcan.gc.ca (D.H. Boteler. 1 Permanent address: Finnish Meteorological Institute, P. O. Bo 53, FIN-11 Helsinki, Finland. system involves ionospheric currents, spanning hundreds of kilometres, connected to eld-aligned currents that couple to currents in the magnetosphere. Techniques for calculating the elds at the Earth s surface produced by such a current system have been presented by Hakkinen and Pirjola (1986. However, these calculations are complicated and are highly demanding of computer resources (Pirjola and Hakkinen, Consequently, there has been interest in developing simpler approimate epressions for the Earth surface magnetic and electric elds. The simplest approimation is to represent the ionospheric current by an innitely long line current. Even for this case the problem is complicated by the presence of induced currents in the Earth that create a magnetic eld which in- uences the induction process. An approimate solution is to replace the induced currents by an image current at a comple depth derived from the surface impedance of the Earth. Boteler and Pirjola (1998 recently presented a simple derivation of the comple image formulas for an innitely long line current and showed that they produce results very //$ - see front matter Crown Copyright c Published by Elsevier Science Ltd. All rights reserved. PII: S (71-7

2 131 D.H. Boteler et al. / Journal of Atmospheric and Solar-Terrestrial Physics 6 ( produced at the Earth s surface by an ionospheric current distribution of nite width. The accuracy of this approimate method is demonstrated by a comparison of the method with results obtained by numerical integration.. The equivalence of current distributions We use the conventional geomagnetic coordinate system with northward, y eastward and z vertically down, and consider an innitely long current owing parallel to the y-ais at a height h. For a current distribution j( that is an even function of, the magnetic and electric elds produced at the surface of the Earth can be epressed as integrals over all wavenumbers : Fig. 1. (a Schematic diagram of a current with a Cauchy distribution j(=(i=a=( +a where a= km at a height h=1 km and the equivalent line current at a height, h + a = 3 km. (b Plot of the Cauchy distribution shown in (a. close to the eact calculations for parameters typical of induction due to an auroral electrojet. Pirjola and Viljanen (1998 have shown that the comple image method can also be used for a current system with a nite-length electrojet and eld-aligned currents. The width of the electrojet is another aspect of the auroral current system that needs to be included in realistic calculations. McNish (1938 suggested that a wide ionospheric current distribution is equivalent to a line current at a greater height. Kertz (1954 showed that the magnetic eld produced at the Earth s surface by a current with a Cauchy distribution is equivalent to that produced by a line current at a greater distance, and Maurer and Theile (1978 used this equivalence in studies of the auroral electrojet. The same equivalence was also pointed out by Park (1973 and used by Kannangara (197 for analysing the magnetic elds produced by the equatorial electrojet. These workers were only concerned with the magnetic elds produced by the current systems and either ignored or over-simplied the eect of currents induced in the Earth. For calculating the geomagnetic eects on technological systems one of the most important parameters is the electric eld and this is signicantly aected by the variation of conductivity with depth within the Earth. In this paper we present a derivation of the equivalence of a current with a Cauchy distribution to a line current at a greater height (see Fig. 1 in terms of both the electric and magnetic elds and taking the inuence of induced Earth currents eactly into account. These results are then combined with the comple image method to show how simple calculations can be made for the electric and magnetic elds B 1 (= J ((1 + Re h cos d (1 B 1 z(= J ((1 Re h sin d ( E 1 y(= where the current function is given by J (= i! J ((1 Re h cos d (3 j(e i d: (4 For a line current of amplitude I the current distribution j L( is j L(=I( (5 where is the delta function. Then Eq. (4 gives J L(=I (e i d = I (6 which can be substituted into Eqs. (1 (3 to obtain B I (= (1 + Re h cos d (7 B I z(= (1 Re h sin d (8 E I y(= i! (1 Re h cos d (9 which are the familiar epressions for the elds due to a line current above the Earth presented by Hermance and Peltier (197 and others. Now consider a current with a Cauchy distribution (Korn and Korn, 1961, j C(= I a + a : (1

3 D.H. Boteler et al. / Journal of Atmospheric and Solar-Terrestrial Physics 6 ( Substituting into Eq. (4 and performing the integration (Gradshteyn and Ryzhik, 1965, gives J C(=Ie a : (11 Substituting into Eqs. (1 (3 gives B I (= (1 + Re (h+a cos d (1 B I z(= (1 Re (h+a sin d (13 E I i! y(= (1 Re (h+a cos d: (14 Comparing Eqs. (1 (14 with Eqs. (7 (9 shows that the epressions for a Cauchy distribution are identical to those for a line current ecept for the change in the eponential term. This is equivalent to an increase in the height of the line current. Thus, the electric and magnetic elds produced by a Cauchy distribution with half-width a at a height h are eactly the same as the elds produced by a line current at a height h+a. Cauchy distributions of current at other heights would also produce the same magnetic and electric elds on the ground if the sum of the height and the half-width, h + a, was the same. 3. Comple image calculations Making the approimation (see Boteler and Pirjola, 1998 that the reection coecient can be epressed as R =e p (15 where p is the comple skin depth of the Earth, allows the magnetic eld epressions (Eqs. (1 and (13 to be written as B = I [e (h+a +e (h+a+p ] cos d (16 B z = I [e (h+a e (h+a+p ] sin d: (17 Using the relations e a cos b d = a=(a + b and e a sin b d = b=(a + b (Gradshteyn and Ryzhik, 1965, , these become B = I ( h + a (h + a + + h + a +p (h + a +p + (18 B z = I ( (h + a + (h + a +p + : (19 Similarly, using the comple image approimation (Eq. (15 in Eq. (14 gives the electric eld epression E y = i!i Using the integral relation e a e b e (h+a e (h+a+p cos d: ( cos m d = 1 ln b + m a + m (Gradshteyn and Ryzhik, 1965, this becomes [ E y = i!i ] (h + a ln +p + : (1 (h + a + These elds are equivalent to the elds produced by a line current at height h + a and an image current at a comple depth h + a +p. As an eample of the comple image calculations for a Cauchy distribution we use Eqs. (18, (19, and (1 to calculate the elds at the surface of a multi-layer earth model representing the conductivity structure of Quebec (see Fig. of Boteler and Pirjola, The model has layers (from the surface down with thicknesses of 15, 1, 15,, km and resistivities of,, 1, 1, 3 m. Calculations are made for a period of 5 min. These results are compared with calculations made for the eact epressions (Eqs. (1 (14 using numerical integration. Calculations were made for a current with a Cauchy distribution with a = km at a height h = 1 km shown in Fig. 1. The results are shown in Fig.. The close agreement between the two sets of results illustrates the accuracy of the comple image method. A similar good agreement was obtained for dierent periods and with dierent Earth models. These results show that the comple image epressions for a Cauchy current distribution provide an easy way of including both the vertical conductivity structure of the Earth and the horizontal etent of the ionospheric currents in calculations of the magnetic and electric elds that aect technological systems on the ground. 4. Conclusions The electric and magnetic elds produced at the Earth s surface by an ionospheric current at a height h with a current density having a Cauchy distribution with a half-width a j(=(i=a=( + a are identical to those produced by a line current I at a height h + a. Combining this equivalence with the use of the comple skin depth, p, leads to the simple epressions B = I ( h + a (h + a + + h + a +p (h + a +p + (

4 1314 D.H. Boteler et al. / Journal of Atmospheric and Solar-Terrestrial Physics 6 ( Fig.. The horizontal (B and vertical (B z magnetic elds and the horizontal (E y electric eld produced by a current of 1 million amps with the Cauchy distribution shown in Fig. 1. The calculations are made for a period of 5 min and an earth model representing Quebec. Asterisks show the results of calculations made using the comple-image method solid lines show results for the eact epressions obtained by numerical integration. B z = I ( (h + a + (h + a +p + [ E y = i!i ] (h + a ln +p + (h + a + (3 (4 for the magnetic and electric elds produced by an ionospheric current with a Cauchy distribution. Any assumed shape for the current density can only be an approimation to the real, more complicated, structure of the electrojet. However, using the equivalence between a Cauchy distribution and a higher line current greatly simplies the magnetic eld and electric eld calculations. For forecasting geomagnetic eects, where rapid calculations are required,

5 D.H. Boteler et al. / Journal of Atmospheric and Solar-Terrestrial Physics 6 ( this approimation is especially useful and represents a signicant improvement over the use of a simple 1-km-high line current model for the electrojet. References Boteler, D.H., Pirjola, R.J., The comple image method for calculating the magnetic and electric elds produced at the surface of the Earth by the auroral electrojet. Geophysical Journal International 13, Boteler, D.H., Pirjola, R.J., Nevanlinna, H., The eects of geomagnetic disturbances on electrical systems at the Earth s surface. Advances in Space Research, Gradshteyn, I.S., Ryzhik, I.M., Table of Integrals, Series, and Products. Academic Press, New York. Hakkinen, L., Pirjola, R., Calculation of electric and magnetic elds due to an electrojet current system above a layered earth. Geophysica, Hermance, J.F., Peltier, W.R., 197. Magnetotelluric elds of a line current. Journal of Geophysical Research 75, Kannangara, M.L.T., 197. Some polarization characteristics of Pc 3-5 micropulsations observed at Colombo, Ceylon. Journal of Geophysical Research 77, Kertz, W., Modelle fur erdmagnetisch induzierte elektrische Strome im Untergrund. Nachr. Akad. Wiss. Gottingen, Math.-phys. Kl. Vol. IIa, pp Korn, G.A., Korn, T.M., Mathematical Handbook for Scientists and Engineers. McGraw-Hill, New York. Maurer, H., Theile, B., Parameters of the auroral electrojet from magnetic variations along a meridian. Journal of Geophysics 44, McNish, A.G., Heights of electric currents near the auroral zone. Terrestrial Magnetism 43, Park, D., Magnetic eld of a horizontal current above a conducting earth. Journal of Geophysical Research 78, Pirjola, R.J., Hakkinen, L.V.T., Electromagnetic eld caused by an auroral electrojet current system model. In: Kikuchi, H. (Ed., Environmental and Space Electromagnetics. Springer-Verlag, Tokyo, pp Pirjola, R., Viljanen, A., Comple image method for calculating electric and magnetic elds produced by an auroral electrojet of nite length. Annales Geophysicae 16,

Inversion of Geomagnetic Fields to derive ionospheric currents that drive Geomagnetically Induced Currents.

Inversion of Geomagnetic Fields to derive ionospheric currents that drive Geomagnetically Induced Currents. Inversion of Geomagnetic Fields to derive ionospheric currents that drive Geomagnetically Induced Currents. J S de Villiers and PJ Cilliers Space Science Directorate South African National Space Agency

More information

Nowcasting geomagnetically induced currents in power systems and pipelines based on ground magnetic field data

Nowcasting geomagnetically induced currents in power systems and pipelines based on ground magnetic field data ESTEC, Noordwijk, The Netherlands, 16-18 December 2002 1 Nowcasting geomagnetically induced currents in power systems and pipelines based on ground magnetic field data Antti Pulkkinen, Ari Viljanen, Olaf

More information

1.1 Summary of previous studies in Finland

1.1 Summary of previous studies in Finland Chapter 1 Introduction 1.1 Summary of previous studies in Finland Geomagnetically induced currents (GIC) flowing in electric power transmission systems, pipelines, telecommunication cables and railway

More information

GPS=GLONASS-based TEC measurements as a contributor for space weather forecast

GPS=GLONASS-based TEC measurements as a contributor for space weather forecast Journal of Atmospheric and Solar-Terrestrial Physics 64 (2002) 729 735 www.elsevier.com/locate/jastp GPS=GLONASS-based TEC measurements as a contributor for space weather forecast N. Jakowski, S. Heise,

More information

GIC Analysis using PSS E. K.V. PATIL Siemens Power Technologies International Schenectady, New York, USA

GIC Analysis using PSS E. K.V. PATIL Siemens Power Technologies International Schenectady, New York, USA CIGRÉ-697 2015 CIGRÉ Canada Conference 21, rue d Artois, F-75008 PARIS http : //www.cigre.org Winnipeg, Manitoba, August 31-September 2, 2015 GIC Analysis using PSS E K.V. PATIL Siemens Power Technologies

More information

The Effect of Geomagnetic Storm in the Ionosphere using N-h Profiles.

The Effect of Geomagnetic Storm in the Ionosphere using N-h Profiles. The Effect of Geomagnetic Storm in the Ionosphere using N-h Profiles. J.C. Morka * ; D.N. Nwachuku; and D.A. Ogwu. Physics Department, College of Education, Agbor, Nigeria E-mail: johnmorka84@gmail.com

More information

1. Terrestrial propagation

1. Terrestrial propagation Rec. ITU-R P.844-1 1 RECOMMENDATION ITU-R P.844-1 * IONOSPHERIC FACTORS AFFECTING FREQUENCY SHARING IN THE VHF AND UHF BANDS (30 MHz-3 GHz) (Question ITU-R 218/3) (1992-1994) Rec. ITU-R PI.844-1 The ITU

More information

Comparison of methods for modelling geomagnetically induced currents

Comparison of methods for modelling geomagnetically induced currents Ann. Geophys., 32, 1177 1187, 2014 doi:10.5194/angeo-32-1177-2014 Author(s) 2014. CC Attribution 3.0 License. Comparison of methods for modelling geomagnetically induced currents D. H. Boteler 1 and R..

More information

April 2000 geomagnetic storm: ionospheric drivers of large geomagnetically induced currents

April 2000 geomagnetic storm: ionospheric drivers of large geomagnetically induced currents Annales Geophysicae (2003) 21: 709 717 c European Geosciences Union 2003 Annales Geophysicae April 2000 geomagnetic storm: ionospheric drivers of large geomagnetically induced currents A. Pulkkinen 1,

More information

Dartmouth College SuperDARN Radars

Dartmouth College SuperDARN Radars Dartmouth College SuperDARN Radars Under the guidance of Thayer School professor Simon Shepherd, a pair of backscatter radars were constructed in the desert of central Oregon over the Summer and Fall of

More information

Magnetic environment: science of GIC

Magnetic environment: science of GIC First European Space Weather Week 2004 1 Magnetic environment: science of GIC Ari Viljanen and Risto Pirjola Finnish Meteorological Institute Antti Pulkkinen NASA/GSFC This presentation is a contribution

More information

Space Weather Effects on Power Systems

Space Weather Effects on Power Systems Space Weather Effects on Power Systems D. H. Boteler Geomagnetic Laboratory, Geological Survey of Canada, Ottawa, Canada Space weather disturbances cause geomagnetic field variations that induce electric

More information

Induction effects on ionospheric electric and magnetic fields

Induction effects on ionospheric electric and magnetic fields Annales Geophysicae, 23, 1735 1746, 25 SRef-ID: 1432-576/ag/25-23-1735 European Geosciences Union 25 Annales Geophysicae Induction effects on ionospheric electric and magnetic fields H. Vanhamäki, A. Viljanen,

More information

Methods of measuring and modelling geomagnetically induced currents (GICs) in a power line.

Methods of measuring and modelling geomagnetically induced currents (GICs) in a power line. Methods of measuring and modelling geomagnetically induced currents (GICs) in a power line. E Matandirotya 1,2,3, P J Cilliers 1,2 and R R van Zyl 2,3 1 Cape Peninsula University of Technology, Bellvile,

More information

Supplemental Geomagnetic Disturbance Event Description

Supplemental Geomagnetic Disturbance Event Description Supplemental Geomagnetic Disturbance Event Description Project 2013-03 GMD Mitigation JuneOctober 2017 NERC Report Title Report Date I Table of Contents Preface... iii Introduction... iv Background...

More information

Satellite Navigation Science and Technology for Africa. 23 March - 9 April, The African Ionosphere

Satellite Navigation Science and Technology for Africa. 23 March - 9 April, The African Ionosphere 2025-28 Satellite Navigation Science and Technology for Africa 23 March - 9 April, 2009 The African Ionosphere Radicella Sandro Maria Abdus Salam Intern. Centre For Theoretical Physics Aeronomy and Radiopropagation

More information

Earthquake Analysis over the Equatorial

Earthquake Analysis over the Equatorial Earthquake Analysis over the Equatorial Region by Using the Critical Frequency Data and Geomagnetic Index Earthquake Analysis over the Equatorial Region by Using the Critical Frequency Data and Geomagnetic

More information

IONOSPHERE EFFECTS ON GPS/RF COMMUNICATION, ELECTRIC, METAL NETWORKS AND SPACECRAFTS OSMAN AKGÜN

IONOSPHERE EFFECTS ON GPS/RF COMMUNICATION, ELECTRIC, METAL NETWORKS AND SPACECRAFTS OSMAN AKGÜN IONOSPHERE EFFECTS ON GPS/RF COMMUNICATION, ELECTRIC, METAL NETWORKS AND SPACECRAFTS 2119212 OSMAN AKGÜN IONOSPHERE IONOSPHERE EFFECTS POSSIBLE EFFECTS GPS errors Atomic oxygen attack Spacecraft charging

More information

The Ionosphere and Thermosphere: a Geospace Perspective

The Ionosphere and Thermosphere: a Geospace Perspective The Ionosphere and Thermosphere: a Geospace Perspective John Foster, MIT Haystack Observatory CEDAR Student Workshop June 24, 2018 North America Introduction My Geospace Background (Who is the Lecturer?

More information

INTRODUCTION TO LOGARITHMS

INTRODUCTION TO LOGARITHMS INTRODUCTION TO LOGARITHMS Dear Reader Logarithms are a tool originally designed to simplify complicated arithmetic calculations. They were etensively used before the advent of calculators. Logarithms

More information

Coupling between the ionosphere and the magnetosphere

Coupling between the ionosphere and the magnetosphere Chapter 6 Coupling between the ionosphere and the magnetosphere It s fair to say that the ionosphere of the Earth at all latitudes is affected by the magnetosphere and the space weather (whose origin is

More information

Behaviour of magnetotelluric source fields within the equatorial zone

Behaviour of magnetotelluric source fields within the equatorial zone Earth Planets Space, 51, 1119 1125, 1999 Behaviour of magnetotelluric source fields within the equatorial zone Antonio L. Padilha Instituto Nacional de Pesquisas Espaciais - INPE, C.P. 515, 12201-970 São

More information

Session EM4: Natural EM Source Effects EM4-1 STUDY OF THE ELECTRIC FIELD HARMONICS IN THE SEA OF JAPAN

Session EM4: Natural EM Source Effects EM4-1 STUDY OF THE ELECTRIC FIELD HARMONICS IN THE SEA OF JAPAN Session EM4: Natural EM Source Effects EM4-1 STUDY OF THE ELECTRIC FIELD HARMONICS IN THE SEA OF JAPAN Daria Abramova (Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation RAS, Russia,

More information

Electromagnetic Induction

Electromagnetic Induction Electromagnetic Induction Recap the motivation for using geophysics We have problems to solve Slide 1 Finding resources Hydrocarbons Minerals Ground Water Geothermal Energy SEG Distinguished Lecture slide

More information

Responses of ionospheric fof2 to geomagnetic activities in Hainan

Responses of ionospheric fof2 to geomagnetic activities in Hainan Advances in Space Research xxx (2007) xxx xxx www.elsevier.com/locate/asr Responses of ionospheric fof2 to geomagnetic activities in Hainan X. Wang a, *, J.K. Shi a, G.J. Wang a, G.A. Zherebtsov b, O.M.

More information

Ionospheric Variations Associated with August 2, 2007 Nevelsk Earthquake

Ionospheric Variations Associated with August 2, 2007 Nevelsk Earthquake Ionospheric Variations Associated with August 2, 07 Nevelsk Earthquake Iurii Cherniak, Irina Zakharenkova, Irk Shagimuratov, Nadezhda Tepenitsyna West Department of IZMIRAN, 1 Av. Pobeda, Kaliningrad,

More information

Scientific Studies of the High-Latitude Ionosphere with the Ionosphere Dynamics and ElectroDynamics - Data Assimilation (IDED-DA) Model

Scientific Studies of the High-Latitude Ionosphere with the Ionosphere Dynamics and ElectroDynamics - Data Assimilation (IDED-DA) Model DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Scientific Studies of the High-Latitude Ionosphere with the Ionosphere Dynamics and ElectroDynamics - Data Assimilation

More information

University of Cape Town

University of Cape Town GEOMAGNETICALLY INDUCED CURRENTS (GIC) IN LARGE POWER SYSTEMS INCLUDING TRANSFORMER TIME RESPONSE THESIS BY: DAVID TEMITOPE OLUWASEHUN OYEDOKUN DEPARTMENT OF ELECTRICAL ENGINEERING University of Cape Town

More information

EISCAT Experiments. Anders Tjulin EISCAT Scientific Association 2nd March 2017

EISCAT Experiments. Anders Tjulin EISCAT Scientific Association 2nd March 2017 EISCAT Experiments Anders Tjulin EISCAT Scientific Association 2nd March 2017 Contents 1 Introduction 3 2 Overview 3 2.1 The radar systems.......................... 3 2.2 Antenna scan patterns........................

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION The dependence of society to technology increased in recent years as the technology has enhanced. increased. Moreover, in addition to technology, the dependence of society to nature

More information

How GNSS and Beacon receivers can be used to monitor auroral ionosphere and space weather?

How GNSS and Beacon receivers can be used to monitor auroral ionosphere and space weather? How GNSS and Beacon receivers can be used to monitor auroral ionosphere and space weather? Kirsti Kauristie, Finnish Meteorological Institute Special Thanks: J. Norberg (FMI), A. Aikio and T. Nygren (University

More information

Benchmark Geomagnetic Disturbance Event Description

Benchmark Geomagnetic Disturbance Event Description Benchmark Geomagnetic Disturbance Event Description Project 2013-03 GMD Mitigation Standard Drafting Team May 12, 2016 NERC Report Title Report Date 1 of 23 Table of Contents Preface...3 Introduction...4

More information

Study of the Ionosphere Irregularities Caused by Space Weather Activity on the Base of GNSS Measurements

Study of the Ionosphere Irregularities Caused by Space Weather Activity on the Base of GNSS Measurements Study of the Ionosphere Irregularities Caused by Space Weather Activity on the Base of GNSS Measurements Iu. Cherniak 1, I. Zakharenkova 1,2, A. Krankowski 1 1 Space Radio Research Center,, University

More information

Examination of Three Empirical Atmospheric Models

Examination of Three Empirical Atmospheric Models Examination of Three Empirical Atmospheric Models A Presentation Given to The Department of Physics Utah State University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

More information

Sferic signals for lightning sourced electromagnetic surveys

Sferic signals for lightning sourced electromagnetic surveys Sferic signals for lightning sourced electromagnetic surveys Lachlan Hennessy* RMIT University hennessylachlan@gmail.com James Macnae RMIT University *presenting author SUMMARY Lightning strikes generate

More information

3.3 Properties of Logarithms

3.3 Properties of Logarithms Section 3.3 Properties of Logarithms 07 3.3 Properties of Logarithms Change of Base Most calculators have only two types of log keys, one for common logarithms (base 0) and one for natural logarithms (base

More information

An error analysis on nature and radar system noises in deriving the phase and group velocities of vertical propagation waves

An error analysis on nature and radar system noises in deriving the phase and group velocities of vertical propagation waves Earth Planets Space, 65, 911 916, 2013 An error analysis on nature and radar system noises in deriving the phase and group velocities of vertical propagation waves C. C. Hsiao 1,J.Y.Liu 1,2,3, and Y. H.

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Name Date Chapter 3 Eponential and Logarithmic Functions Section 3.1 Eponential Functions and Their Graphs Objective: In this lesson ou learned how to recognize, evaluate, and graph eponential functions.

More information

Lab 6 - Inductors and LR Circuits

Lab 6 - Inductors and LR Circuits Lab 6 Inductors and LR Circuits L6-1 Name Date Partners Lab 6 - Inductors and LR Circuits The power which electricity of tension possesses of causing an opposite electrical state in its vicinity has been

More information

The Significance of GNSS for Radio Science

The Significance of GNSS for Radio Science Space Weather Effects on the Wide Area Augmentation System (WAAS) The Significance of GNSS for Radio Science Patricia H. Doherty Vice Chair, Commission G International Union of Radio Science www.ursi.org

More information

Inuence of solar terminator passages on Schumann resonance parameters

Inuence of solar terminator passages on Schumann resonance parameters Journal of Atmospheric and Solar-Terrestrial Physics 66 (2004) 1187 1194 www.elsevier.com/locate/jastp Inuence of solar terminator passages on Schumann resonance parameters A. Melnikov a, C. Price a;,g.satori

More information

Ground-Based Magnetometer Arrays and Geomagnetically Induced Current in Power Grids: Science and Operations

Ground-Based Magnetometer Arrays and Geomagnetically Induced Current in Power Grids: Science and Operations Ground-Based Magnetometer Arrays and Geomagnetically Induced Current in Power Grids: Science and Operations Alan W P Thomson (awpt@bgs.ac.uk), Ciarán Beggan and Gemma Kelly Introduction What is this hazard

More information

Morphology of the spectral resonance structure of the electromagnetic background noise in the range of Hz at L = 5.2

Morphology of the spectral resonance structure of the electromagnetic background noise in the range of Hz at L = 5.2 Annales Geophysicae (2003) 21: 779 786 c European Geosciences Union 2003 Annales Geophysicae Morphology of the spectral resonance structure of the electromagnetic background noise in the range of 0.1 4

More information

Day-to-day Variations in the Solar Quiet (Sq) Current System

Day-to-day Variations in the Solar Quiet (Sq) Current System 14th International Symposium on Equatorial Aeronomy (ISEA) Bahir Dar, Ethiopia, 19 October 2015 Day-to-day Variations in the Solar Quiet (Sq) Current System Yosuke Yamazaki (YY) Department of Physics,

More information

Application Guide. Computing Geomagnetically-Induced Current in the Bulk-Power System. December 2013

Application Guide. Computing Geomagnetically-Induced Current in the Bulk-Power System. December 2013 Application Guide Computing Geomagnetically-Induced Current in the Bulk-Power System December 2013 1 3353 Peachtree Road NE Suite 600, North Tower Atlanta, GA 30326 Table of Contents Table of Contents...

More information

A technique for calculating ionospheric Doppler shifts from standard ionograms suitable for scientific, HF communication, and OTH radar applications

A technique for calculating ionospheric Doppler shifts from standard ionograms suitable for scientific, HF communication, and OTH radar applications RADIO SCIENCE, VOL. 44,, doi:10.1029/2009rs004210, 2009 A technique for calculating ionospheric Doppler shifts from standard ionograms suitable for scientific, HF communication, and OTH radar applications

More information

The GPS measured SITEC caused by the very intense solar flare on July 14, 2000

The GPS measured SITEC caused by the very intense solar flare on July 14, 2000 Advances in Space Research 36 (2005) 2465 2469 www.elsevier.com/locate/asr The GPS measured SITEC caused by the very intense solar flare on July 14, 2000 Weixing Wan a, *, Libo Liu a, Hong Yuan b, Baiqi

More information

Here the goal is to find the location of the ore body, and then evaluate its size and depth.

Here the goal is to find the location of the ore body, and then evaluate its size and depth. Geophysics 223 March 2009 D3 : Ground EM surveys over 2-D resistivity models D3.1 Tilt angle measurements In D2 we discussed approaches for mapping terrain conductivity. This is appropriate for many hydrogeology

More information

Variability in the response time of the high-latitude ionosphere to IMF and solar-wind variations

Variability in the response time of the high-latitude ionosphere to IMF and solar-wind variations Variability in the response time of the high-latitude ionosphere to IMF and solar-wind variations Murray L. Parkinson 1, Mike Pinnock 2, and Peter L. Dyson 1 (1) Department of Physics, La Trobe University,

More information

IES 2015, May 12-14, Old Town Alexandria. Geomagnetic Laboratory, Natural Resources Canada 2. Geodetic Survey, Natural Resources Canada

IES 2015, May 12-14, Old Town Alexandria. Geomagnetic Laboratory, Natural Resources Canada 2. Geodetic Survey, Natural Resources Canada Analyses of the geomagnetic variations and GPS scintillation over the Canadian auroral zone Lidia Nikitina 1, D.W. Danskin 1, R. Ghoddousi-Fard 2, P. Prikryl 1 1 Geomagnetic Laboratory, Natural Resources

More information

RF Propagation. By Tim Kuhlman, PE KD7RUS

RF Propagation. By Tim Kuhlman, PE KD7RUS RF Propagation By Tim Kuhlman, PE KD7RUS Purpose of this Seminar In this seminar we will attempt to answer the following questions: What is RF propagation? What are the different types of propagation?

More information

LOGARITHMIC FUNCTIONS AND THEIR APPLICATIONS

LOGARITHMIC FUNCTIONS AND THEIR APPLICATIONS . Logarithmic Functions and Their Applications ( 3) 657 In this section. LOGARITHMIC FUNCTIONS AND THEIR APPLICATIONS In Section. you learned that eponential functions are one-to-one functions. Because

More information

SPIDR on the Web: Space Physics Interactive

SPIDR on the Web: Space Physics Interactive Radio Science, Volume 32, Number 5, Pages 2021-2026, September-October 1997 SPIDR on the Web: Space Physics Interactive Data Resource on-line analysis tool Karen Fay O'Loughlin Cooperative Institute for

More information

NON-TYPICAL SERIES OF QUASI-PERIODIC VLF EMISSIONS

NON-TYPICAL SERIES OF QUASI-PERIODIC VLF EMISSIONS NON-TYPICAL SERIES OF QUASI-PERIODIC VLF EMISSIONS J. Manninen 1, N. Kleimenova 2, O. Kozyreva 2 1 Sodankylä Geophysical Observatory, Finland, e-mail: jyrki.manninen@sgo.fi; 2 Institute of Physics of the

More information

Experiment 04 - Network Analyzer Error Corrections: The 1-term, 2-term, and 3-term Error Model

Experiment 04 - Network Analyzer Error Corrections: The 1-term, 2-term, and 3-term Error Model ECE 451 Automated Microwave Measurements Laboratory Experiment 04 - Network Analyzer Error Corrections: The 1-term, 2-term, and 3-term Error Model 1 Introduction When we make a microwave measurement, we

More information

NAVIGATION SYSTEMS PANEL (NSP) NSP Working Group meetings. Impact of ionospheric effects on SBAS L1 operations. Montreal, Canada, October, 2006

NAVIGATION SYSTEMS PANEL (NSP) NSP Working Group meetings. Impact of ionospheric effects on SBAS L1 operations. Montreal, Canada, October, 2006 NAVIGATION SYSTEMS PANEL (NSP) NSP Working Group meetings Agenda Item 2b: Impact of ionospheric effects on SBAS L1 operations Montreal, Canada, October, 26 WORKING PAPER CHARACTERISATION OF IONOSPHERE

More information

Paper presented at the Int. Lightning Detection Conference, Tucson, Nov. 1996

Paper presented at the Int. Lightning Detection Conference, Tucson, Nov. 1996 Paper presented at the Int. Lightning Detection Conference, Tucson, Nov. 1996 Detection Efficiency and Site Errors of Lightning Location Systems Schulz W. Diendorfer G. Austrian Lightning Detection and

More information

RECOMMENDATION ITU-R P Prediction of sky-wave field strength at frequencies between about 150 and khz

RECOMMENDATION ITU-R P Prediction of sky-wave field strength at frequencies between about 150 and khz Rec. ITU-R P.1147-2 1 RECOMMENDATION ITU-R P.1147-2 Prediction of sky-wave field strength at frequencies between about 150 and 1 700 khz (Question ITU-R 225/3) (1995-1999-2003) The ITU Radiocommunication

More information

Anna Belehaki, Ioanna Tsagouri (NOA, Greece) Ivan Kutiev, Pencho Marinov (BAS, Bulgaria)

Anna Belehaki, Ioanna Tsagouri (NOA, Greece) Ivan Kutiev, Pencho Marinov (BAS, Bulgaria) Characteristics of Large Scale Travelling Ionospheric Disturbances Exploiting Ground-Based Ionograms, GPS-TEC and 3D Electron Density Distribution Maps Anna Belehaki, Ioanna Tsagouri (NOA, Greece) Ivan

More information

INTEGRATED METHOD IN ELECTROMAGNETIC INTERFERENCE STUDIES

INTEGRATED METHOD IN ELECTROMAGNETIC INTERFERENCE STUDIES INTEGRATED METHOD IN ELECTROMAGNETIC INTERFERENCE STUDIES Jinxi Ma and Farid P. Dawalibi Safe Engineering Services & technologies ltd. 1544 Viel, Montreal, Quebec, Canada, H3M 1G4 Tel.: (514) 336-2511

More information

RELATIONS BETWEEN THE EQUATORIAL VERTICAL DRIFTS, ELECTROJET, GPS-TEC AND SCINTILLATION DURING THE SOLAR MINIMUM

RELATIONS BETWEEN THE EQUATORIAL VERTICAL DRIFTS, ELECTROJET, GPS-TEC AND SCINTILLATION DURING THE SOLAR MINIMUM RELATIONS BETWEEN THE EQUATORIAL VERTICAL DRIFTS, ELECTROJET, GPS-TEC AND SCINTILLATION DURING THE 2008-09 SOLAR MINIMUM Sovit Khadka 1, 2, Cesar Valladares 2, Rezy Pradipta 2, Edgardo Pacheco 3, and Percy

More information

6.6. Investigating Models of Sinusoidal Functions. LEARN ABOUT the Math. Sasha s Solution Investigating Models of Sinusoidal Functions

6.6. Investigating Models of Sinusoidal Functions. LEARN ABOUT the Math. Sasha s Solution Investigating Models of Sinusoidal Functions 6.6 Investigating Models of Sinusoidal Functions GOAL Determine the equation of a sinusoidal function from a graph or a table of values. LEARN ABOUT the Math A nail located on the circumference of a water

More information

Modeling and Evaluation of Geomagnetic Storms in the Electric Power System

Modeling and Evaluation of Geomagnetic Storms in the Electric Power System 21, rue d Artois, F-75008 PARIS C4-306 CIGRE 2014 http : //www.cigre.org Modeling and Evaluation of Geomagnetic Storms in the Electric Power System K. PATIL Siemens Power Technologies International, Siemens

More information

Regional ionospheric disturbances during magnetic storms. John Foster

Regional ionospheric disturbances during magnetic storms. John Foster Regional ionospheric disturbances during magnetic storms John Foster Regional Ionospheric Disturbances John Foster MIT Haystack Observatory Regional Disturbances Meso-Scale (1000s km) Storm Enhanced Density

More information

[titlelscientific Studies of the High-Latitude Ionosphere with the Ionosphere Dynamics and Electrodynamics-Data Assimilation (IDED-DA) Model

[titlelscientific Studies of the High-Latitude Ionosphere with the Ionosphere Dynamics and Electrodynamics-Data Assimilation (IDED-DA) Model [titlelscientific Studies of the High-Latitude Ionosphere with the Ionosphere Dynamics and Electrodynamics-Data Assimilation (IDED-DA) Model [awardnumberl]n00014-13-l-0267 [awardnumber2] [awardnumbermore]

More information

Combining ionosonde with ground GPS data for electron density estimation

Combining ionosonde with ground GPS data for electron density estimation Journal of Atmospheric and Solar-Terrestrial Physics 65 (23) 683 691 www.elsevier.com/locate/jastp Combining ionosonde with ground GPS data for electron density estimation M. Garca-Fernandez a;, M. Hernandez-Pajares

More information

Storms in Earth s ionosphere

Storms in Earth s ionosphere Storms in Earth s ionosphere Archana Bhattacharyya Indian Institute of Geomagnetism IISF 2017, WSE Conclave; Anna University, Chennai Earth s Ionosphere Ionosphere is the region of the atmosphere in which

More information

Exploring QAM using LabView Simulation *

Exploring QAM using LabView Simulation * OpenStax-CNX module: m14499 1 Exploring QAM using LabView Simulation * Robert Kubichek This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 2.0 1 Exploring

More information

Mag Lev Train 1. By: Paul Friend. Project Advisor: Dr. Anakwa. Date:

Mag Lev Train 1. By: Paul Friend. Project Advisor: Dr. Anakwa. Date: Mag Lev Train 1 By: Paul Friend Project Advisor: Dr. Anakwa Date: October 28, 2003 The Mag Lev Train 1 project is to design and implement an active levitation, guidance, and propulsion system for a model

More information

Ionosphere- Thermosphere

Ionosphere- Thermosphere Ionosphere- Thermosphere Jan J Sojka Center for Atmospheric and Space Sciences Utah State University, Logan, Utah 84322 PART I: Local I/T processes (relevance for Homework Assignments) PART II: Terrestrial

More information

Sw earth Dw Direct wave GRw Ground reflected wave Sw Surface wave

Sw earth Dw Direct wave GRw Ground reflected wave Sw Surface wave WAVE PROPAGATION By Marcel H. De Canck, ON5AU Electromagnetic radio waves can propagate in three different ways between the transmitter and the receiver. 1- Ground waves 2- Troposphere waves 3- Sky waves

More information

The response of the high-latitude ionosphere to IMF variations

The response of the high-latitude ionosphere to IMF variations Journal of Atmospheric and Solar-Terrestrial Physics 64 (2002) 159 171 www.elsevier.com/locate/jastp The response of the high-latitude ionosphere to IMF variations J.M. Ruohoniemi, S.G. Shepherd, R.A.

More information

Rec. ITU-R P RECOMMENDATION ITU-R P *

Rec. ITU-R P RECOMMENDATION ITU-R P * Rec. ITU-R P.682-1 1 RECOMMENDATION ITU-R P.682-1 * PROPAGATION DATA REQUIRED FOR THE DESIGN OF EARTH-SPACE AERONAUTICAL MOBILE TELECOMMUNICATION SYSTEMS (Question ITU-R 207/3) Rec. 682-1 (1990-1992) The

More information

Transmit Antenna for Ionospheric Sounding Applications Rob Redmon 1 and Terence Bullett 2

Transmit Antenna for Ionospheric Sounding Applications Rob Redmon 1 and Terence Bullett 2 Transmit Antenna for Ionospheric Sounding Applications Rob Redmon 1 and Terence Bullett 2 1 NOAA, National Geophysical Data Center, E/GC2, 325 Broadway Boulder CO, USA ; Rob.Redmon@noaa.gov 2 University

More information

RAPID MAGITUDE DETERMINATION FOR TSUNAMI WARNING USING LOCAL DATA IN AND AROUND NICARAGUA

RAPID MAGITUDE DETERMINATION FOR TSUNAMI WARNING USING LOCAL DATA IN AND AROUND NICARAGUA RAPID MAGITUDE DETERMINATION FOR TSUNAMI WARNING USING LOCAL DATA IN AND AROUND NICARAGUA Domingo Jose NAMENDI MARTINEZ MEE16721 Supervisor: Akio KATSUMATA ABSTRACT The rapid magnitude determination of

More information

Experiment 1 Alternating Current with Coil and Ohmic Resistors

Experiment 1 Alternating Current with Coil and Ohmic Resistors Experiment Alternating Current with Coil and Ohmic esistors - Objects of the experiment - Determining the total impedance and the phase shift in a series connection of a coil and a resistor. - Determining

More information

Ground based measurements of ionospheric turbulence manifestations induced by the VLF transmitter ABSTRACT

Ground based measurements of ionospheric turbulence manifestations induced by the VLF transmitter ABSTRACT Ground based measurements of ionospheric turbulence manifestations induced by the VLF transmitter Dmitry S. Kotik, 1 Fedor I. Vybornov, 1 Alexander V. Ryabov, 1 Alexander V. Pershin 1 and Vladimir A. Yashnov

More information

Graphing Exponential Functions

Graphing Exponential Functions Graphing Eponential Functions What is an Eponential Function? Eponential functions are one of the most important functions in mathematics. Eponential functions have many scientific applications, such as

More information

Using the Radio Spectrum to Understand Space Weather

Using the Radio Spectrum to Understand Space Weather Using the Radio Spectrum to Understand Space Weather Ray Greenwald Virginia Tech Topics to be Covered What is Space Weather? Origins and impacts Analogies with terrestrial weather Monitoring Space Weather

More information

THE FEASIBILITY OF THE AIRBORNE FLUXGATE MAGNETOMETER AS AN EXPLORATION TOOL RESULTS FROM THREE DIMENSIONAL NUMERICAL MODELLING

THE FEASIBILITY OF THE AIRBORNE FLUXGATE MAGNETOMETER AS AN EXPLORATION TOOL RESULTS FROM THREE DIMENSIONAL NUMERICAL MODELLING THE FEASIBILITY OF THE AIRBORNE FLUXGATE MAGNETOMETER AS AN EXPLORATION TOOL RESULTS FROM THREE DIMENSIONAL NUMERICAL MODELLING John Joseph CRC LEME, School of Earth and Environmental Sciences, University

More information

SPACE WEATHER SIGNATURES ON VLF RADIO WAVES RECORDED IN BELGRADE

SPACE WEATHER SIGNATURES ON VLF RADIO WAVES RECORDED IN BELGRADE Publ. Astron. Obs. Belgrade No. 80 (2006), 191-195 Contributed paper SPACE WEATHER SIGNATURES ON VLF RADIO WAVES RECORDED IN BELGRADE DESANKA ŠULIĆ1, VLADIMIR ČADEŽ2, DAVORKA GRUBOR 3 and VIDA ŽIGMAN4

More information

Measurements of doppler shifts during recent auroral backscatter events.

Measurements of doppler shifts during recent auroral backscatter events. Measurements of doppler shifts during recent auroral backscatter events. Graham Kimbell, G3TCT, 13 June 2003 Many amateurs have noticed that signals reflected from an aurora are doppler-shifted, and that

More information

Developing systems for ionospheric data assimilation

Developing systems for ionospheric data assimilation Developing systems for ionospheric data assimilation Making a quantitative comparison between observations and models A.C. Bushell, 5 th European Space Weather Week, Brussels, 20 th November 2008 Collaborators

More information

Seasonal e ects in the ionosphere-thermosphere response to the precipitation and eld-aligned current variations in the cusp region

Seasonal e ects in the ionosphere-thermosphere response to the precipitation and eld-aligned current variations in the cusp region Ann. Geophysicae 16, 1283±1298 (1998) Ó EGS ± Springer-Verlag 1998 Seasonal e ects in the ionosphere-thermosphere response to the precipitation and eld-aligned current variations in the cusp region A.

More information

7.1 INTRODUCTION TO PERIODIC FUNCTIONS

7.1 INTRODUCTION TO PERIODIC FUNCTIONS 7.1 INTRODUCTION TO PERIODIC FUNCTIONS *SECTION: 6.1 DCP List: periodic functions period midline amplitude Pg 247- LECTURE EXAMPLES: Ferris wheel, 14,16,20, eplain 23, 28, 32 *SECTION: 6.2 DCP List: unit

More information

VARIATIONS OF VLF SIGNALS RECEIVED ON DEMETER SATELLITE. IN ASSOCIATION WITH SEISMICITY A. Rozhnoi 1, M. Solovieva 1, Molchanov O.

VARIATIONS OF VLF SIGNALS RECEIVED ON DEMETER SATELLITE. IN ASSOCIATION WITH SEISMICITY A. Rozhnoi 1, M. Solovieva 1, Molchanov O. VARIATIONS OF VLF SIGNALS RECEIVED ON DEMETER SATELLITE IN ASSOCIATION WITH SEISMICITY A. Rozhnoi 1, M. Solovieva 1, Molchanov O. 1 1 Institute of the Earth Physics, RAS, Bolshaya Gruzinskaya 10, Moscow,

More information

Space-born system for on-line precursors monitoring of eathquakes,, natural and man-made made catastrophes

Space-born system for on-line precursors monitoring of eathquakes,, natural and man-made made catastrophes Space-born system for on-line precursors monitoring of eathquakes,, natural and man-made made catastrophes The main goal of the Project In my brief report, I would like to inform about the work on developing

More information

The Effects of Pulsed Ionospheric Flows on EMIC Wave Behaviour

The Effects of Pulsed Ionospheric Flows on EMIC Wave Behaviour The Effects of Pulsed Ionospheric Flows on EMIC Wave Behaviour S. C. Gane (1), D. M. Wright (1), T. Raita (2), ((1), (2) Sodankylä Geophysical Observatory) Continuous ULF Pulsations (Pc) Frequency band

More information

analysis of GPS total electron content Empirical orthogonal function (EOF) storm response 2016 NEROC Symposium M. Ruohoniemi (3)

analysis of GPS total electron content Empirical orthogonal function (EOF) storm response 2016 NEROC Symposium M. Ruohoniemi (3) Empirical orthogonal function (EOF) analysis of GPS total electron content storm response E. G. Thomas (1), A. J. Coster (2), S.-R. Zhang (2), R. M. McGranaghan (1), S. G. Shepherd (1), J. B. H. Baker

More information

DIVISION BY FRACTIONS

DIVISION BY FRACTIONS DIVISION BY FRACTIONS 6.. 6.. Division by fractions introduces three methods to help students understand how dividing by fractions works. In general, think of division for a problem like 8 as, In 8, how

More information

ABSTRACT 1 INTRODUCTION

ABSTRACT 1 INTRODUCTION ELECTROMAGNETIC ANALYSIS OF WIND TURBINE GROUNDING SYSTEMS Maria Lorentzou*, Ian Cotton**, Nikos Hatziargyriou*, Nick Jenkins** * National Technical University of Athens, 42 Patission Street, 1682 Athens,

More information

Monitoring the Auroral Oval with GPS and Applications to WAAS

Monitoring the Auroral Oval with GPS and Applications to WAAS Monitoring the Auroral Oval with GPS and Applications to WAAS Peter J. Stewart and Richard B. Langley Geodetic Research Laboratory Department of Geodesy and Geomatics Engineering University of New Brunswick

More information

Solar quiet current response in the African sector due to a 2009 sudden stratospheric warming event

Solar quiet current response in the African sector due to a 2009 sudden stratospheric warming event Institute for Scientific Research, Boston College Presentation Solar quiet current response in the African sector due to a 29 sudden stratospheric warming event O.S. Bolaji Department of Physics University

More information

Modeling of Ionospheric Refraction of UHF Radar Signals at High Latitudes

Modeling of Ionospheric Refraction of UHF Radar Signals at High Latitudes Modeling of Ionospheric Refraction of UHF Radar Signals at High Latitudes Brenton Watkins Geophysical Institute University of Alaska Fairbanks USA watkins@gi.alaska.edu Sergei Maurits and Anton Kulchitsky

More information

8.1 Day 1: Understanding Logarithms

8.1 Day 1: Understanding Logarithms PC 30 8.1 Day 1: Understanding Logarithms To evaluate logarithms and solve logarithmic equations. RECALL: In section 1.4 we learned what the inverse of a function is. What is the inverse of the equation

More information

10.3 Polar Coordinates

10.3 Polar Coordinates .3 Polar Coordinates Plot the points whose polar coordinates are given. Then find two other pairs of polar coordinates of this point, one with r > and one with r

More information

One-dimensional spherical elementary current systems and their use for determining ionospheric currents from satellite measurements

One-dimensional spherical elementary current systems and their use for determining ionospheric currents from satellite measurements Earth Planets Space, 58, 667 678, 26 One-dimensional spherical elementary current systems and their use for determining ionospheric currents from satellite measurements Liisa Juusola, Olaf Amm, and Ari

More information

New Chains of Space Weather Monitoring Stations in China

New Chains of Space Weather Monitoring Stations in China SPACE WEATHER, VOL. 8, S08001, doi:10.1029/2010sw000603, 2010 New Chains of Space Weather Monitoring Stations in China Chi Wang Published 19 August 2010. Citation: Wang, C. (2010), New Chains of Space

More information

Lesson 5.4 Exercises, pages

Lesson 5.4 Exercises, pages Lesson 5.4 Eercises, pages 8 85 A 4. Evaluate each logarithm. a) log 4 6 b) log 00 000 4 log 0 0 5 5 c) log 6 6 d) log log 6 6 4 4 5. Write each eponential epression as a logarithmic epression. a) 6 64

More information

RESISTIVITY METHODS MT

RESISTIVITY METHODS MT Presented at Short Course V on Exploration for Geothermal Resources, organized by UNU-GTP, GDC and KenGen, at Lake Bogoria and Lake Naivasha, Kenya, Oct. 29 Nov. 19, 2010. GEOTHERMAL TRAINING PROGRAMME

More information