OPTICS I LENSES AND IMAGES

Size: px
Start display at page:

Download "OPTICS I LENSES AND IMAGES"

Transcription

1 APAS Laboratory Optics I OPTICS I LENSES AND IMAGES If at first you don t succeed try, try again. Then give up- there s no sense in being foolish about it. -W.C. Fields SYNOPSIS: In Optics I you will learn how a lens forms an image. This is the first step in understanding how a telescope works. EQUIPMENT: Optics bench rail with 3 holders, optics equipment stand (lenses L and L2, image screen I, object mount O, flashlight, iris aperture A); object box, and a chicken. NOTE: Optical components are delicate and are easily scratched or damaged. Please handle the components carefully, and avoid touching any optical surfaces. Your instructor will show you how to use the equipment properly. Part I. The Pinhole Camera R Pinhole Image on Screen First we will use the pinhole camera to show how an image is formed. Light is emitted or reflected from each point of the object through the pinhole and onto the screen; and an image is formed. It is important to note that light from the object is emitted or reflected in all directions, but only the rays of light which pass through the pinhole form an image (see diagram). You can think of the pinhole as selecting only the light which will form an image on the screen. From the diagram above you can also see why the image formed by the pinhole camera is upside-down. O Iris A Image Screen I Flashlight dobj = 20 cm dim 2 (0 cm) (30 cm) 3

2 APAS Laboratory 2 Optics I I. Arrange the optical bench as shown on the previous page: Position holder #2 exactly at the 30 cm mark on the rail (the holder has an arrow that points to the ruled markings. Gently tighten the clamp knob. Install the iris aperture A in the holder, orienting it so that the aperture faces squarely down the rail. Clamp the aperture in place. Close the aperture so that the hole in the center is very small. Slightly loosen the clamp of holder #3, and slide it until it is just behind the lens (at about the 35 cm mark). Install the image screen I (with white card facing the aperture) in the holder. Clamp the screen in place. Turn on the flashlight by rotating its handle. Notice that it has a black arrow, cm in length, on its face. This circle will serve as the physical object which we will use in our study of the lens. Insert the flashlight into mount O as shown in the diagram, so that its face is lined up with the mounting rod, and secure it with the clamp. Position holder # exactly at the 0 cm mark and clamp. Install mount O in the holder and clamp it so that the flashlight points directly at the lens. I.2 On the white screen, you'll see an inverted (i.e. upside-down) image of the arrow. Slowly slide the screen holder #3 away from the aperture. Does the image of the arrow become smaller (converging rays of light) or larger (diverging rays)? I.3 Slowly open the aperture, stopping occasionally to look at the image. What effect does the larger pinhole have on the image? In terms of the ray diagram above, describe what is happening. Now fully open the aperture- do you see an image? Why or why not? Part II. Image Formation by a Lens Now that we've seen how pinholes produce an image we shall see how lenses produce an image. In optical terminology, an object is any physical source of light: it may be self-luminous (a lamp or a star), or may simply be a source of reflected light (a tree or a planet). While a pinhole camera allows only some light to illuminate the image screen, a lens allows much more light; however, light from an object is refracted, or bent, when it passes through a lens. Under certain conditions the refracted light may come to a focus to form an image of the actual object. Lens Focal Plane Focal length Rays of light which enter the lens perpendicular to the lens (and parallel to each other- see above) are refracted such that they all intersect at one point, which is known as the focal point. The distance between the lens and the focal point is the focal length, which is a fundamental property of the lens. It is important to note that lenses are symmetrical- there is no front or back side. Thus lenses have two focal points- one in front and one behind, both of which are the same distance from the lens. Also note that rays of light which pass through the center of the lens are not bent. The concept of focal length is very important, so remember it!

3 APAS Laboratory 3 Optics I Now that you understand the concept of focal length, we will learn how a lens produces an image by ray tracing. There are three rules of ray tracing which will allow you to determine where an image is formed: Lens (2) () f Image f (3) () A ray which enters perpendicular to the lens will be bent to pass through the focal point f. (2) A ray which passes through the center of the lens is not bent. (3) A ray which passes through the front focal point f of the lens will leave perpendicular to the lens. This is just rule () in reverse- remember that lenses are symmetric. The intersection of two or more of these rays will define the location and size of the image formed. The separation between the lens and the object is called the object distance d obj. Since the lens is located at the 30 cm mark on the rail, while the object is at 0 cm, the difference between the two settings gives the object distance: 20 cm. Not surprisingly, the separation between the lens and the in-focus image is called the image distance, d im, You can determine this distance by taking the difference between the location of the image screen (from the rail markings) and the location of the lens (30 mm). Note that distances are always given in terms of how far things are from the lens. Magnification refers to how many times larger the image appears to be compared to the actual size of the object; that is, magnification is the ratio of the image size to object size: Magnification = Image Size Size. (Equation ) f f II. Ray trace the diagram above. Use a ruler. Measure the object distance d obj, the image distance d im and the focal length f. Also calculate the magnification. Does the size of the object affect where the image is formed? f f II.3 Ray trace the diagram above. The object distance has not been changed but the focal length of the lens has been lengthened. Measure d obj and d im and calculate the

4 APAS Laboratory 4 Optics I magnification. How did increasing the focal length change the magnification? Now that you've gotten a feel for how an image is formed try it with the optical bench. O Lens L Image Screen I Flashlight d obj = 20 cm 2 (0 cm) (30 cm) 3 d image II.4 II.5 II.6 Arrange the optical bench as shown above: Replace the iris aperture A with lens L in position holder #2, making sure it is at the 30 cm mark on the rail. Gently tighten the clamp knob. Slightly loosen the clamp of holder #3 (which should be holding the image screen I), and slide it until it is just behind the lens (at about the 35 cm mark). On the white screen, you'll see a bright circular blob that is the light from the object that passes through the lens. Slowly slide the screen holder #3 away from the lens. Does the spot of light become smaller (converging rays of light) or larger (diverging rays)? At some point, you'll notice that the light beam coalesces from a fuzzy blob into a sharp image of the object. At this point tighten the clamp of holder #3. Measure d obj and d im and calculate the magnification. Why is the image formed by the lens brighter than one produced by a pinhole? Unlike the pinhole camera a lens produces an image at a set distance from the lens. We can understand this by looking at ray tracing diagrams. An image is formed only where the rays converge. II.7 Now replace lens L with Lens L2 and slowly move screen holder #3 away from the lens until you get an in-focus image. Measure d obj and d im and calculate the magnification. Compare to the magnification of lens L. Lens L2 has a longer focal length than L. Do your results agree or disagree with your results from the ray-tracing diagram (i.e. does a longer focal-length lens produce a higher magnification)? Part III. The Lens Equation By now you should be convinced that the image location is uniquely determined by the focal length of the lens and the location of the object. This relationship can be written mathematically as the lens equation and is given by: f = d obj + d im. (Equation 3) III. Use your values for d im and d obj from problem II. to calculate f for lens L. Does this agree with your measured value for f? Repeat with the values from II.7 to calculate f for lens L2.

5 APAS Laboratory 5 Optics I HELPFUL HINT: When using your calculator with the lens formula, it is far simpler to deal with reciprocals of numbers rather than with the numbers themselves. Look for the calculator reciprocal key labeled /x. To compute 2 + 4, hit the keys 2 /x + 4 /x =. You should get the result 0.75 ( = 3/4 ). Now if /f equals this quantity, just hit /x again to get f = 0.75 =.33. III.2 In Part II. you encountered a situation where the image was about the same size as the object (magnification =.0). According to the lens equations, the object distance must be how many times larger than the focal length for this special condition to occur? Explain how you arrived at your answer. Does this agree with the ray tracing diagram? Now let s look at a special case that is very important to astronomy. When the object distance is extremely large, then (/d obj ) is extremely small, and for practical purposes can be said to equal zero. For this special case the lens equation then simplifies to: f = d im + 0 or merely f = d im. In other words, when we look at an object very far away the image is formed at the focal planewhich is the plane one focal length away from the lens. Since everything we look at in astronomy is very far away, images of astronomical objects are always formed at the focal plane! You can imagine what is happening by thinking about a ray tracing diagram. Since the object is so far away, all the rays of light coming from the object are coming into the lens parallel to each other and perpendicular to the lens. Thus each ray of light will obey rule # of ray tracing and will pass through the focal point- just like the figure at the start of Part II. We will now investigate this situation by looking at an object that is far enough away that we can assume that f = d im (in photographer's terminology the object is said to be at infinity. ) III.3 Remove the flashlight and mount from holder #. Position the large object box about 3 meters (0 feet) in front of the lens. Focus the screen. Your arrangement should look like this: Large Box Lens L2 Focal Plane I d d obj 300 cm image f III.4 2 Is the image distance approximately equal to the focal length of the lens? 3

6 APAS Laboratory 6 Optics I Part IV. Lens Diameter and Focal Ratio A second important property of a lens is the size of its aperture, or diameter D. IV. Place iris aperture A in holder #. Slide the aperture holder until it is just in front of the lens. Your arrangement should look like this: Large Box Iris Aperture A Lens L2 Focal Plane I Effective d obj 300 cm Diameter D d image f 2 3 If you close, or stop down the iris, you effectively reduce the diameter D of the lens (that is, you reduce the portion of the lens that actually sees the light). III.2 III.3 Analyze the effect of reducing the aperture: As you slowly stop down the lens, what happens to the brightness of the image? Does the image distance change? That is, does the focal plane (where the in-focus image is formed) shift when the lens diameter is decreased? III.4 Does the image size shrink with smaller aperture? Does a portion of the image get "chopped off" because of the smaller lens opening? Although you may be surprised at these findings, they merely point out the fact that each tiny portion of a lens forms a complete image; the final observed image is simply the sum of all of the independent contributions! The brightness of an image produced by a lens (the amount of light per unit area) is actually determined by the ratio of the focal length of the lens to its effective diameter, rather than just the lens diameter alone. This ratio is called the focal ratio, or simply the f-ratio, of the lens: f-ratio = f D. (Equation 4) III.5 As you stop down the aperture, are you increasing or decreasing the f-ratio of the lens? Do larger f-ratios produce brighter or darker images? The f-ratio of a lens is a very important property of a lens because it determines the brightness of the image. Two lenses with the same f-ratio will produce an image of the same brightness (if not the same size).

OPTICS LENSES AND TELESCOPES

OPTICS LENSES AND TELESCOPES ASTR 1030 Astronomy Lab 97 Optics - Lenses & Telescopes OPTICS LENSES AND TELESCOPES SYNOPSIS: In this lab you will explore the fundamental properties of a lens and investigate refracting and reflecting

More information

Physics 2020 Lab 8 Lenses

Physics 2020 Lab 8 Lenses Physics 2020 Lab 8 Lenses Name Section Introduction. In this lab, you will study converging lenses. There are a number of different types of converging lenses, but all of them are thicker in the middle

More information

Lab 10: Lenses & Telescopes

Lab 10: Lenses & Telescopes Physics 2020, Fall 2010 Lab 8 page 1 of 6 Circle your lab day and time. Your name: Mon Tue Wed Thu Fri TA name: 8-10 10-12 12-2 2-4 4-6 INTRODUCTION Lab 10: Lenses & Telescopes In this experiment, you

More information

13. Optical Instruments*

13. Optical Instruments* 13. Optical Instruments* Objective: Here what you have been learning about thin lenses is applied to make a telescope. In the process you encounter general optical instrument design concepts. The learning

More information

O5: Lenses and the refractor telescope

O5: Lenses and the refractor telescope O5. 1 O5: Lenses and the refractor telescope Introduction In this experiment, you will study converging lenses and the lens equation. You will make several measurements of the focal length of lenses and

More information

ECEN 4606, UNDERGRADUATE OPTICS LAB

ECEN 4606, UNDERGRADUATE OPTICS LAB ECEN 4606, UNDERGRADUATE OPTICS LAB Lab 2: Imaging 1 the Telescope Original Version: Prof. McLeod SUMMARY: In this lab you will become familiar with the use of one or more lenses to create images of distant

More information

Geometric Optics. Objective: To study the basics of geometric optics and to observe the function of some simple and compound optical devices.

Geometric Optics. Objective: To study the basics of geometric optics and to observe the function of some simple and compound optical devices. Geometric Optics Objective: To study the basics of geometric optics and to observe the function of some simple and compound optical devices. Apparatus: Pasco optical bench, mounted lenses (f= +100mm, +200mm,

More information

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #8: Thin Lenses

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #8: Thin Lenses NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT Physics 211 E&M and Quantum Physics Spring 2018 Lab #8: Thin Lenses Lab Writeup Due: Mon/Wed/Thu/Fri, April 2/4/5/6, 2018 Background In the previous lab

More information

E X P E R I M E N T 12

E X P E R I M E N T 12 E X P E R I M E N T 12 Mirrors and Lenses Produced by the Physics Staff at Collin College Copyright Collin College Physics Department. All Rights Reserved. University Physics II, Exp 12: Mirrors and Lenses

More information

Video. Part I. Equipment

Video. Part I. Equipment 1 of 7 11/8/2013 11:32 AM There are two parts to this lab that can be done in either order. In Part I you will study the Laws of Reflection and Refraction, measure the index of refraction of glass and

More information

Lab 11: Lenses and Ray Tracing

Lab 11: Lenses and Ray Tracing Name: Lab 11: Lenses and Ray Tracing Group Members: Date: TA s Name: Materials: Ray box, two different converging lenses, one diverging lens, screen, lighted object, three stands, meter stick, two letter

More information

FRAUNHOFER AND FRESNEL DIFFRACTION IN ONE DIMENSION

FRAUNHOFER AND FRESNEL DIFFRACTION IN ONE DIMENSION FRAUNHOFER AND FRESNEL DIFFRACTION IN ONE DIMENSION Revised November 15, 2017 INTRODUCTION The simplest and most commonly described examples of diffraction and interference from two-dimensional apertures

More information

PHYS 160 Astronomy. When analyzing light s behavior in a mirror or lens, it is helpful to use a technique called ray tracing.

PHYS 160 Astronomy. When analyzing light s behavior in a mirror or lens, it is helpful to use a technique called ray tracing. Optics Introduction In this lab, we will be exploring several properties of light including diffraction, reflection, geometric optics, and interference. There are two sections to this lab and they may

More information

Snell s Law, Lenses, and Optical Instruments

Snell s Law, Lenses, and Optical Instruments Physics 4 Laboratory Snell s Law, Lenses, and Optical Instruments Prelab Exercise Please read the Procedure section and try to understand the physics involved and how the experimental procedure works.

More information

Name: Lab Partner: Section:

Name: Lab Partner: Section: Chapter 10 Thin Lenses Name: Lab Partner: Section: 10.1 Purpose In this experiment, the formation of images by concave and convex lenses will be explored. The application of the thin lens equation and

More information

Basic Optics System OS-8515C

Basic Optics System OS-8515C 40 50 30 60 20 70 10 80 0 90 80 10 20 70 T 30 60 40 50 50 40 60 30 70 20 80 90 90 80 BASIC OPTICS RAY TABLE 10 0 10 70 20 60 50 40 30 Instruction Manual with Experiment Guide and Teachers Notes 012-09900B

More information

Optics Laboratory Spring Semester 2017 University of Portland

Optics Laboratory Spring Semester 2017 University of Portland Optics Laboratory Spring Semester 2017 University of Portland Laser Safety Warning: The HeNe laser can cause permanent damage to your vision. Never look directly into the laser tube or at a reflection

More information

This experiment is under development and thus we appreciate any and all comments as we design an interesting and achievable set of goals.

This experiment is under development and thus we appreciate any and all comments as we design an interesting and achievable set of goals. Experiment 7 Geometrical Optics You will be introduced to ray optics and image formation in this experiment. We will use the optical rail, lenses, and the camera body to quantify image formation and magnification;

More information

INSIDE LAB 6: The Properties of Lenses and Telescopes

INSIDE LAB 6: The Properties of Lenses and Telescopes INSIDE LAB 6: The Properties of Lenses and Telescopes OBJECTIVE: To construct a simple refracting telescope and to measure some of its properties. DISCUSSION: In tonight s lab we will build a simple telescope

More information

Lenses. Optional Reading Stargazer: the life and times of the TELESCOPE, Fred Watson (Da Capo 2004).

Lenses. Optional Reading Stargazer: the life and times of the TELESCOPE, Fred Watson (Da Capo 2004). Lenses Equipment optical bench, incandescent light source, laser, No 13 Wratten filter, 3 lens holders, cross arrow, diffuser, white screen, case of lenses etc., vernier calipers, 30 cm ruler, meter stick

More information

LO - Lab #05 - How are images formed from light?

LO - Lab #05 - How are images formed from light? LO - Lab #05 - Helpful Definitions: The normal direction to a surface is defined as the direction that is perpendicular to a surface. For example, place this page flat on the table and then stand your

More information

Week IV: FIRST EXPERIMENTS WITH THE ADVANCED OPTICS SET

Week IV: FIRST EXPERIMENTS WITH THE ADVANCED OPTICS SET Week IV: FIRST EXPERIMENTS WITH THE ADVANCED OPTICS SET The Advanced Optics set consists of (A) Incandescent Lamp (B) Laser (C) Optical Bench (with magnetic surface and metric scale) (D) Component Carriers

More information

LAB 12 Reflection and Refraction

LAB 12 Reflection and Refraction Cabrillo College Physics 10L Name LAB 12 Reflection and Refraction Read Hewitt Chapters 28 and 29 What to learn and explore Please read this! When light rays reflect off a mirror surface or refract through

More information

Refraction is the when a ray changes mediums. Examples of mediums:

Refraction is the when a ray changes mediums. Examples of mediums: Refraction and Lenses Refraction is the when a ray changes mediums. Examples of mediums: Lenses are optical devices which take advantage of the refraction of light to 1. produces images real and 2. change

More information

Part 1 Investigating Snell s Law

Part 1 Investigating Snell s Law Geometric Optics with Lenses PURPOSE: To observe the refraction of light off through lenses; to investigate the relationship between objects and images; to study the relationship between object distance,

More information

General Physics Experiment 5 Optical Instruments: Simple Magnifier, Microscope, and Newtonian Telescope

General Physics Experiment 5 Optical Instruments: Simple Magnifier, Microscope, and Newtonian Telescope General Physics Experiment 5 Optical Instruments: Simple Magnifier, Microscope, and Newtonian Telescope Objective: < To observe the magnifying properties of the simple magnifier, the microscope and the

More information

THE TELESCOPE. PART 1: The Eye and Visual Acuity

THE TELESCOPE. PART 1: The Eye and Visual Acuity THE TELESCOPE OBJECTIVE: As seen with the naked eye the heavens are a wonderfully fascinating place. With a little careful watching the brighter stars can be grouped into constellations and an order seen

More information

Laboratory 7: Properties of Lenses and Mirrors

Laboratory 7: Properties of Lenses and Mirrors Laboratory 7: Properties of Lenses and Mirrors Converging and Diverging Lens Focal Lengths: A converging lens is thicker at the center than at the periphery and light from an object at infinity passes

More information

Home Lab 5 Refraction of Light

Home Lab 5 Refraction of Light 1 Home Lab 5 Refraction of Light Overview: In previous experiments we learned that when light falls on certain materials some of the light is reflected back. In many materials, such as glass, plastic,

More information

Geometric Optics. Find the focal lengths of lenses and mirrors; Draw and understand ray diagrams; and Build a simple telescope

Geometric Optics. Find the focal lengths of lenses and mirrors; Draw and understand ray diagrams; and Build a simple telescope Geometric Optics I. OBJECTIVES Galileo is known for his many wondrous astronomical discoveries. Many of these discoveries shook the foundations of Astronomy and forced scientists and philosophers alike

More information

10.2 Images Formed by Lenses SUMMARY. Refraction in Lenses. Section 10.1 Questions

10.2 Images Formed by Lenses SUMMARY. Refraction in Lenses. Section 10.1 Questions 10.2 SUMMARY Refraction in Lenses Converging lenses bring parallel rays together after they are refracted. Diverging lenses cause parallel rays to move apart after they are refracted. Rays are refracted

More information

Aberrations of a lens

Aberrations of a lens Aberrations of a lens 1. What are aberrations? A lens made of a uniform glass with spherical surfaces cannot form perfect images. Spherical aberration is a prominent image defect for a point source on

More information

Lenses- Worksheet. (Use a ray box to answer questions 3 to 7)

Lenses- Worksheet. (Use a ray box to answer questions 3 to 7) Lenses- Worksheet 1. Look at the lenses in front of you and try to distinguish the different types of lenses? Describe each type and record its characteristics. 2. Using the lenses in front of you, look

More information

GEOMETRICAL OPTICS Practical 1. Part I. BASIC ELEMENTS AND METHODS FOR CHARACTERIZATION OF OPTICAL SYSTEMS

GEOMETRICAL OPTICS Practical 1. Part I. BASIC ELEMENTS AND METHODS FOR CHARACTERIZATION OF OPTICAL SYSTEMS GEOMETRICAL OPTICS Practical 1. Part I. BASIC ELEMENTS AND METHODS FOR CHARACTERIZATION OF OPTICAL SYSTEMS Equipment and accessories: an optical bench with a scale, an incandescent lamp, matte, a set of

More information

Image Formation by Lenses

Image Formation by Lenses Image Formation by Lenses Bởi: OpenStaxCollege Lenses are found in a huge array of optical instruments, ranging from a simple magnifying glass to the eye to a camera s zoom lens. In this section, we will

More information

Experiment 3: Reflection

Experiment 3: Reflection Model No. OS-8515C Experiment 3: Reflection Experiment 3: Reflection Required Equipment from Basic Optics System Light Source Mirror from Ray Optics Kit Other Required Equipment Drawing compass Protractor

More information

Physics 1411 Telescopes Lab

Physics 1411 Telescopes Lab Name: Section: Partners: Physics 1411 Telescopes Lab Refracting and Reflecting telescopes are the two most common types of telescopes you will find. Each of these can be mounted on either an equatorial

More information

Lenses. A lens is any glass, plastic or transparent refractive medium with two opposite faces, and at least one of the faces must be curved.

Lenses. A lens is any glass, plastic or transparent refractive medium with two opposite faces, and at least one of the faces must be curved. PHYSICS NOTES ON A lens is any glass, plastic or transparent refractive medium with two opposite faces, and at least one of the faces must be curved. Types of There are two types of basic lenses. (1.)

More information

PHYS 3153 Methods of Experimental Physics II O2. Applications of Interferometry

PHYS 3153 Methods of Experimental Physics II O2. Applications of Interferometry Purpose PHYS 3153 Methods of Experimental Physics II O2. Applications of Interferometry In this experiment, you will study the principles and applications of interferometry. Equipment and components PASCO

More information

Physics 197 Lab 7: Thin Lenses and Optics

Physics 197 Lab 7: Thin Lenses and Optics Physics 197 Lab 7: Thin Lenses and Optics Equipment: Item Part # Qty per Team # of Teams Basic Optics Light Source PASCO OS-8517 1 12 12 Power Cord for Light Source 1 12 12 Ray Optics Set (Concave Lens)

More information

Geometric Optics. This equation is known as the mirror equation or the thin lens equation, depending on the setup.

Geometric Optics. This equation is known as the mirror equation or the thin lens equation, depending on the setup. Geometric Optics Purpose (Write the purposes at the beginning of each problem.) Problem 1: find the focal length of a concave mirror to verify the mirror equation; Problem 2: find the focal length of a

More information

Focal Length of Lenses

Focal Length of Lenses Focal Length of Lenses OBJECTIVES Investigate the properties of converging and diverging lenses. Determine the focal length of converging lenses both by a real image of a distant object and by finite object

More information

Focus on an optical blind spot A closer look at lenses and the basics of CCTV optical performances,

Focus on an optical blind spot A closer look at lenses and the basics of CCTV optical performances, Focus on an optical blind spot A closer look at lenses and the basics of CCTV optical performances, by David Elberbaum M any security/cctv installers and dealers wish to know more about lens basics, lens

More information

PHYSICS 289 Experiment 8 Fall Geometric Optics II Thin Lenses

PHYSICS 289 Experiment 8 Fall Geometric Optics II Thin Lenses PHYSICS 289 Experiment 8 Fall 2005 Geometric Optics II Thin Lenses Please look at the chapter on lenses in your text before this lab experiment. Please submit a short lab report which includes answers

More information

Department of Physics & Astronomy Undergraduate Labs. Thin Lenses

Department of Physics & Astronomy Undergraduate Labs. Thin Lenses Thin Lenses Reflection and Refraction When light passes from one medium to another, part of the light is reflected and the rest is transmitted. Light rays that are transmitted undergo refraction (bending)

More information

30 Lenses. Lenses change the paths of light.

30 Lenses. Lenses change the paths of light. Lenses change the paths of light. A light ray bends as it enters glass and bends again as it leaves. Light passing through glass of a certain shape can form an image that appears larger, smaller, closer,

More information

Converging and Diverging Surfaces. Lenses. Converging Surface

Converging and Diverging Surfaces. Lenses. Converging Surface Lenses Sandy Skoglund 2 Converging and Diverging s AIR Converging If the surface is convex, it is a converging surface in the sense that the parallel rays bend toward each other after passing through the

More information

PHY 1160C Homework Chapter 26: Optical Instruments Ch 26: 2, 3, 5, 9, 13, 15, 20, 25, 27

PHY 1160C Homework Chapter 26: Optical Instruments Ch 26: 2, 3, 5, 9, 13, 15, 20, 25, 27 PHY 60C Homework Chapter 26: Optical Instruments Ch 26: 2, 3, 5, 9, 3, 5, 20, 25, 27 26.2 A pin-hole camera is used to take a photograph of a student who is.8 m tall. The student stands 2.7 m in front

More information

THIN LENSES: APPLICATIONS

THIN LENSES: APPLICATIONS THIN LENSES: APPLICATIONS OBJECTIVE: To see how thin lenses are used in three important cases: the eye, the telescope and the microscope. Part 1: The Eye and Visual Acuity THEORY: We can think of light

More information

CHAPTER 3LENSES. 1.1 Basics. Convex Lens. Concave Lens. 1 Introduction to convex and concave lenses. Shape: Shape: Symbol: Symbol:

CHAPTER 3LENSES. 1.1 Basics. Convex Lens. Concave Lens. 1 Introduction to convex and concave lenses. Shape: Shape: Symbol: Symbol: CHAPTER 3LENSES 1 Introduction to convex and concave lenses 1.1 Basics Convex Lens Shape: Concave Lens Shape: Symbol: Symbol: Effect to parallel rays: Effect to parallel rays: Explanation: Explanation:

More information

Chapter 29/30. Wave Fronts and Rays. Refraction of Sound. Dispersion in a Prism. Index of Refraction. Refraction and Lenses

Chapter 29/30. Wave Fronts and Rays. Refraction of Sound. Dispersion in a Prism. Index of Refraction. Refraction and Lenses Chapter 29/30 Refraction and Lenses Refraction Refraction the bending of waves as they pass from one medium into another. Caused by a change in the average speed of light. Analogy A car that drives off

More information

Chapter 18 Optical Elements

Chapter 18 Optical Elements Chapter 18 Optical Elements GOALS When you have mastered the content of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms and use it in an operational

More information

Chapter 23. Light Geometric Optics

Chapter 23. Light Geometric Optics Chapter 23. Light Geometric Optics There are 3 basic ways to gather light and focus it to make an image. Pinhole - Simple geometry Mirror - Reflection Lens - Refraction Pinhole Camera Image Formation (the

More information

Activity 6.1 Image Formation from Spherical Mirrors

Activity 6.1 Image Formation from Spherical Mirrors PHY385H1F Introductory Optics Practicals Day 6 Telescopes and Microscopes October 31, 2011 Group Number (number on Intro Optics Kit):. Facilitator Name:. Record-Keeper Name: Time-keeper:. Computer/Wiki-master:..

More information

1 Laboratory 7: Fourier Optics

1 Laboratory 7: Fourier Optics 1051-455-20073 Physical Optics 1 Laboratory 7: Fourier Optics 1.1 Theory: References: Introduction to Optics Pedrottis Chapters 11 and 21 Optics E. Hecht Chapters 10 and 11 The Fourier transform is an

More information

Physics 1230 Homework 8 Due Friday June 24, 2016

Physics 1230 Homework 8 Due Friday June 24, 2016 At this point, you know lots about mirrors and lenses and can predict how they interact with light from objects to form images for observers. In the next part of the course, we consider applications of

More information

ENSC 470/894 Lab 3 Version 6.0 (Nov. 19, 2015)

ENSC 470/894 Lab 3 Version 6.0 (Nov. 19, 2015) ENSC 470/894 Lab 3 Version 6.0 (Nov. 19, 2015) Purpose The purpose of the lab is (i) To measure the spot size and profile of the He-Ne laser beam and a laser pointer laser beam. (ii) To create a beam expander

More information

p q p f f f q f p q f NANO 703-Notes Chapter 5-Magnification and Electron Sources

p q p f f f q f p q f NANO 703-Notes Chapter 5-Magnification and Electron Sources Chapter 5-agnification and Electron Sources Lens equation Let s first consider the properties of an ideal lens. We want rays diverging from a point on an object in front of the lens to converge to a corresponding

More information

Be aware that there is no universal notation for the various quantities.

Be aware that there is no universal notation for the various quantities. Fourier Optics v2.4 Ray tracing is limited in its ability to describe optics because it ignores the wave properties of light. Diffraction is needed to explain image spatial resolution and contrast and

More information

Assignment X Light. Reflection and refraction of light. (a) Angle of incidence (b) Angle of reflection (c) principle axis

Assignment X Light. Reflection and refraction of light. (a) Angle of incidence (b) Angle of reflection (c) principle axis Assignment X Light Reflection of Light: Reflection and refraction of light. 1. What is light and define the duality of light? 2. Write five characteristics of light. 3. Explain the following terms (a)

More information

Geometric Optics. This is a double-convex glass lens mounted in a wooden frame. We will use this as the eyepiece for our microscope.

Geometric Optics. This is a double-convex glass lens mounted in a wooden frame. We will use this as the eyepiece for our microscope. I. Before you come to lab Read through this handout in its entirety. II. Learning Objectives As a result of performing this lab, you will be able to: 1. Use the thin lens equation to determine the focal

More information

2010 Catherine H. Crouch. Lab I - 1

2010 Catherine H. Crouch. Lab I - 1 The following laboratories were developed by Catherine Crouch at Swarthmore College for Physics 4L (Electricity, Magnetism, and Optics with Biomedical Applications) drawing on problem-solving laboratories

More information

Optics Practice. Version #: 0. Name: Date: 07/01/2010

Optics Practice. Version #: 0. Name: Date: 07/01/2010 Optics Practice Date: 07/01/2010 Version #: 0 Name: 1. Which of the following diagrams show a real image? a) b) c) d) e) i, ii, iii, and iv i and ii i and iv ii and iv ii, iii and iv 2. A real image is

More information

Introduction. The Human Eye. Physics 1CL OPTICAL INSTRUMENTS AND THE EYE SPRING 2010

Introduction. The Human Eye. Physics 1CL OPTICAL INSTRUMENTS AND THE EYE SPRING 2010 Introduction Most of the subject material in this lab can be found in Chapter 25 of Serway and Faughn. In this lab, you will make images of images using lenses and the optical bench (Experiment A). IT

More information

Experimental Question 2: An Optical Black Box

Experimental Question 2: An Optical Black Box Experimental Question 2: An Optical Black Box TV and computer screens have advanced significantly in recent years. Today, most displays consist of a color LCD filter matrix and a uniform white backlight

More information

Physics 208 Spring 2008 Lab 2: Lenses and the eye

Physics 208 Spring 2008 Lab 2: Lenses and the eye Name Section Physics 208 Spring 2008 Lab 2: Lenses and the eye Your TA will use this sheet to score your lab. It is to be turned in at the end of lab. You must use complete sentences and clearly explain

More information

Chapter 8. The Telescope. 8.1 Purpose. 8.2 Introduction A Brief History of the Early Telescope

Chapter 8. The Telescope. 8.1 Purpose. 8.2 Introduction A Brief History of the Early Telescope Chapter 8 The Telescope 8.1 Purpose In this lab, you will measure the focal lengths of two lenses and use them to construct a simple telescope which inverts the image like the one developed by Johannes

More information

Physics 2310 Lab #5: Thin Lenses and Concave Mirrors Dr. Michael Pierce (Univ. of Wyoming)

Physics 2310 Lab #5: Thin Lenses and Concave Mirrors Dr. Michael Pierce (Univ. of Wyoming) Physics 2310 Lab #5: Thin Lenses and Concave Mirrors Dr. Michael Pierce (Univ. of Wyoming) Purpose: The purpose of this lab is to introduce students to some of the properties of thin lenses and mirrors.

More information

Physics 3340 Spring Fourier Optics

Physics 3340 Spring Fourier Optics Physics 3340 Spring 011 Purpose Fourier Optics In this experiment we will show how the Fraunhofer diffraction pattern or spatial Fourier transform of an object can be observed within an optical system.

More information

PH 481/581 Physical Optics Winter 2014

PH 481/581 Physical Optics Winter 2014 PH 481/581 Physical Optics Winter 2014 Laboratory #1 Week of January 13 Read: Handout (Introduction & Projects #2 & 3 from Newport Project in Optics Workbook), pp.150-170 of Optics by Hecht Do: 1. Experiment

More information

Laboratory experiment aberrations

Laboratory experiment aberrations Laboratory experiment aberrations Obligatory laboratory experiment on course in Optical design, SK2330/SK3330, KTH. Date Name Pass Objective This laboratory experiment is intended to demonstrate the most

More information

2. Refraction and Reflection

2. Refraction and Reflection 2. Refraction and Reflection In this lab we will observe the displacement of a light beam by a parallel plate due to refraction. We will determine the refractive index of some liquids from the incident

More information

Lenses. Images. Difference between Real and Virtual Images

Lenses. Images. Difference between Real and Virtual Images Linear Magnification (m) This is the factor by which the size of the object has been magnified by the lens in a direction which is perpendicular to the axis of the lens. Linear magnification can be calculated

More information

Introduction. Strand F Unit 3: Optics. Learning Objectives. Introduction. At the end of this unit you should be able to;

Introduction. Strand F Unit 3: Optics. Learning Objectives. Introduction. At the end of this unit you should be able to; Learning Objectives At the end of this unit you should be able to; Identify converging and diverging lenses from their curvature Construct ray diagrams for converging and diverging lenses in order to locate

More information

Unit 5.B Geometric Optics

Unit 5.B Geometric Optics Unit 5.B Geometric Optics Early Booklet E.C.: + 1 Unit 5.B Hwk. Pts.: / 18 Unit 5.B Lab Pts.: / 25 Late, Incomplete, No Work, No Units Fees? Y / N Essential Fundamentals of Geometric Optics 1. Convex surfaces

More information

Physics Learning Guide Name:

Physics Learning Guide Name: Physics Learning Guide Name: Instructions: Using a pencil, complete the following notes as you work through the related lessons. Show ALL work as is explained in the lessons. You are required to have this

More information

REFLECTION THROUGH LENS

REFLECTION THROUGH LENS REFLECTION THROUGH LENS A lens is a piece of transparent optical material with one or two curved surfaces to refract light rays. It may converge or diverge light rays to form an image. Lenses are mostly

More information

Physics 345 Pre-lab 1

Physics 345 Pre-lab 1 Physics 345 Pre-lab 1 Suppose we have a circular aperture in a baffle and two light sources, a point source and a line source. 1. (a) Consider a small light bulb with an even tinier filament (point source).

More information

OPTICAL BENCH - simple type

OPTICAL BENCH - simple type GENERAL DESCRIPTION: OPTICAL BENCH - simple type Cat: HL2240-001 Complete with Hodson Light Box. Cat: HL2241-001 Not including Hodson Light Box The IEC Optical Bench system is designed to be used with

More information

Test Review # 8. Physics R: Form TR8.17A. Primary colors of light

Test Review # 8. Physics R: Form TR8.17A. Primary colors of light Physics R: Form TR8.17A TEST 8 REVIEW Name Date Period Test Review # 8 Light and Color. Color comes from light, an electromagnetic wave that travels in straight lines in all directions from a light source

More information

Readings: Hecht, Chapter 24

Readings: Hecht, Chapter 24 5. GEOMETRIC OPTICS Readings: Hecht, Chapter 24 Introduction In this lab you will measure the index of refraction of glass using Snell s Law, study the application of the laws of geometric optics to systems

More information

Chapter 3 Mirrors. The most common and familiar optical device

Chapter 3 Mirrors. The most common and familiar optical device Chapter 3 Mirrors The most common and familiar optical device Outline Plane mirrors Spherical mirrors Graphical image construction Two mirrors; The Cassegrain Telescope Plane mirrors Common household mirrors:

More information

Optics Day 3 Kohler Illumination (Philbert Tsai July 2004) Goal : To build an bright-field microscope with a Kohler illumination pathway

Optics Day 3 Kohler Illumination (Philbert Tsai July 2004) Goal : To build an bright-field microscope with a Kohler illumination pathway Optics Day 3 Kohler Illumination (Philbert Tsai July 2004) Goal : To build an bright-field microscope with a Kohler illumination pathway Prepare the Light source and Lenses Set up Light source Use 3 rail

More information

CH. 23 Mirrors and Lenses HW# 6, 7, 9, 11, 13, 21, 25, 31, 33, 35

CH. 23 Mirrors and Lenses HW# 6, 7, 9, 11, 13, 21, 25, 31, 33, 35 CH. 23 Mirrors and Lenses HW# 6, 7, 9, 11, 13, 21, 25, 31, 33, 35 Mirrors Rays of light reflect off of mirrors, and where the reflected rays either intersect or appear to originate from, will be the location

More information

Functioning of the human eye (normal vision)

Functioning of the human eye (normal vision) Teacher's/Lecturer's Sheet Functioning of the human eye (normal vision) (Item No.: P1066700) Curricular Relevance Area of Expertise: Physik Education Level: Klasse 7-10 Topic: Optik Subtopic: Das Auge

More information

lens Figure 1. A refractory focusing arrangement. Focal point

lens Figure 1. A refractory focusing arrangement. Focal point Laboratory 2 - Introduction to Lenses & Telescopes Materials Used: A set o our lenses, an optical bench with a centimeter scale, a white screen, several lens holders, a light source (with crossed arrows),

More information

12:40-2:40 3:00-4:00 PM

12:40-2:40 3:00-4:00 PM Physics 294H l Professor: Joey Huston l email:huston@msu.edu l office: BPS3230 l Homework will be with Mastering Physics (and an average of 1 hand-written problem per week) Help-room hours: 12:40-2:40

More information

AP Physics Problems -- Waves and Light

AP Physics Problems -- Waves and Light AP Physics Problems -- Waves and Light 1. 1974-3 (Geometric Optics) An object 1.0 cm high is placed 4 cm away from a converging lens having a focal length of 3 cm. a. Sketch a principal ray diagram for

More information

OPTICAL SYSTEMS OBJECTIVES

OPTICAL SYSTEMS OBJECTIVES 101 L7 OPTICAL SYSTEMS OBJECTIVES Aims Your aim here should be to acquire a working knowledge of the basic components of optical systems and understand their purpose, function and limitations in terms

More information

Determination of Focal Length of A Converging Lens and Mirror

Determination of Focal Length of A Converging Lens and Mirror Physics 41 Determination of Focal Length of A Converging Lens and Mirror Objective: Apply the thin-lens equation and the mirror equation to determine the focal length of a converging (biconvex) lens and

More information

Name: Date: Math in Special Effects: Try Other Challenges. Student Handout

Name: Date: Math in Special Effects: Try Other Challenges. Student Handout Name: Date: Math in Special Effects: Try Other Challenges When filming special effects, a high-speed photographer needs to control the duration and impact of light by adjusting a number of settings, including

More information

ADVANCED OPTICS LAB -ECEN Basic Skills Lab

ADVANCED OPTICS LAB -ECEN Basic Skills Lab ADVANCED OPTICS LAB -ECEN 5606 Basic Skills Lab Dr. Steve Cundiff and Edward McKenna, 1/15/04 Revised KW 1/15/06, 1/8/10 Revised CC and RZ 01/17/14 The goal of this lab is to provide you with practice

More information

Supermacro Photography and Illuminance

Supermacro Photography and Illuminance Supermacro Photography and Illuminance Les Wilk/ReefNet April, 2009 There are three basic tools for capturing greater than life-size images with a 1:1 macro lens --- extension tubes, teleconverters, and

More information

Lab 2 Geometrical Optics

Lab 2 Geometrical Optics Lab 2 Geometrical Optics March 22, 202 This material will span much of 2 lab periods. Get through section 5.4 and time permitting, 5.5 in the first lab. Basic Equations Lensmaker s Equation for a thin

More information

Image Formation. World Optics Sensor Signal. Computer Vision. Introduction to. Light (Energy) Source. Surface Imaging Plane. Pinhole Lens.

Image Formation. World Optics Sensor Signal. Computer Vision. Introduction to. Light (Energy) Source. Surface Imaging Plane. Pinhole Lens. Image Formation Light (Energy) Source Surface Imaging Plane Pinhole Lens World Optics Sensor Signal B&W Film Color Film TV Camera Silver Density Silver density in three color layers Electrical Today Optics:

More information

Option G 2: Lenses. The diagram below shows the image of a square grid as produced by a lens that does not cause spherical aberration.

Option G 2: Lenses. The diagram below shows the image of a square grid as produced by a lens that does not cause spherical aberration. Name: Date: Option G 2: Lenses 1. This question is about spherical aberration. The diagram below shows the image of a square grid as produced by a lens that does not cause spherical aberration. In the

More information

Using Mirrors to Form Images. Reflections of Reflections. Key Terms. Find Out ACTIVITY

Using Mirrors to Form Images. Reflections of Reflections. Key Terms. Find Out ACTIVITY 5.2 Using Mirrors to Form Images All mirrors reflect light according to the law of reflection. Plane mirrors form an image that is upright and appears to be as far behind the mirror as the is in front

More information

Types of lenses. Shown below are various types of lenses, both converging and diverging.

Types of lenses. Shown below are various types of lenses, both converging and diverging. Types of lenses Shown below are various types of lenses, both converging and diverging. Any lens that is thicker at its center than at its edges is a converging lens with positive f; and any lens that

More information

MICROSCOPE LAB. Resolving Power How well specimen detail is preserved during the magnifying process.

MICROSCOPE LAB. Resolving Power How well specimen detail is preserved during the magnifying process. AP BIOLOGY Cells ACTIVITY #2 MICROSCOPE LAB OBJECTIVES 1. Demonstrate proper care and use of a compound microscope. 2. Identify the parts of the microscope and describe the function of each part. 3. Compare

More information

PHYSICS. Chapter 35 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 35 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 35 Lecture RANDALL D. KNIGHT Chapter 35 Optical Instruments IN THIS CHAPTER, you will learn about some common optical instruments and

More information