IMPLEMENTATION OF NETWORK RECONFIGURATION TECHNIQUE FOR LOSS MINIMIZATION ON A 11KV DISTRIBUTION SYSTEM OF MRS SHIMOGA-A CASE STUDY

Size: px
Start display at page:

Download "IMPLEMENTATION OF NETWORK RECONFIGURATION TECHNIQUE FOR LOSS MINIMIZATION ON A 11KV DISTRIBUTION SYSTEM OF MRS SHIMOGA-A CASE STUDY"

Transcription

1 IMPLEMENTATION OF NETWORK RECONFIGURATION TECHNIQUE FOR LOSS MINIMIZATION ON A 11KV DISTRIBUTION SYSTEM OF MRS SHIMOGA-A CASE STUDY PROJECT REFERENCE NO. : 37S0848 COLLEGE : PES INSTITUTE OF TECHNOLOGY AND MANAGEMENT, SHIVAMOGGA BRANCH : ELECTRICAL AND ELECTRONICS ENGINEERING GUIDE : SHIVAKUMAR L.N STUDENTS : ABDUL KAREEM S.J AKSHATHA D.S BHUVANESHWARI.S SEETHARAMA Keywords: Distribution system, Reconfiguration, Switching indices, weighing factor Introduction: The demand for electricity is continuously increasing while the generation of electricity is limited by many constraints. Therefore both utility and the consumer have to mutually interact to utilize optimally the available electrical energy for the mutual benefits. Because of the rapid industrial growth, there is a considerable rise in demand for electrical energy from various categories of consumers. In the current scenario, we are facing a difficult task of matching the availability with the ever increasing demand. Nowadays because of increasing demand for electrical energy two problems exists. 1) Maintaining the uniform distribution of loads. 2) Reducing the losses in the power system to improve the end-use electrical demand. The different types of distribution system configuration are: 1) Radial configuration. 2) Loop configuration. 1

2 The Radial distribution system is the cheapest to build, and is widely used in sparsely populated areas. A radial system has only one power source for a group of customers. A power failure, short-circuit, or a downed power line would interrupt power in the entire line which must be fixed before power can be restored. A loop system, as the name implies, loops through the service area and returns to the original point. The loop is usually tied into an alternate power source. By placing switches in strategic locations, the utility can supply power to the customer from either direction. If one source of power fails, switches are thrown (automatically or manually), and power can be fed to customers from the other source. The loop system provides better continuity of service than the radial system, with only short interruptions for switching. In the event of power failures due to faults on the line, the utility has only to find the fault and switch around it to restore service. The fault itself can then be repaired with a minimum of customer interruptions. The loop system is more expensive than the radial because more switches and conductors are required, but the resultant improved system reliability is often worth the price. Even though loop configuration has better advantages, we go for radial configuration because, 1. Simplest as fed at only end. 2. The initial cost is low. 3. Useful when the generating is at low voltage. 4. Preferred when the station is located at the centre of the load. The performance of distribution system becomes inefficient due to the reduction in voltage magnitude and increase in distribution losses. Since the distribution power system is the final stage of the distribution process from the source to the individual customer, it has seemed to contribute the greatest amount of power loss in which finally resulted the instability in the system. Thus, many researchers have been focusing on power loss minimization in the distribution system by using various methods. Among the various methods of loss minimization, the recent method used is reconfiguration. Distribution feeder reconfiguration can be used as a planning toll as well as a real time control tool in demand side management. Feeder reconfiguration means altering the topology structure of distribution feeders by changing open/close status of the sectionalizing and tie switches. 2

3 Feeder reconfiguration allows the transfer of loads form heavily loaded feeders (or transformers) to relatively less heavily loaded feeders (or transformers). Such transfers are effective not only in terms of altering the level of loads on the feeders being switched, but also in improving the voltage profile along the feeders and effecting reductions in the overall system power losses. Meanwhile, the installation of reconfiguration network is much simpler and cost efficient compared to other techniques. In general, reconfiguration have two primary objectives which are to provide the maximum amount of electrical supply to the end customers and reconfigure the network system automatically as soon as the problems arise. Thus, various reconfiguration methods have been proposed to solve the power loss problem and each method has the respective advantages and disadvantages. Objectives: In the present work, a simple approach for distribution reconfiguration was proposed standard switching indices are used for network reconfiguration and the algorithm is tested on a standard 32-bus system which has been taken as the benchmark problem for network reconfiguration in many IEEE papers. Also the algorithm is implemented on a typical 11kv distribution system which is radiating from main receiving station shivamogga.. Methodology: All the tie switches are closed in the network to form as many loops as the number of tie switches. In the meshed network each loop has a best opening point for minimum loss. By opening that switch, radial topology in that loop is regained. The procedure is repeated for all other loops. The switching indices are obtained for all the branches in the looped state. The node voltages and line parameters were used to define the indices. The voltage index: µ v: Minimizing R ij ( V i -V j Y ij ) 2,it can be seen that low voltage drop yields low loss. A voltage index µv can be defined for a particular branch N (from i to j) by µ v (n) = exp- ω (ΔVV nn ) 2 where Vn: the voltage drop between two terminals of branch N, (ΔV 2 av ) V 2 av : the mean square voltage drop of all branches for chosen loop ω : Weighing Factor The ohmic index µ L : Line constants R and Y can also be used to minimize Equation (1). Low current flow is expected for high R Y 2 value. The ohmic index µ L can be defined as µ L 3

4 (n) = exp- ω Where R av : The average branch resistance for a chosen loop, Y av : The average branch admittance for a chosen loop, ω:weighing Factor The decision index µ D: The decision index µ D can now be defined by using the product operation of indices µ v and µ L. Under normal operational state, the optimal decision can be obtained by: Max µ D (n) = Max { µ v (n) * µ L (n)} Weighing Factor w : weighing factor w is such that the weightage to open a branch decreases as we move away from the highest priority branch in either direction of the loop starting from the highest priority branch. The branch in the critical region, which has lower active losses, is considered as the highest priority branch to be opened. The developed algorithm and flow chart are shown below Algorithm Read the network data, dg data and nodes of DG injection At the nodes of DG injection, modify the load data with DGs as power sinks i.e., negative load. Close all the switches to form meshed network and run AC load flow. From the load flow data, for all the loops identify the highest priority branches and assign weighing factors to all the branches. Compute the switching indices for all the branches of each loop; arrange them in the descending order. Starting from the loop near the source, open the branch with highest switching index and run the AC load flow. Check for constraint violation. If any constraint is violated, ignore that branch for opening and go to step 6. Retain the radial topology of the loop and repeat steps 6, 7 and 8 for all the loops in the network. Obtain the final reconfiguration report. 4

5 Flowchart 5

6 Results and conclusions: The proposed algorithm has been implemented to the 11kV distribution system which is radiating from Main Receiving Station Shivamogga. It is shown in fig1. It has two closed loops and the 119 & 120 are the tie switches. Fig 1 The results obtained using load flow analysis is shown in table1. Table 1 LOOP 1 LOOP- 2 Critical node Voltage at critical node Critical Branches 58,60 74,79 MW loss in Critical Branches Minimum loss branch

7 From the above table 58 and 74 are the minimum loss branches in the critical region and they are given the highest value of weighing factor. Switching indices for 11kV MRS system are shown in table 2 and 3 Table 2 Branch Voltage index Ohmic index Decision index

8 8 Table 3 Branches Voltage index Ohmic index Decision index

9 Analyzing the switching indices, it can be seen that branches 60 and 74 are the branches having highest decision index. By opening these branches, losses are reduced from MW to MW and the loss reduction is %. Discussion The initial losses without reconfiguration were MW. After reconfiguration the losses were reduced to MW and the loss reduction is %.The results are compared with results of many IEEE papers, and it has been found that the developed algorithm gives satisfactory results. The results are tabulated in table4 Table 4 Case Open switch Loss(MW) Loss reduction Initial network 120, Reconfiguration network 60, Conclusions: There are several operational schemes in power distribution systems and one of these is network reconfiguration. Feeder reconfiguration for loss reduction is a very important function of automated distribution system to reduce distribution feeder losses and improve system security. A new algorithm has been proposed in this work for network reconfiguration. In some existing algorithms, the solution is largely dependent upon selection of tie branches and if the tie branches are not at appropriate locations, the results could be far away from optimal solution. The new algorithm proposed in this work is independent of specifying the tie branches in the data. The proposed algorithm has been applied to standard a 32 bus system which has been considered as a benchmark problem in many IEEE papers. It is interesting to note that there is a reduction of 31.11% of technical losses in the reconfigured network. 9

10 The proposed algorithm has been implemented on a 11 KV distribution system which is radiating from a Main Receiving Station Shivamogga and it was found that the technical losses were reduced by 33.12% in the reconfigured network. Scope for future work: The implementation of this project assures loss minimization and thus maintaining balance in changing load. Accounting to its flexibility in implementation various improvisations can be adapted in its applications. MATLAB programming gives flexibility with changing load data. Considering the huge number of advantages that will be caused due to improved load factor as well as utility is benefited by saved energy ensures ample amount of scope and technological advancement for this project. The cost for generating units is considerably reduced. 10

Minimization of Power Loss and Improvement of Voltage Profile in a Distribution System Using Harmony Search Algorithm

Minimization of Power Loss and Improvement of Voltage Profile in a Distribution System Using Harmony Search Algorithm Minimization of Power Loss and Improvement of Voltage Profile in a Distribution System Using Harmony Search Algorithm M. Madhavi 1, Sh. A. S. R Sekhar 2 1 PG Scholar, Department of Electrical and Electronics

More information

IMPLEMENTATION OF ADVANCED DISTRIBUTION AUTOMATION IN U.S.A. UTILITIES

IMPLEMENTATION OF ADVANCED DISTRIBUTION AUTOMATION IN U.S.A. UTILITIES IMPLEMENTATION OF ADVANCED DISTRIBUTION AUTOMATION IN U.S.A. UTILITIES (Summary) N S Markushevich and A P Berman, C J Jensen, J C Clemmer Utility Consulting International, JEA, OG&E Electric Services,

More information

Smart Grid Reconfiguration Using Genetic Algorithm and NSGA-II

Smart Grid Reconfiguration Using Genetic Algorithm and NSGA-II Smart Grid Reconfiguration Using Genetic Algorithm and NSGA-II 1 * Sangeeta Jagdish Gurjar, 2 Urvish Mewada, 3 * Parita Vinodbhai Desai 1 Department of Electrical Engineering, AIT, Gujarat Technical University,

More information

FOUR TOTAL TRANSFER CAPABILITY. 4.1 Total transfer capability CHAPTER

FOUR TOTAL TRANSFER CAPABILITY. 4.1 Total transfer capability CHAPTER CHAPTER FOUR TOTAL TRANSFER CAPABILITY R structuring of power system aims at involving the private power producers in the system to supply power. The restructured electric power industry is characterized

More information

LOAD BALANCING IN PRIMARY DISTRIBUTION FEEDERS BY COMBINATION OF RENEWABLE ENERGY SOURCE AND VOLTAGE SOURCE INVERTER

LOAD BALANCING IN PRIMARY DISTRIBUTION FEEDERS BY COMBINATION OF RENEWABLE ENERGY SOURCE AND VOLTAGE SOURCE INVERTER Paper ID: EE14 LOAD BALANCING IN PRIMARY DISTRIBUTION FEEDERS BY COMBINATION OF RENEWABLE ENERGY SOURCE AND VOLTAGE SOURCE INVERTER Metkari Vishal T., Department of Electrical, Sanjeevan Engineering &

More information

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July ISSN

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July ISSN International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 377 Self-Healing Framework for Distribution Systems Fazil Haneef, S.Angalaeswari Abstract - The self healing framework

More information

Optimal Sizing and Placement of DG in a Radial Distribution Network using Sensitivity based Methods

Optimal Sizing and Placement of DG in a Radial Distribution Network using Sensitivity based Methods Optimal Sizing and Placement of DG in a Radial Distribution Network using Sensitivity based Methods Nitin Singh 1, Smarajit Ghosh 2, Krishna Murari 3 EIED, Thapar university, Patiala-147004, India Email-

More information

LV Self Balancing Distribution Network Reconfiguration for Minimum Losses

LV Self Balancing Distribution Network Reconfiguration for Minimum Losses Paper accepted for presentation at 2009 EEE Bucharest Power Tech Conference, June 28th - July 2nd, Bucharest, Romania LV Self Balancing Distribution Network Reconfiguration for Minimum Losses D. V. Nicolae,

More information

Chapter # : 17 Symmetrical Fault Calculations

Chapter # : 17 Symmetrical Fault Calculations Chapter # : 17 Symmetrical Fault Calculations Introduction Most of the faults on the power system lead to a short-circuit condition. The short circuit current flows through the equipment, causing considerable

More information

THE IMPACT OF NETWORK SPLITTING ON FAULT LEVELS AND OTHER PERFORMANCE MEASURES

THE IMPACT OF NETWORK SPLITTING ON FAULT LEVELS AND OTHER PERFORMANCE MEASURES THE IMPACT OF NETWORK SPLITTING ON FAULT LEVELS AND OTHER PERFORMANCE MEASURES C.E.T. Foote*, G.W. Ault*, J.R. McDonald*, A.J. Beddoes *University of Strathclyde, UK EA Technology Limited, UK c.foote@eee.strath.ac.uk

More information

Maximum Allowable PV Penetration by Feeder Reconfiguration Considering Harmonic Distortion Limits

Maximum Allowable PV Penetration by Feeder Reconfiguration Considering Harmonic Distortion Limits Maximum Allowable PV Penetration by Feeder Reconfiguration Considering Harmonic Distortion Limits Vemula Mahesh Veera Venkata Prasad #1, R. Madhusudhana Rao *, Mrutyunjay Mohanty #3 #1 M.Tech student,

More information

Identification of weak buses using Voltage Stability Indicator and its voltage profile improvement by using DSTATCOM in radial distribution systems

Identification of weak buses using Voltage Stability Indicator and its voltage profile improvement by using DSTATCOM in radial distribution systems IOSR Journal of Electrical And Electronics Engineering (IOSRJEEE) ISSN : 2278-1676 Volume 2, Issue 4 (Sep.-Oct. 2012), PP 17-23 Identification of weak buses using Voltage Stability Indicator and its voltage

More information

DISTRIBUTION NETWORK RECONFIGURATION FOR LOSS MINIMISATION USING DIFFERENTIAL EVOLUTION ALGORITHM

DISTRIBUTION NETWORK RECONFIGURATION FOR LOSS MINIMISATION USING DIFFERENTIAL EVOLUTION ALGORITHM DISTRIBUTION NETWORK RECONFIGURATION FOR LOSS MINIMISATION USING DIFFERENTIAL EVOLUTION ALGORITHM K. Sureshkumar 1 and P. Vijayakumar 2 1 Department of Electrical and Electronics Engineering, Velammal

More information

Optimal PMU Placement in Power System Considering the Measurement Redundancy

Optimal PMU Placement in Power System Considering the Measurement Redundancy Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 4, Number 6 (2014), pp. 593-598 Research India Publications http://www.ripublication.com/aeee.htm Optimal PMU Placement in Power System

More information

Aggregated Rooftop PV Sizing in Distribution Feeder Considering Harmonic Distortion Limit

Aggregated Rooftop PV Sizing in Distribution Feeder Considering Harmonic Distortion Limit Aggregated Rooftop PV Sizing in Distribution Feeder Considering Harmonic Distortion Limit Mrutyunjay Mohanty Power Research & Development Consultant Pvt. Ltd., Bangalore, India Student member, IEEE mrutyunjay187@gmail.com

More information

Sensitivity Analysis for 14 Bus Systems in a Distribution Network With Distributed Generators

Sensitivity Analysis for 14 Bus Systems in a Distribution Network With Distributed Generators IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 10, Issue 3 Ver. I (May Jun. 2015), PP 21-27 www.iosrjournals.org Sensitivity Analysis for

More information

ECE-22 Senior Design Final Report

ECE-22 Senior Design Final Report ECE-22 Senior Design Final Report Integration and Analysis of Distributed Generation Reso urces in Micro-Grid Environments Team Members Michael Black Yi Li Michael Caro Evan Greer Advisors Dr. Karen Miu

More information

Voltage Controller for Radial Distribution Networks with Distributed Generation

Voltage Controller for Radial Distribution Networks with Distributed Generation International Journal of Scientific and Research Publications, Volume 4, Issue 3, March 2014 1 Voltage Controller for Radial Distribution Networks with Distributed Generation Christopher Kigen *, Dr. Nicodemus

More information

An efficient power flow algorithm for distribution systems with polynomial load

An efficient power flow algorithm for distribution systems with polynomial load An efficient power flow algorithm for distribution systems with polynomial load Jianwei Liu, M. M. A. Salama and R. R. Mansour Department of Electrical and Computer Engineering, University of Waterloo,

More information

DISTRIBUTION SYSTEM PLANNING USING NETWORK RECONFIGURATION FOR LOSS REDUCTION

DISTRIBUTION SYSTEM PLANNING USING NETWORK RECONFIGURATION FOR LOSS REDUCTION DISTRIBUTION SYSTEM PLANNING USING NETWORK RECONFIGURATION FOR LOSS REDUCTION Raval Vivek 1, Sanjay R. Vyas 2 1PG Scholar, EE Dept., LDRP-ITR, Gandhinagar, Gujarat, India. 2Head of Department, EE Dept.,

More information

OPTIMAL SITING AND SIZING OF DISTRIBUTED GENERATION IN RADIAL DISTRIBUTION NETWORKS

OPTIMAL SITING AND SIZING OF DISTRIBUTED GENERATION IN RADIAL DISTRIBUTION NETWORKS OPTIMAL SITING AND SIZING OF DISTRIBUTED GENERATION IN RADIAL DISTRIBUTION NETWORKS Ms. Shilpa Kotwal, Ms. Amandeep Kaur Research Scholar, E-Max Institute of Engineering and Technology, Ambala, Haryana,

More information

ANALYSIS OF REAL POWER ALLOCATION FOR DEREGULATED POWER SYSTEM MOHD SAUQI BIN SAMSUDIN

ANALYSIS OF REAL POWER ALLOCATION FOR DEREGULATED POWER SYSTEM MOHD SAUQI BIN SAMSUDIN ANALYSIS OF REAL POWER ALLOCATION FOR DEREGULATED POWER SYSTEM MOHD SAUQI BIN SAMSUDIN This thesis is submitted as partial fulfillment of the requirements for the award of the Bachelor of Electrical Engineering

More information

1 Introduction. 1.1 General installation information

1 Introduction. 1.1 General installation information 1 Introduction Nearly every electrical component emits electromagnetic radiation during its operation. This has effects on the quality of the useful signals especially at the communication level, in which

More information

Impact of Thyristor Controlled Series Capacitor on Voltage Profile of Transmission Lines using PSAT

Impact of Thyristor Controlled Series Capacitor on Voltage Profile of Transmission Lines using PSAT Impact of Thyristor Controlled Series Capacitor on Voltage Profile of Transmission Lines using PSAT Babar Noor 1, Muhammad Aamir Aman 1, Murad Ali 1, Sanaullah Ahmad 1, Fazal Wahab Karam. 2 Electrical

More information

LOAD BALANCING OF FEEDER USING FUZZY AND OPTIMIZATION TECHNIQUE

LOAD BALANCING OF FEEDER USING FUZZY AND OPTIMIZATION TECHNIQUE International Journal of Electrical Engineering & Technology (IJEET) Volume 9, Issue 4, July- August 2018, pp. 74 82, Article ID: IJEET_09_04_008 Available online at http://www.iaeme.com/ijeet/issues.asp?jtype=ijeet&vtype=9&itype=4

More information

Notes 1: Introduction to Distribution Systems

Notes 1: Introduction to Distribution Systems Notes 1: Introduction to Distribution Systems 1.0 Introduction Power systems are comprised of 3 basic electrical subsystems. Generation subsystem Transmission subsystem Distribution subsystem The subtransmission

More information

CHAPTER 4 POWER QUALITY AND VAR COMPENSATION IN DISTRIBUTION SYSTEMS

CHAPTER 4 POWER QUALITY AND VAR COMPENSATION IN DISTRIBUTION SYSTEMS 84 CHAPTER 4 POWER QUALITY AND VAR COMPENSATION IN DISTRIBUTION SYSTEMS 4.1 INTRODUCTION Now a days, the growth of digital economy implies a widespread use of electronic equipment not only in the industrial

More information

Whale Optimization Algorithm Based Technique for Distributed Generation Installation in Distribution System

Whale Optimization Algorithm Based Technique for Distributed Generation Installation in Distribution System Bulletin of Electrical Engineering and Informatics Vol. 7, No. 3, September 2018, pp. 442~449 ISSN: 2302-9285, DOI: 10.11591/eei.v7i3.1276 442 Whale Optimization Algorithm Based Technique for Distributed

More information

DG Allocation and Sizing Based on Reliability Improvement by Means of Monte Carlo Simulation

DG Allocation and Sizing Based on Reliability Improvement by Means of Monte Carlo Simulation DG Allocation and Sizing Based on Reliability Improvement by Means of Monte Carlo Simulation R. Yousefian, H. Monsef School of ECE, University of Tehran Technical Report {r.yousefian, hmonsef}@ut.ac.ir

More information

Volume 2, Number 4, 2016 Pages Jordan Journal of Electrical Engineering ISSN (Print): , ISSN (Online):

Volume 2, Number 4, 2016 Pages Jordan Journal of Electrical Engineering ISSN (Print): , ISSN (Online): JJEE Volume, Number 4, 6 Pages - Jordan Journal of Electrical Engineering ISSN (Print): 49-96, ISSN (Online): 49-969 Enhancement of Voltage Stability and Line Loadability by Reconfiguration of Radial Electrical

More information

EMERGING distributed generation technologies make it

EMERGING distributed generation technologies make it IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 20, NO. 4, NOVEMBER 2005 1757 Fault Analysis on Distribution Feeders With Distributed Generators Mesut E. Baran, Member, IEEE, and Ismail El-Markaby, Student Member,

More information

PV CURVE APPROACH FOR VOLTAGE STABILITY ANALYSIS

PV CURVE APPROACH FOR VOLTAGE STABILITY ANALYSIS 373 PV CURVE APPROACH FOR VOLTAGE STABILITY ANALYSIS 1 Neha Parsai, 2 Prof. Alka Thakur 1 M. Tech. Student, 2 Assist. Professor, Department of Electrical Engineering SSSIST Shore, M.P. India ABSTRACT Voltage

More information

Annamacharya Institute of Technology and Sciences, Tirupathi, A.P, India

Annamacharya Institute of Technology and Sciences, Tirupathi, A.P, India Active Power Loss Minimization Using Simultaneous Network Reconfiguration and DG Placement with AGPSO Algorithm K.Sandhya,Venkata Supura Vemulapati 2,2 Department of Electrical and Electronics Engineering

More information

An Adaptive Protection Scheme for Optimal Overcurrent Relay Coordination in Interconnected Power Systems

An Adaptive Protection Scheme for Optimal Overcurrent Relay Coordination in Interconnected Power Systems From the SelectedWorks of Almoataz Youssef Abdelaziz March, 2000 An Adaptive Protection Scheme for Optimal Overcurrent Relay Coordination in Interconnected Power Systems Almoataz Youssef Abdelaziz Available

More information

Voltage sag assessment and Area of vulnerability due to balanced fault for 11 bus system

Voltage sag assessment and Area of vulnerability due to balanced fault for 11 bus system I J E E E C International Journal of Electrical, Electronics ISSN. (Online) : 2277-2626 and Computer Engineering 2(1): 41-47(2013) Voltage sag assessment and Area of vulnerability due to balanced fault

More information

CHAPTER 4 MONITORING OF POWER SYSTEM VOLTAGE STABILITY THROUGH ARTIFICIAL NEURAL NETWORK TECHNIQUE

CHAPTER 4 MONITORING OF POWER SYSTEM VOLTAGE STABILITY THROUGH ARTIFICIAL NEURAL NETWORK TECHNIQUE 53 CHAPTER 4 MONITORING OF POWER SYSTEM VOLTAGE STABILITY THROUGH ARTIFICIAL NEURAL NETWORK TECHNIQUE 4.1 INTRODUCTION Due to economic reasons arising out of deregulation and open market of electricity,

More information

VOLTAGE CONTROL IN MEDIUM VOLTAGE LINES WITH HIGH PENETRATION OF DISTRIBUTED GENERATION

VOLTAGE CONTROL IN MEDIUM VOLTAGE LINES WITH HIGH PENETRATION OF DISTRIBUTED GENERATION 21, rue d Artois, F-75008 PARIS CIGRE US National Committee http: //www.cigre.org 2013 Grid of the Future Symposium VOLTAGE CONTROL IN MEDIUM VOLTAGE LINES WITH HIGH PENETRATION OF DISTRIBUTED GENERATION

More information

Optimal sizing of battery energy storage system in microgrid system considering load shedding scheme

Optimal sizing of battery energy storage system in microgrid system considering load shedding scheme International Journal of Smart Grid and Clean Energy Optimal sizing of battery energy storage system in microgrid system considering load shedding scheme Thongchart Kerdphol*, Yaser Qudaih, Yasunori Mitani,

More information

Evolutionary Programming Optimization Technique for Solving Reactive Power Planning in Power System

Evolutionary Programming Optimization Technique for Solving Reactive Power Planning in Power System Evolutionary Programg Optimization Technique for Solving Reactive Power Planning in Power System ISMAIL MUSIRIN, TITIK KHAWA ABDUL RAHMAN Faculty of Electrical Engineering MARA University of Technology

More information

Reliability Assessment of Distribution Systems Incorporating Feeder Restoration Actions

Reliability Assessment of Distribution Systems Incorporating Feeder Restoration Actions Reliability Assessment of Distribution Systems Incorporating Feeder Restoration Actions Fabio D Agostino, Federico Silvestro Department of Electrical, Electronic, Telecommunication Engineering and Naval

More information

MITIGATION OF VOLTAGE SAG AND SWELL FOR POWER QUALITY IMPROVEMENT USING DISTRIBUTED POWER FLOW CONTROLLER

MITIGATION OF VOLTAGE SAG AND SWELL FOR POWER QUALITY IMPROVEMENT USING DISTRIBUTED POWER FLOW CONTROLLER MITIGATION OF VOLTAGE SAG AND SWELL FOR POWER QUALITY IMPROVEMENT USING DISTRIBUTED POWER FLOW CONTROLLER Sai Lakshmi K Department of Electrical and Electronics engineering, G.Narayanamma Institute of

More information

MITIGATION OF VOLTAGE SAGS/SWELLS USING DYNAMIC VOLTAGE RESTORER (DVR)

MITIGATION OF VOLTAGE SAGS/SWELLS USING DYNAMIC VOLTAGE RESTORER (DVR) VOL. 4, NO. 4, JUNE 9 ISSN 89-668 6-9 Asian Research Publishing Network (ARPN). All rights reserved. MITIGATION OF VOLTAGE SAGS/SWELLS USING DYNAMIC VOLTAGE RESTORER (DVR) Rosli Omar and Nasrudin Abd Rahim

More information

How to maximize reliability using an alternative distribution system for critical loads

How to maximize reliability using an alternative distribution system for critical loads White Paper WP024001EN How to maximize reliability using an alternative distribution system for critical loads Executive summary The electric power industry has several different distribution topologies

More information

EE 741. Primary & Secondary Distribution Systems

EE 741. Primary & Secondary Distribution Systems EE 741 Primary & Secondary Distribution Systems Radial-Type Primary Feeder Most common, simplest and lowest cost Example of Overhead Primary Feeder Layout Example of Underground Primary Feeder Layout Radial-Type

More information

MITIGATION OF VOLTAGE SAG IN A DFIG BASED WIND TURBINE USING DVR

MITIGATION OF VOLTAGE SAG IN A DFIG BASED WIND TURBINE USING DVR MITIGATION OF VOLTAGE SAG IN A DFIG BASED WIND TURBINE USING DVR M Venmathi*, Soumyadeep Chakraborti 1, Soham Ghosh 2, Abhirup Ray 3, Vidhya Nikam 4 * (Senior Lecturer, Dept. of Electrical and Electronics,

More information

Adaptive Relaying of Radial Distribution system with Distributed Generation

Adaptive Relaying of Radial Distribution system with Distributed Generation Adaptive Relaying of Radial Distribution system with Distributed Generation K.Vijetha M,Tech (Power Systems Engineering) National Institute of Technology-Warangal Warangal, INDIA. Email: vijetha258@gmail.com

More information

Improvement of Electricity Distribution Services Using a DVR with a Constant DC Voltage Source Instaled in MV Connection Substations

Improvement of Electricity Distribution Services Using a DVR with a Constant DC Voltage Source Instaled in MV Connection Substations Improvement of Electricity Distribution Services Using a DVR with a Constant DC Voltage Source Instaled in MV Connection Substations Gheorghe Ioan Nicolaescu, Horia Andrei, Stefan Radulescu Electrical

More information

Voltage Control of Distribution Networks with Distributed Generation using Reactive Power Compensation

Voltage Control of Distribution Networks with Distributed Generation using Reactive Power Compensation Voltage Control of Distribution Networks with Distributed Generation using Reactive Power Compensation Author Mahmud, M., Hossain, M., Pota, H., M Nasiruzzaman, A. Published 2011 Conference Title Proceedings

More information

Generated by CamScanner from intsig.com

Generated by CamScanner from intsig.com Generated by CamScanner from intsig.com Generated by CamScanner from intsig.com Generated by CamScanner from intsig.com iii P a g e Dedicated to My Parents ABSTRACT Large scale distribution system planning

More information

Fault Location Using Sparse Wide Area Measurements

Fault Location Using Sparse Wide Area Measurements 319 Study Committee B5 Colloquium October 19-24, 2009 Jeju Island, Korea Fault Location Using Sparse Wide Area Measurements KEZUNOVIC, M., DUTTA, P. (Texas A & M University, USA) Summary Transmission line

More information

Incorporation of Self-Commutating CSC Transmission in Power System Load-Flow

Incorporation of Self-Commutating CSC Transmission in Power System Load-Flow Queensland University of Technology From the SelectedWorks of Lasantha Bernard Perera Spring September 25, 2005 Incorporation of Self-Commutating CSC Transmission in Power System Load-Flow Lasantha B Perera,

More information

Chapter 8. Constant Current Sources

Chapter 8. Constant Current Sources Chapter 8 Methods of Analysis Constant Current Sources Maintains same current in branch of circuit Doesn t matter how components are connected external to the source Direction of current source indicates

More information

SOLID-STATE TRANSFORMERS

SOLID-STATE TRANSFORMERS SOLID-STATE TRANSFORMERS Mrs. K. S. Gadgil 1 1 Asst Professor, Department of Electrical Engineering, AISSMS IOIT, Maharashtra, India ABSTRACT Solid State Transformer (SST) has been regarded as one of the

More information

Considering Characteristics of Arc on Travelling Wave Fault Location Algorithm for the Transmission Lines without Using Line Parameters

Considering Characteristics of Arc on Travelling Wave Fault Location Algorithm for the Transmission Lines without Using Line Parameters Considering Characteristics of Arc on Travelling Wave Fault Location Algorithm for the Transmission Lines without Using Line Parameters M. Bashir mohsenbashir@ieee.org I. Niazy ismail_niazy@ieee.org J.

More information

6545(Print), ISSN (Online) Volume 4, Issue 3, May - June (2013), IAEME & TECHNOLOGY (IJEET)

6545(Print), ISSN (Online) Volume 4, Issue 3, May - June (2013), IAEME & TECHNOLOGY (IJEET) INTERNATIONAL International Journal of JOURNAL Electrical Engineering OF ELECTRICAL and Technology (IJEET), ENGINEERING ISSN 0976 & TECHNOLOGY (IJEET) ISSN 0976 6545(Print) ISSN 0976 6553(Online) Volume

More information

Multi-Phase Switching in Distribution Grids with Unbalanced Loads and Distributed Energy Resources. A Thesis. Submitted to the Faculty

Multi-Phase Switching in Distribution Grids with Unbalanced Loads and Distributed Energy Resources. A Thesis. Submitted to the Faculty Multi-Phase Switching in Distribution Grids with Unbalanced Loads and Distributed Energy Resources A Thesis Submitted to the Faculty of Drexel University by Nicole Urim Segal in partial fulfillment of

More information

Impact of Distributed Generation on Voltage Regulation by ULTC Transformer using Various Existing Methods

Impact of Distributed Generation on Voltage Regulation by ULTC Transformer using Various Existing Methods Proceedings of the th WSEAS International Conference on Power Systems, Beijing, China, September -, 200 Impact of Distributed Generation on Voltage Regulation by ULTC Transformer using Various Existing

More information

EH2741 Communication and Control in Electric Power Systems Lecture 2

EH2741 Communication and Control in Electric Power Systems Lecture 2 KTH ROYAL INSTITUTE OF TECHNOLOGY EH2741 Communication and Control in Electric Power Systems Lecture 2 Lars Nordström larsno@kth.se Course map Outline Transmission Grids vs Distribution grids Primary Equipment

More information

OPTIMAL PLACEMENT OF UNIFIED POWER QUALITY CONDITIONER IN DISTRIBUTION SYSTEMS USING PARTICLE SWARM OPTIMIZATION METHOD

OPTIMAL PLACEMENT OF UNIFIED POWER QUALITY CONDITIONER IN DISTRIBUTION SYSTEMS USING PARTICLE SWARM OPTIMIZATION METHOD OPTIMAL PLACEMENT OF UNIFIED POWER QUALITY CONDITIONER IN DISTRIBUTION SYSTEMS USING PARTICLE SWARM OPTIMIZATION METHOD M. Laxmidevi Ramanaiah and M. Damodar Reddy Department of E.E.E., S.V. University,

More information

Short Circuit Calculation in Networks with a High Share of Inverter Based Distributed Generation

Short Circuit Calculation in Networks with a High Share of Inverter Based Distributed Generation Short Circuit Calculation in Networks with a High Share of Inverter Based Distributed Generation Harag Margossian, Juergen Sachau Interdisciplinary Center for Security, Reliability and Trust University

More information

Grounding System Theory and Practice

Grounding System Theory and Practice Grounding System Theory and Practice Course No. E-3046 Credit: 3 PDH Grounding System Theory and Practice Velimir Lackovic, Electrical Engineer System grounding has been used since electrical power systems

More information

Stochastic Voltage Sag Prediction in Distribution System by Monte Carlo Simulation and PSCAD/EMTDC

Stochastic Voltage Sag Prediction in Distribution System by Monte Carlo Simulation and PSCAD/EMTDC T Meananeatra and S Sirisumrannukul / GMSARN International Journal 3 (2009) 3-38 Stochastic Voltage Sag Prediction in Distribution System by Monte Carlo Simulation and PSCAD/EMTDC T Meananeatra and S Sirisumrannukul

More information

THERE has been a growing interest in the optimal operation

THERE has been a growing interest in the optimal operation 648 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 22, NO. 2, MAY 2007 A New Optimal Routing Algorithm for Loss Minimization and Voltage Stability Improvement in Radial Power Systems Joong-Rin Shin, Member,

More information

Power Flow Studies for Radial and Mesh Distribution System

Power Flow Studies for Radial and Mesh Distribution System Power Flow Studies for Radial and Mesh Distribution System Mr.Tanveer HusainShaikhFeroz Khatik #1, Mr.M. M. Khan #2, Mr. M.M. Ansari #3 #1 M.E (EPS) (Student), #2 M.E (EPS), #3 Assistant Professor, #123

More information

A NEW DIRECTIONAL OVER CURRENT RELAYING SCHEME FOR DISTRIBUTION FEEDERS IN THE PRESENCE OF DG

A NEW DIRECTIONAL OVER CURRENT RELAYING SCHEME FOR DISTRIBUTION FEEDERS IN THE PRESENCE OF DG A NEW DIRECTIONAL OVER CURRENT RELAYING SCHEME FOR DISTRIBUTION FEEDERS IN THE PRESENCE OF DG CHAPTER 3 3.1 INTRODUCTION In plain radial feeders, the non-directional relays are used as they operate when

More information

Reduction. CSCE 6730 Advanced VLSI Systems. Instructor: Saraju P. Mohanty, Ph. D. NOTE: The figures, text etc included in slides are

Reduction. CSCE 6730 Advanced VLSI Systems. Instructor: Saraju P. Mohanty, Ph. D. NOTE: The figures, text etc included in slides are Lecture e 8: Peak Power Reduction CSCE 6730 Advanced VLSI Systems Instructor: Saraju P. Mohanty, Ph. D. NOTE: The figures, text etc included in slides are borrowed from various books, websites, authors

More information

A NEW METHOD FOR LOAD-FLOW SOLUTION OF RADIAL DISTRIBUTION NETWORKS

A NEW METHOD FOR LOAD-FLOW SOLUTION OF RADIAL DISTRIBUTION NETWORKS A NEW METHOD FOR LOAD-FLOW SOLUTION OF RADIAL DISTRIBUTION NETWORKS Thesis submitted in partial fulfillment of the requirements for the award of degree of Master of Engineering in Power Systems & Electric

More information

Distribution system security region: definition, model and security assessment

Distribution system security region: definition, model and security assessment Published in IET Generation, Transmission & Distribution Received on 3rd November 2011 Revised on 5th June 2012 ISSN 1751-8687 Distribution system security region: definition, model and security assessment

More information

Research Paper MULTILEVEL INVERTER BASED UPQC FOR POWER QUALITY IMPROVEMENT

Research Paper MULTILEVEL INVERTER BASED UPQC FOR POWER QUALITY IMPROVEMENT Research Paper MULTILEVEL INVERTER BASED UPQC FOR POWER QUALITY IMPROVEMENT a R.Saravanan, b P. S. Manoharan Address for Correspondence a Department of Electrical and Electronics Engineering, Christian

More information

A new method of DC power supply modelling for rapid transit railway system simulation Z.Y. Shao\ W.S. Chan", J. Allan* & B. Mellitt" Iz'rm'W, ^

A new method of DC power supply modelling for rapid transit railway system simulation Z.Y. Shao\ W.S. Chan, J. Allan* & B. Mellitt Iz'rm'W, ^ A new method of DC power supply modelling for rapid transit railway system simulation Z.Y. Shao\ W.S. Chan", J. Allan* & B. Mellitt" Iz'rm'W, ^ The University of Birmingham, UK Introduction The Multi-Train

More information

Optimal Under-voltage Load Shedding using Cuckoo Search with Levy Flight Algorithm for Voltage Stability Improvement

Optimal Under-voltage Load Shedding using Cuckoo Search with Levy Flight Algorithm for Voltage Stability Improvement International Journal of Engineering Science Invention ISSN (Online): 239 6734, ISSN (Print): 239 6726 Volume 4 Issue 7 July 205 PP.34-4 Optimal Under-voltage Load Shedding using Cuckoo Search with Levy

More information

Optimal Positioning and Sizing of DG Units Using Differential Evolution Algorithm

Optimal Positioning and Sizing of DG Units Using Differential Evolution Algorithm Optimal Positioning and Sizing of DG Units Using Differential Evolution Algorithm Ravi 1, Himanshu Sangwan 2 Assistant Professor, Department of Electrical Engineering, D C R University of Science & Technology,

More information

COMPENSATION OF VOLTAGE SAG USING LEVEL SHIFTED CARRIER PULSE WIDTH MODULATED ASYMMETRIC CASCADED MLI BASED DVR SYSTEM G.Boobalan 1 and N.

COMPENSATION OF VOLTAGE SAG USING LEVEL SHIFTED CARRIER PULSE WIDTH MODULATED ASYMMETRIC CASCADED MLI BASED DVR SYSTEM G.Boobalan 1 and N. COMPENSATION OF VOLTAGE SAG USING LEVEL SHIFTED CARRIER PULSE WIDTH MODULATED ASYMMETRIC CASCADED MLI BASED DVR SYSTEM G.Boobalan 1 and N.Booma 2 Electrical and Electronics engineering, M.E., Power and

More information

Validation of a Methodology for Service Restoration on a Real Brazilian Distribution System

Validation of a Methodology for Service Restoration on a Real Brazilian Distribution System Validation of a Methodology for Service Restoration on a Real Brazilian Distribution System Marcos H. M. Camillo, Marcel E. V. Romero, Rodrigo Z. Fanucchi COPEL Distribuiçao S/A Londrina, Brazil Telma

More information

760 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 25, NO. 2, MAY 2010

760 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 25, NO. 2, MAY 2010 760 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 25, NO. 2, MAY 2010 A Robust Multiphase Power Flow for General Distribution Networks Murat Dilek, Francisco de León, Senior Member, IEEE, Robert Broadwater,

More information

On Using Fuzzy Logic Based Automatic Voltage Relay In Distribution Network

On Using Fuzzy Logic Based Automatic Voltage Relay In Distribution Network On Using Fuzzy Logic Based Automatic Voltage Relay In Distribution Network 1 Uchegbu C.E 2, Ekulibe James 2. Ilo F.U 1 Department of Electrical and Electronic Engineering Enugu state University of science

More information

VOLTAGE CONTROL STRATEGY IN WEAK DISTRIBUTION NETWORKS WITH HYBRIDS GENERATION SYSTEMS

VOLTAGE CONTROL STRATEGY IN WEAK DISTRIBUTION NETWORKS WITH HYBRIDS GENERATION SYSTEMS VOLTAGE CONTROL STRATEGY IN WEAK DISTRIBUTION NETWORKS WITH HYBRIDS GENERATION SYSTEMS Marcelo CASSIN Empresa Provincial de la Energía de Santa Fe Argentina mcassin@epe.santafe.gov.ar ABSTRACT In radial

More information

CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE

CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE 98 CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE 6.1 INTRODUCTION Process industries use wide range of variable speed motor drives, air conditioning plants, uninterrupted power supply systems

More information

Module 7-4 N-Area Reliability Program (NARP)

Module 7-4 N-Area Reliability Program (NARP) Module 7-4 N-Area Reliability Program (NARP) Chanan Singh Associated Power Analysts College Station, Texas N-Area Reliability Program A Monte Carlo Simulation Program, originally developed for studying

More information

Load Flow Analysis for Radial Distribution Networks Using Backward/Forward Sweep Method

Load Flow Analysis for Radial Distribution Networks Using Backward/Forward Sweep Method Open Access Journal Journal of Sustainable Research in Engineering Vol. 3 (3) 2016, 82-87 Journal homepage: http://sri.jkuat.ac.ke/ojs/index.php/sri Load Flow Analysis for Radial Distribution Networks

More information

Impact of Distributed Generation on Network Voltage Levels

Impact of Distributed Generation on Network Voltage Levels EEE8052 Distributed Generation Taster Material Impact of Distributed Generation on Network Voltage Levels Steady-state rise in network voltage levels Existing practice is to control distribution voltage

More information

HV Substation Earthing Design for Mines

HV Substation Earthing Design for Mines International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 4, Issue 6 (October 2012), PP. 100-107 HV Substation Earthing Design for Mines M.

More information

ANFIS Approach for Locating Faults in Underground Cables

ANFIS Approach for Locating Faults in Underground Cables Vol:8, No:6, 24 ANFIS Approach for Locating Faults in Underground Cables Magdy B. Eteiba, Wael Ismael Wahba, Shimaa Barakat International Science Index, Electrical and Computer Engineering Vol:8, No:6,

More information

Smart Service Restoration of Electric Power Systems

Smart Service Restoration of Electric Power Systems Smart Service Restoration of lectric Systems Leonardo H. T. Ferreira Neto lectrical ngineering Dept. scola de ngenharia de São Carlos, Brazil Benvindo R. Pereira Júnior lectrical ngineering Dept. scola

More information

Auxiliary DC Voltage

Auxiliary DC Voltage THE 9 th INTERNATIONAL SYMPOSIUM ON ADVANCED TOPICS IN ELECTRICAL ENGINEERING May 7-9, 2015 Bucharest, Romania DVR with Auxiliary DC Voltage Source Provided by A High Power Diode Based Rectifier Used in

More information

Keyword: conductors, feeders, genetic algorithm, conventional method, real power loss, reactive power loss, distributed load flow, cost and savings.

Keyword: conductors, feeders, genetic algorithm, conventional method, real power loss, reactive power loss, distributed load flow, cost and savings. Optimal Conductor Selection Using Genetic Algorithm Deepak Sharma 1, Priya Jha 2,S.Vidyasagar 3 1 PG Student, SRM University, Chennai, India 2 PG Student, SRM University, Chennai, India 3 Assistant Professor,

More information

PROVISION OF DIFFERENTIATED VOLTAGE SAG PERFORMANCE USING FACTS DEVICES

PROVISION OF DIFFERENTIATED VOLTAGE SAG PERFORMANCE USING FACTS DEVICES rd International Conference on Electricity Distribution Lyon, - June Paper PROVISIO OF DIFFERETIATED VOLTAGE SAG PERFORMACE USIG FACTS DEVICES Huilian LIAO Sami ABDELRAHMA Jovica V. MILAOVIĆ University

More information

Deployment of Real-time State Estimator and Load Flow in BC Hydro DMS - Challenges and Opportunities

Deployment of Real-time State Estimator and Load Flow in BC Hydro DMS - Challenges and Opportunities IEEE PES General Meeting, Vancouver, Canada, July 2013 Deployment of Real-time State Estimator and Load Flow in BC Hydro DMS - Challenges and Opportunities Djordje Atanackovic, BC Hydro Valentina Dabic,

More information

AS the power distribution networks become more and more

AS the power distribution networks become more and more IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 21, NO. 1, FEBRUARY 2006 153 A Unified Three-Phase Transformer Model for Distribution Load Flow Calculations Peng Xiao, Student Member, IEEE, David C. Yu, Member,

More information

A NOVEL APPROACH ON INSTANTANEOUS POWER CONTROL OF D-STATCOM WITH CONSIDERATION OF POWER FACTOR CORRECTION

A NOVEL APPROACH ON INSTANTANEOUS POWER CONTROL OF D-STATCOM WITH CONSIDERATION OF POWER FACTOR CORRECTION IMPACT: International Journal of Research in Engineering & Technology (IMPACT: IJRET) ISSN(E): 2321-8843; ISSN(P): 2347-4599 Vol. 2, Issue 7, Jul 2014, 13-18 Impact Journals A NOVEL APPROACH ON INSTANTANEOUS

More information

INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE

INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE Ms. K. Kamaladevi 1, N. Mohan Murali Krishna 2 1 Asst. Professor, Department of EEE, 2 PG Scholar, Department of

More information

Enhancement of Power Quality in Distribution System Using D-Statcom for Different Faults

Enhancement of Power Quality in Distribution System Using D-Statcom for Different Faults Enhancement of Power Quality in Distribution System Using D-Statcom for Different s Dr. B. Sure Kumar 1, B. Shravanya 2 1 Assistant Professor, CBIT, HYD 2 M.E (P.S & P.E), CBIT, HYD Abstract: The main

More information

Hamdy Faramawy Senior Application Specialist ABB Sweden

Hamdy Faramawy Senior Application Specialist ABB Sweden Design, Engineering and Application of New Firm Capacity Control System (FCCS) Mohammed Y. Tageldin, MSc. MIET Senior Protection Systems Engineer ABB United Kingdom mohammed.tageldin@gb.abb.com Hamdy Faramawy

More information

Fuel cell power system connection. Dynamics and Control of Distributed Power Systems. DC storage. DC/DC boost converter (1)

Fuel cell power system connection. Dynamics and Control of Distributed Power Systems. DC storage. DC/DC boost converter (1) Dynamics and Control of Distributed Power Systems Fuel cell power system connection Ian A. Hiskens University of Wisconsin-Madison ACC Workshop June 12, 2006 This topology is fairly standard, though there

More information

University of Nevada, Reno. Smart Meter Data-Driven Fault Location Algorithm in Distribution Systems

University of Nevada, Reno. Smart Meter Data-Driven Fault Location Algorithm in Distribution Systems University of Nevada, Reno Smart Meter Data-Driven Fault Location Algorithm in Distribution Systems A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in

More information

Optimal PMU Placement in Power System Networks Using Integer Linear Programming

Optimal PMU Placement in Power System Networks Using Integer Linear Programming ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology Volume 3, Special Issue 3, March 2014 2014 International Conference

More information

EH27401 Communication and Control in Electric Power Systems Lecture 2. Lars Nordström

EH27401 Communication and Control in Electric Power Systems Lecture 2. Lars Nordström EH27401 Communication and Control in Electric Power Systems Lecture 2 Lars Nordström larsn@ics.kth.se 1 Course map 2 Outline 1. Power System Topologies Transmission Grids vs Distribution grids Radial grids

More information

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July ISSN

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July ISSN International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 866 Study of position of SFCL for maximum fault current limiter for power systems protection Sachin Trankatwar 1,

More information

Determination of Smart Inverter Power Factor Control Settings for Distributed Energy Resources

Determination of Smart Inverter Power Factor Control Settings for Distributed Energy Resources 21, rue d Artois, F-758 PARIS CIGRE US National Committee http : //www.cigre.org 216 Grid of the Future Symposium Determination of Smart Inverter Power Factor Control Settings for Distributed Energy Resources

More information

Busbars and lines are important elements

Busbars and lines are important elements CHAPTER CHAPTER 23 Protection of Busbars and Lines 23.1 Busbar Protection 23.2 Protection of Lines 23.3 Time-Graded Overcurrent Protection 23.4 Differential Pilot-Wire Protection 23.5 Distance Protection

More information