V2x wireless channel modeling for connected cars. Taimoor Abbas Volvo Car Corporations

Size: px
Start display at page:

Download "V2x wireless channel modeling for connected cars. Taimoor Abbas Volvo Car Corporations"

Transcription

1 V2x wireless channel modeling for connected cars Taimoor Abbas Volvo Car Corporations

2 V2X Terminology Background V2N P2N V2P V2V P2I V2I I2N 6/12/2018 SUMMER SCHOOL ON 5G V2X COMMUNICATIONS - TAIMOOR.ABBAS@VOLVOCARS.COM 2

3 Wireless channel Background Transmit antenna Propagation channel Receiver antenna Radio channel The wireless channel is a medium used to transmit data wirelessly from the transmitter to the receiver antenna. 6/12/2018 SUMMER SCHOOL ON 5G V2X COMMUNICATIONS - TAIMOOR.ABBAS@VOLVOCARS.COM 3

4 Wireless channel Background Why do we need wireless channel modeling? Ideally, modeling a channel means to calculate or estimate all the processing, due to the physical environment, effecting a signal from the transmitter to the receiver. How wireless channel is modeled? Wireless channel is modeled analytically with the help of simulations or empirically by real world measurements. Where it is used? For the wireless system design, it is used for link-level or system simulations as well as to test the hardware especially where control and repeatability is required. It can also be used to bench mark multiple hardware with standard settings. The major benefits are? Easy to use, allow better control and repeatability, cost effective and could be scaled 6/12/2018 SUMMER SCHOOL ON 5G V2X COMMUNICATIONS - TAIMOOR.ABBAS@VOLVOCARS.COM 4

5 Propagation mechanism Typical communication scenario i r Background 1 2 t Reflection and transmission Diffraction Line-of-sight (LOS) component Multipath components Scattering Waveguiding 5

6 Propagation mechanism (cont.) If we assume the TX/RX antennas to be isotropic being in free space, Background Path loss d A RX P RX = 4 d 2 P TX L free ( d ) = 2 4 d Large scale fading Small scale fading 6/12/2018 SUMMER SCHOOL ON 5G V2X COMMUNICATIONS - TAIMOOR.ABBAS@VOLVOCARS.COM 6

7 V2V vs v2i V2X Channel 6/12/2018 SUMMER SCHOOL ON 5G V2X COMMUNICATIONS - TAIMOOR.ABBAS@VOLVOCARS.COM 7

8 Doppler shift for v2v 6/12/2018 SUMMER SCHOOL ON 5G V2X COMMUNICATIONS - TAIMOOR.ABBAS@VOLVOCARS.COM 8

9 Key Differences in V2V Channel Modeling LOS: Line-Of-Sight OLOS: Obstructed Line-Of-Sight V2X Channel NLOS: Non Line-Of-Sight Multilink g 2, XC90 g 2, Truck g 1 d r, XC90 W r d r, Truck XC90 Black Truck Blue d t g 2, XC90 W t S60 6/12/2018 SUMMER SCHOOL ON 5G V2X COMMUNICATIONS - TAIMOOR.ABBAS@VOLVOCARS.COM 9

10 V2X Channel Measurements Modeling 6/12/2018 SUMMER SCHOOL ON 5G V2X COMMUNICATIONS - TAIMOOR.ABBAS@VOLVOCARS.COM 10

11 Channel Sounder Modeling 6/12/2018 SUMMER SCHOOL ON 5G V2X COMMUNICATIONS - TAIMOOR.ABBAS@VOLVOCARS.COM 11

12 Measurement based modeling Note: Measurement tool always has certain limitations It is necessary to keep those limitations in mind when establishing models based on the measurements For a channel model to be independent of object, it has to be double directional and antennas need to be calibrated so that the response could be subtracted later on 6/12/2018SUMMER SCHOOL ON 5G V2X COMMUNICATIONS - TAIMOOR.ABBAS@VOLVOCARS.COM 12

13 Measurement campaign step by step Antenna calibration Channel sounder mounting Conduction measurements 6/12/2018 SUMMER SCHOOL ON 5G V2X COMMUNICATIONS - TAIMOOR.ABBAS@VOLVOCARS.COM 13

14 Measurement campaign step by step Antenna calibration Channel sounder mounting Conduction measurements 6/12/2018 SUMMER SCHOOL ON 5G V2X COMMUNICATIONS - TAIMOOR.ABBAS@VOLVOCARS.COM 14

15 Measurement campaign step by step Antenna calibration Channel sounder mounting Conduction measurements 6/12/2018 SUMMER SCHOOL ON 5G V2X COMMUNICATIONS - TAIMOOR.ABBAS@VOLVOCARS.COM 15

16 Power General observations v2v measurements Time-delay characteristics: Houses, road signs etc. RX Discrete comp. LOS t = s s Diffuse comp. TX Other vehicles Rapidly varying channel Propagation distance [m] Discrete components carry significant energy and change delay bin with time Diffuse components following LOS 6/12/2018 SUMMER SCHOOL ON 5G V2X COMMUNICATIONS - TAIMOOR.ABBAS@VOLVOCARS.COM 16

17 General observations v2v measurements Local scattering function: Discrete components -50 LOS Power [db] Diffuse components can change delay bin rapidly Discrete components: small Doppler but spread, Delay [ns] Doppler frequency [Hz] Diffuse components: large delay and Doppler spread Time-variant Doppler spectrum Non-stationary conditions 6/12/2018 SUMMER SCHOOL ON 5G V2X COMMUNICATIONS - TAIMOOR.ABBAS@VOLVOCARS.COM 17

18 Measurement based modeling Highway, opposite direction Highway, same direction Urban, same direction 23 ms 1479 ms 1412 ms The time during which the local scattering function is sufficiently constant is defined as the stationarity time 6/12/2018 SUMMER SCHOOL ON 5G V2X COMMUNICATIONS - TAIMOOR.ABBAS@VOLVOCARS.COM 18

19 A geometry based stochastic model Mobile discrete scatterers Diffuse scatterers Dependent on antenna pattern Static discrete scatterers Adding up all components using different antenna patterns MIMO channels 6/12/2018 SUMMER SCHOOL ON 5G V2X COMMUNICATIONS - TAIMOOR.ABBAS@VOLVOCARS.COM 19

20 Deterministic modeling Non-measurement based modeling could either be statistical geometry based of deterministic Deterministic approach, such as ray tracing, can be very realistic but computationally expensive Moreover, it requires accurate geometry Solve approximation to Maxwell s equation, using high-frequency approximation [Maurer et al. 2004] 6/12/2018 SUMMER SCHOOL ON 5G V2X COMMUNICATIONS - TAIMOOR.ABBAS@VOLVOCARS.COM 20

21 Ray tracing example 6/12/2018 SUMMER SCHOOL ON 5G V2X COMMUNICATIONS - TAIMOOR.ABBAS@VOLVOCARS.COM 21

22 Measurements vs ray tracing Measuremed PDP Simulated PDP (Ray-tracing) Channel gain Very good agreement in LOS and near LOS regions. NLOS LOS In NLOS, the ray tracing model underestimates the channel gain. Gap can be reduced by increasing the order of reflection. Contribution of third and higher-order specular and nonspecular reflections is missing in the simulator. 6/12/2018 SUMMER SCHOOL ON 5G V2X COMMUNICATIONS - TAIMOOR.ABBAS@VOLVOCARS.COM 22

23 Channel models for test and simulations A channel model is selected based on what part of the communication system that is going to be studied. For network level simulations, where communication protocols are studied, a statistical model (e.g., Rician, Rayleigh, and Nakagami) is the predominant channel model type to keep computational time down. For PHY layer, TDLs and geometry-based stochastic and deterministic channel models are for obvious reasons the preferred channel models. So selection of channel model has to be made very carefully as the channel is one of the major performance factors To summarize; following is a receipe on the selection and usage of channel models. 6/12/2018 SUMMER SCHOOL ON 5G V2X COMMUNICATIONS - TAIMOOR.ABBAS@VOLVOCARS.COM 23

24 V2X- Channel: Specific considerations V2X Channel 6/12/2018 SUMMER SCHOOL ON 5G V2X COMMUNICATIONS - TAIMOOR.ABBAS@VOLVOCARS.COM 24

25 V2x channel models classification 6/12/2018 SUMMER SCHOOL ON 5G V2X COMMUNICATIONS - TAIMOOR.ABBAS@VOLVOCARS.COM 25

26 3GPP TR38.901: V2X-specific Considerations 6/12/2018 SUMMER SCHOOL ON 5G V2X COMMUNICATIONS - TAIMOOR.ABBAS@VOLVOCARS.COM 26

27 3GPP TR38.901: V2X-specific Considerations 6/12/2018 SUMMER SCHOOL ON 5G V2X COMMUNICATIONS - TAIMOOR.ABBAS@VOLVOCARS.COM 27

28 3GPP TR38.901: V2X-specific Considerations 6/12/2018 SUMMER SCHOOL ON 5G V2X COMMUNICATIONS - TAIMOOR.ABBAS@VOLVOCARS.COM 28

29 3GPP TR38.901: V2X-specific Considerations 6/12/2018 SUMMER SCHOOL ON 5G V2X COMMUNICATIONS - TAIMOOR.ABBAS@VOLVOCARS.COM 29

30 3GPP TR38.901: V2X-specific Considerations 6/12/2018 SUMMER SCHOOL ON 5G V2X COMMUNICATIONS - TAIMOOR.ABBAS@VOLVOCARS.COM 30

31 Summary of parameter to be used 6/12/2018 SUMMER SCHOOL ON 5G V2X COMMUNICATIONS - TAIMOOR.ABBAS@VOLVOCARS.COM 31

32 References 6/12/2018 SUMMER SCHOOL ON 5G V2X COMMUNICATIONS - TAIMOOR.ABBAS@VOLVOCARS.COM 32

33 acknowledgement I would like to thank my colleagues from Lund University as some of the work is produced jointly, especially Fredrik Tufvesson, Johan Kåredal and Mikael Nilsson. Special thanks to Mate Boban from Huawei, Munich, for sharing information about the activities at 3GPP and for the cooperation under the umbrella of 5GCAR on channel modeling. Thank you for listening! 6/12/2018 SUMMER SCHOOL ON 5G V2X COMMUNICATIONS - TAIMOOR.ABBAS@VOLVOCARS.COM 33

34 Selected publications A. Paier, J. Kåredal, N. Czink, C. Dumard, T. Zemen, F. Tufvesson, A. Molisch, C. F. Mecklenbräuker, Characterization of Vehicle-to-Vehicle Radio Channels from Measurements at 5.2GHz, Wireless Personal Communications, vol. 50, no. 1, pp , J. Kåredal, F. Tufvesson, N. Czink, A. Paier, C. Dumard, T. Zemen, C. Mecklenbräuker, A. Molisch, A geometry-based stochastic MIMO model for vehicle-to-vehicle communications, IEEE Transactions on Wireless Communications, vol. 8, no. 7, pp , A. Molisch, F. Tufvesson, J. Kåredal, C. F. Mecklenbräuker, A Survey on Vehicle-to-Vehicle Propagation Channels, IEEE Wireless Communications, vol. 16, no. 6, pp , J. Kåredal, F. Tufvesson, T. Abbas, O. Klemp, A. Paier, L. Bernadó, A. Molisch, Radio channel measurements at street intersections for vehicle-to-vehicle applications, Proc. IEEE Vehicular Technology Conference (VTC2010-spring), Taipei, Taiwan, pp. 1-5, May 16-19, A. Paier, L. Bernadó, J. Kåredal, O. Klemp, A. Kwoczek, Overview of vehicle-to-vehicle radio channel measurements for collision avoidance applications, Proc. IEEE Vehicular Technology Conference (VTC2010-spring), Taipei, Taiwan, pp. 1-5, May 16-19, A. Molisch, F. Tufvesson, J. Kåredal, C. Mecklenbräuker, Propagation aspects of vehicle-to-vehicle communications - an overview, Proc. IEEE Radio and Wirless Symposium (RWS), San Diego, CA, USA, pp , Jan , J. Kåredal, F. Tufvesson, N. Czink, A. Paier, C. Dumard, T. Zemen, C. Mecklenbräuker, A. Molisch, Measurement-based modeling of vehicle-to-vehicle MIMO channels, Proc. IEEE International Conference on Communications (ICC), Dresden, Germany, June 14-18, /12/2018 SUMMER SCHOOL ON 5G V2X COMMUNICATIONS - TAIMOOR.ABBAS@VOLVOCARS.COM 34

35 Selected publications A. Paier, T. Zemen, J. Kåredal, N. Czink, C. Dumard, F. Tufvesson, C. Mecklenbräuker, A. Molisch, Spatial diversity and spatial correlation evaluation of measured vehicle-to-vehicle radio channels at 5.2 GHz, Proc. IEEE Digital Signal Processing Workshop/Signal Processing Education Workshop (DSP/SPE), pp , Jan 1-4, L. Bernadó, T. Zemen, A. Paier, J. Kåredal, B. Fleury, Parametrization of the local scattering function estimator for vehicular-to-vehicular channels, Proc. IEEE Vehicular Technology Conference (VTC2009-fall), Anchorage, AK, USA, pp. 1-5, Sept , A. Paier, T. Zemen, L. Bernado, G. Matz, J. Kåredal, N. Czink, C. Dumard, F. Tufvesson, A. Molisch, C. Mecklenbräuker, Non-WSSUS vehicular channel characterization in highway and urban scenarios at 5.2 GHz using the local scattering function, Proc. International Workshop on Smart Antennas (WSA), pp. 9-15, L. Bernadó, T. Zemen, A. Paier, G. Matz, J. Kåredal, N. Czink, C. Dumard, F. Tufvesson, M. Hagenauer, A. Molisch, C. F. Mecklenbräuker, Non-WSSUS Vehicular Channel Characterization at 5.2 GHz - Spectral Divergence and Time-Variant Coherence Parameters, Proc. URSI General Assembly, A. Paier, J. Kåredal, N. Czink, H. Hofstetter, C. Dumard, T. Zemen, F. Tufvesson, C. Mecklenbräuker, A. Molisch, First results from car-to-car and car-to-infrastructure radio channel measurements at 5.2GHz, Proc. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Athens, Greece, pp. 1-5, Sept. 3-7, A. Paier, J. Kåredal, N. Czink, H. Hofstetter, C. Dumard, T. Zemen, F. Tufvesson, A. Molisch, C. Mecklenbräuker, Car-tocar radio channel measurements at 5 GHz: Pathloss, power-delay profile, and delay-doppler spectrum, Proc. IEEE International Symposium on Wireless Communication Systems (ISWCS), Trondheim, Norway, pp , Oct , /12/2018 SUMMER SCHOOL ON 5G V2X COMMUNICATIONS - TAIMOOR.ABBAS@VOLVOCARS.COM 35

36 Selected publications C. Mecklenbräuker, A. Molisch, J. Karedal, F. Tufvesson, A. Paier, L. Bernadó, T. Zemen, O. Klemp, N. Czink: Vehicular channel characterization and its implications for wireless system design and performance, Proceedings of the IEEE, Vol. 99, No. 7, pp , T. Abbas, J. Karedal, F. Tufvesson, A. Paier, L. Bernadó, A. Molisch: Directional Analysis of Vehicle-to-Vehicle Propagation Channels, IEEE Vehicular Technology Conference, IEEE 73rd Vehicular Technology Conference 2011-spring, Budapest, Hungary, / T. Abbas, and F. Tufvesson: Line-of-Sight Obstruction Analysis for Vehicle-to-Vehicle Network Simulations in a Two Lane Highway Scenario, Hindawi International Journal of Antennas and Propagation, Special Issue on Radio Wave Propagation and Wireless Channel Modeling (In press) T. Abbas, L. Bernadó, A. Thiel, C. F. Mecklenbräuker, and F. Tufvesson: Radio Channel Properties for Vehicular Communication: Merging Lanes Versus Urban Intersections, IEEE Vehicular Technology Magazine, December, 2013 (Invited paper) T. Abbas, J. Kåredal, and F. Tufvesson: Measurement-Based Analysis: The Effect of Complementary Antennas and Diversity on Vehicle-to-Vehicle Communication, IEEE Antennas and Wireless Propagation Letters, T. Abbas, J. Nuckelt, T. Kürner, T. Zemen, C. Mecklenbräuker, and F. Tufvesson: Simulation and Measurement Based Vehicle-to-Vehicle Channel Characterization: Accuracy and Constraint Analysis (Accepted with major revision, 2014 to IEEE Transactions on Antennas and Propagations). T. Abbas: Measurement Based Channel Characterization and Modeling for Vehicle-to-Vehicle Communications, Series of licentiate and doctoral dissertations, ISSN X (No. 58), Department of Electrical and Information Technology, Lund University, Sweden, /12/2018 SUMMER SCHOOL ON 5G V2X COMMUNICATIONS - TAIMOOR.ABBAS@VOLVOCARS.COM 36

37 Selected publications M. Boban, J. Barros, and O. Tonguz, Geometry-based vehicle-to-vehicle channel modeling for large-scale simulation, IEEE Transactions on Vehicular Technology, Vol. 63, No. 9, November 2014 Mikael G. Nilsson et. al On Multilink Shadowing Effects in Measured V2V Channels on Highway, 2016 Mikael G. Nilsson et. al A Measurement-Based Multilink Shadowing Model for V2V Network simulations of Highway Scenarios, 2017 Mikael G. Nilsson et. al A Path Loss and Shadowing Model for Multilink Vehicle-to-Vehicle Channels in Urban Intersections, 2018 Mate Boban et. Al Multi-band Spatio-Temporal Characterization of a V2V Environment Under Blockage, /12/2018 SUMMER SCHOOL ON 5G V2X COMMUNICATIONS - TAIMOOR.ABBAS@VOLVOCARS.COM 37

Overview of Vehicle-to-Vehicle Radio Channel Measurements for Collision Avoidance Applications

Overview of Vehicle-to-Vehicle Radio Channel Measurements for Collision Avoidance Applications EUROPEAN COOPERATION IN THE FIELD OF SCIENTIFIC AND TECHNICAL RESEARCH EURO-COST COST 1 TD(9) 98 Vienna, Austria September 8 3, 9 SOURCE: 1 Institut für Nachrichten- und Hochfrequenztechnik, Technische

More information

Measurements Based Channel Characterization for Vehicle-to-Vehicle Communications at Merging Lanes on Highway

Measurements Based Channel Characterization for Vehicle-to-Vehicle Communications at Merging Lanes on Highway Measurements Based Channel Characterization for Vehicle-to-Vehicle Communications at Merging Lanes on Highway Abbas, Taimoor; Bernado, Laura; Thiel, Andreas; F. Mecklenbräuker, Christoph; Tufvesson, Fredrik

More information

Description of Vehicle-to-Vehicle and Vehicle-to-Infrastructure Radio Channel Measurements at 5.2 GHz

Description of Vehicle-to-Vehicle and Vehicle-to-Infrastructure Radio Channel Measurements at 5.2 GHz MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Description of Vehicle-to-Vehicle and Vehicle-to-Infrastructure Radio Channel Measurements at 5.2 GHz Alexander Paier, Johan Karedal, Thomas

More information

In-tunnel vehicular radio channel characterization

In-tunnel vehicular radio channel characterization In-tunnel vehicular radio channel characterization Bernadó, Laura; Roma, Anna; Paier, Alexander; Zemen, Thomas; Czink, Nicolai; Kåredal, Johan; Thiel, Andreas; Tufvesson, Fredrik; Molisch, Andreas; Mecklenbrauker,

More information

Car-to-car radio channel measurements at 5 GHz: Pathloss, power-delay profile, and delay-doppler spectrum

Car-to-car radio channel measurements at 5 GHz: Pathloss, power-delay profile, and delay-doppler spectrum Car-to-car radio channel measurements at 5 GHz: Pathloss, power-delay profile, and delay-doppler spectrum Alexander Paier 1, Johan Karedal 4, Nicolai Czink 1,2, Helmut Hofstetter 3, Charlotte Dumard 2,

More information

Car-to-Car Radio Channel Measurements at 5 GHz: Pathloss, Power-Delay Profile, and Delay-Doppler Sprectrum

Car-to-Car Radio Channel Measurements at 5 GHz: Pathloss, Power-Delay Profile, and Delay-Doppler Sprectrum MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Car-to-Car Radio Channel Measurements at 5 GHz: Pathloss, Power-Delay Profile, and Delay-Doppler Sprectrum Alexander Paier, Johan Karedal,

More information

Geometry-Based Propagation Modeling and Simulation of Vehicle-to-Infrastructure Links

Geometry-Based Propagation Modeling and Simulation of Vehicle-to-Infrastructure Links Geometry-Based Propagation Modeling and Simulation of Vehicle-to-Infrastructure Links Bengi Aygun, Mate Boban, Joao P. Vilela, and Alexander M. Wyglinski Department of Electrical and Computer Engineering,

More information

IEEE VTS Workshop on Wireless Vehicular Communications, Halmstad, Nov 11, 2015

IEEE VTS Workshop on Wireless Vehicular Communications, Halmstad, Nov 11, 2015 On Multilink Shadowing Effects in Measured V2V Channels on Highway Mikael Nilsson Industrial Ph.D. student - Lund University / Volvo Cars Presented by: Carl Gustafson Post-Doc. - Lund University Mikael

More information

Millimeter Wave Small-Scale Spatial Statistics in an Urban Microcell Scenario

Millimeter Wave Small-Scale Spatial Statistics in an Urban Microcell Scenario Millimeter Wave Small-Scale Spatial Statistics in an Urban Microcell Scenario Shu Sun, Hangsong Yan, George R. MacCartney, Jr., and Theodore S. Rappaport {ss7152,hy942,gmac,tsr}@nyu.edu IEEE International

More information

Radio Channel Measurements at Street Intersections for Vehicle-to-Vehicle Safety Applications

Radio Channel Measurements at Street Intersections for Vehicle-to-Vehicle Safety Applications Radio Channel Measurements at Street Intersections for Vehicle-to-Vehicle Safety Applications Johan Karedal, Fredrik Tufvesson, Taimoor Abbas, Oliver Klemp 2, Alexander Paier 3, Laura Bernadó 4, and Andreas

More information

EITN85, FREDRIK TUFVESSON, JOHAN KÅREDAL ELECTRICAL AND INFORMATION TECHNOLOGY. Why do we need UWB channel models?

EITN85, FREDRIK TUFVESSON, JOHAN KÅREDAL ELECTRICAL AND INFORMATION TECHNOLOGY. Why do we need UWB channel models? Wireless Communication Channels Lecture 9:UWB Channel Modeling EITN85, FREDRIK TUFVESSON, JOHAN KÅREDAL ELECTRICAL AND INFORMATION TECHNOLOGY Overview What is Ultra-Wideband (UWB)? Why do we need UWB channel

More information

Time- and Frequency-Varying K-Factor of. Non-Stationary Vehicular Channels for Safety Relevant Scenarios

Time- and Frequency-Varying K-Factor of. Non-Stationary Vehicular Channels for Safety Relevant Scenarios Time- and Frequency-Varying K-Factor of 1 Non-Stationary Vehicular Channels for Safety Relevant Scenarios Laura Bernadó, Member, IEEE, Thomas Zemen, Senior Member, IEEE, Fredrik arxiv:136.3914v3 [cs.ni]

More information

UWB Channel Modeling

UWB Channel Modeling Channel Modeling ETIN10 Lecture no: 9 UWB Channel Modeling Fredrik Tufvesson & Johan Kåredal, Department of Electrical and Information Technology fredrik.tufvesson@eit.lth.se 2011-02-21 Fredrik Tufvesson

More information

Channel Modeling ETI 085

Channel Modeling ETI 085 Channel Modeling ETI 085 Overview Lecture no: 9 What is Ultra-Wideband (UWB)? Why do we need UWB channel models? UWB Channel Modeling UWB channel modeling Standardized UWB channel models Fredrik Tufvesson

More information

Relaying for IEEE p at Road Intersection Using a Vehicular Non-Stationary Channel Model

Relaying for IEEE p at Road Intersection Using a Vehicular Non-Stationary Channel Model Relaying for IEEE 82.p at Road Intersection Using a Vehicular Non-Stationary Channel Model Zhinan Xu, Laura Bernadó, Mingming Gan, Markus Hofer, Taimoor Abbas, Veronika Shivaldova, Kim Mahler, Dieter Smely,

More information

Vehicle-to-Vehicle Radio Channel Characterization in Urban Environment at 2.3 GHz and 5.25 GHz

Vehicle-to-Vehicle Radio Channel Characterization in Urban Environment at 2.3 GHz and 5.25 GHz Vehicle-to-Vehicle Radio Channel Characterization in Urban Environment at.3 GHz and 5.5 GHz Antti Roivainen, Praneeth Jayasinghe, Juha Meinilä, Veikko Hovinen, Matti Latva-aho Department of Communications

More information

This is the author s final accepted version.

This is the author s final accepted version. El-Sallabi, H., Aldosari, A. and Abbasi, Q. H. (2017) Modeling of Fading Figure for Non-stationary Indoor Radio Channels. In: 16th Mediterranean Microwave Symposium (MMS 2016), Abu Dhabi, UAE, 14-16 Nov

More information

In-situ vehicular antenna integration and design aspects for vehicle-to-vehicle communications

In-situ vehicular antenna integration and design aspects for vehicle-to-vehicle communications In-situ vehicular antenna integration and design aspects for vehicle-to-vehicle communications Thiel, Andreas; Klemp, Oliver; Paier, Aleander; Bernadó, Laura; Kåredal, Johan; Kwoczek, Andreas Published

More information

Mobile-to-Mobile Wireless Channels

Mobile-to-Mobile Wireless Channels Mobile-to-Mobile Wireless Channels Alenka Zajic ARTECH HOUSE BOSTON LONDON artechhouse.com Contents PREFACE xi ma Inroduction 1 1.1 Mobile-to-Mobile Communication Systems 2 1.1.1 Vehicle-to-Vehicle Communication

More information

Shadow Fading Model for Vehicle-to-Vehicle Network Simulators

Shadow Fading Model for Vehicle-to-Vehicle Network Simulators Shadow Fading Model for Vehicle-to-Vehicle Network Simulators Abbas, Taimoor; Kåredal, Johan; Tufvesson, Fredrik Published in: [Host publication title missing] Published: 212-1-1 Link to publication Citation

More information

A Measurement Based Shadow Fading Model for Vehicle-to-Vehicle Network Simulations

A Measurement Based Shadow Fading Model for Vehicle-to-Vehicle Network Simulations A Measurement Based Shadow Fading Model for Vehicle-to-Vehicle Network Simulations Taimoor Abbas, Katrin Sjöberg, Johan Karedal and Fredrik Tufvesson arxiv:23.337v5 [cs.ni] 7 Feb 25 Abstract The vehicle-to-vehicle

More information

Measurement Based Shadow Fading Model for Vehicle-to-Vehicle Network Simulations

Measurement Based Shadow Fading Model for Vehicle-to-Vehicle Network Simulations 1 Measurement Based Shadow Fading Model for Vehicle-to-Vehicle Network Simulations Taimoor Abbas, Student Member, IEEE, Fredrik Tufvesson, Senior Member, IEEE, Katrin Sjöberg, Student Member, IEEE, and

More information

Network-Scale Emulation of General Wireless Channels

Network-Scale Emulation of General Wireless Channels Network-Scale Emulation of General Wireless Channels Xiaohui Wang, Kevin Borries, Eric Anderson, and Peter Steenkiste Carnegie Mellon University Pittsburgh, PA Abstract This paper presents a framework

More information

Channel Modelling ETIM10. Channel models

Channel Modelling ETIM10. Channel models Channel Modelling ETIM10 Lecture no: 6 Channel models Fredrik Tufvesson Department of Electrical and Information Technology Lund University, Sweden Fredrik.Tufvesson@eit.lth.se 2012-02-03 Fredrik Tufvesson

More information

Channel Modelling ETIN10. Directional channel models and Channel sounding

Channel Modelling ETIN10. Directional channel models and Channel sounding Channel Modelling ETIN10 Lecture no: 7 Directional channel models and Channel sounding Ghassan Dahman / Fredrik Tufvesson Department of Electrical and Information Technology Lund University, Sweden 2014-02-17

More information

MIMO Channel Measurements for Personal Area Networks

MIMO Channel Measurements for Personal Area Networks MIMO Channel Measurements for Personal Area Networks Anders J Johansson, Johan Karedal, Fredrik Tufvesson, and Andreas F. Molisch,2 Department of Electroscience, Lund University, Box 8, SE-22 Lund, Sweden,

More information

Results from a MIMO Channel Measurement at 300 MHz in an Urban Environment

Results from a MIMO Channel Measurement at 300 MHz in an Urban Environment Measurement at 0 MHz in an Urban Environment Gunnar Eriksson, Peter D. Holm, Sara Linder and Kia Wiklundh Swedish Defence Research Agency P.o. Box 1165 581 11 Linköping Sweden firstname.lastname@foi.se

More information

EITN85, FREDRIK TUFVESSON ELECTRICAL AND INFORMATION TECHNOLOGY

EITN85, FREDRIK TUFVESSON ELECTRICAL AND INFORMATION TECHNOLOGY Wireless Communication Channels Lecture 6: Channel Models EITN85, FREDRIK TUFVESSON ELECTRICAL AND INFORMATION TECHNOLOGY Content Modelling methods Okumura-Hata path loss model COST 231 model Indoor models

More information

LTE-ADVANCED AND NEXT GENERATION WIRELESS NETWORKS

LTE-ADVANCED AND NEXT GENERATION WIRELESS NETWORKS LTE-ADVANCED AND NEXT GENERATION WIRELESS NETWORKS CHANNEL MODELLING AND PROPAGATION Editors Guillaume de la Roche Mindspeed Technologies, France Andres Alayon Glazunov KTH Royal Institute of Technology,

More information

5.9 GHz V2X Modem Performance Challenges with Vehicle Integration

5.9 GHz V2X Modem Performance Challenges with Vehicle Integration 5.9 GHz V2X Modem Performance Challenges with Vehicle Integration October 15th, 2014 Background V2V DSRC Why do the research? Based on 802.11p MAC PHY ad-hoc network topology at 5.9 GHz. Effective Isotropic

More information

5 GHz Radio Channel Modeling for WLANs

5 GHz Radio Channel Modeling for WLANs 5 GHz Radio Channel Modeling for WLANs S-72.333 Postgraduate Course in Radio Communications Jarkko Unkeri jarkko.unkeri@hut.fi 54029P 1 Outline Introduction IEEE 802.11a OFDM PHY Large-scale propagation

More information

Improving the Accuracy of Environment-specific Vehicular Channel Modeling

Improving the Accuracy of Environment-specific Vehicular Channel Modeling Improving the Accuracy of Environment-specific Vehicular Channel Modeling Xiaohui Wang, Eric Anderson, Peter Steenkiste, and Fan Bai* Carnegie Mellon University *Electrical & Controls Integration Lab Pittsburgh,

More information

A Measurement Based Shadow Fading Model for Vehicle-to-Vehicle Network Simulations

A Measurement Based Shadow Fading Model for Vehicle-to-Vehicle Network Simulations A Measurement Based Shadow Fading Model for Vehicle-to-Vehicle Network Simulations Abbas, Taimoor; Sjöberg, Katrin; Kåredal, Johan; Tufvesson, Fredrik Published in: International Journal of Antennas and

More information

VANET Topology Characteristics under Realistic Mobility and Channel Models

VANET Topology Characteristics under Realistic Mobility and Channel Models 2013 IEEE Wireless Communications and Networking Conference (WCNC): NETWORKS VANET Topology Characteristics under Realistic Mobility and Channel Models Nabeel Akhtar, Oznur Ozkasap & Sinem Coleri Ergen

More information

Characterization of MIMO Channels for Handheld Devices in Personal Area Networks at 5 GHz

Characterization of MIMO Channels for Handheld Devices in Personal Area Networks at 5 GHz Characterization of MIMO Channels for Handheld Devices in Personal Area Networks at 5 GHz Johan Karedal, Anders J Johansson, Fredrik Tufvesson, and Andreas F. Molisch ;2 Dept. of Electroscience, Lund University,

More information

Channel Modelling ETIM10. Propagation mechanisms

Channel Modelling ETIM10. Propagation mechanisms Channel Modelling ETIM10 Lecture no: 2 Propagation mechanisms Ghassan Dahman \ Fredrik Tufvesson Department of Electrical and Information Technology Lund University, Sweden 2012-01-20 Fredrik Tufvesson

More information

5G Antenna Design & Network Planning

5G Antenna Design & Network Planning 5G Antenna Design & Network Planning Challenges for 5G 5G Service and Scenario Requirements Massive growth in mobile data demand (1000x capacity) Higher data rates per user (10x) Massive growth of connected

More information

Number of Multipath Clusters in. Indoor MIMO Propagation Environments

Number of Multipath Clusters in. Indoor MIMO Propagation Environments Number of Multipath Clusters in Indoor MIMO Propagation Environments Nicolai Czink, Markus Herdin, Hüseyin Özcelik, Ernst Bonek Abstract: An essential parameter of physical, propagation based MIMO channel

More information

Cross-correlation Characteristics of Multi-link Channel based on Channel Measurements at 3.7GHz

Cross-correlation Characteristics of Multi-link Channel based on Channel Measurements at 3.7GHz Cross-correlation Characteristics of Multi-link Channel based on Channel Measurements at 3.7GHz Myung-Don Kim*, Jae Joon Park*, Hyun Kyu Chung* and Xuefeng Yin** *Wireless Telecommunications Research Department,

More information

Pathloss Estimation Techniques for Incomplete Channel Measurement Data

Pathloss Estimation Techniques for Incomplete Channel Measurement Data Pathloss Estimation Techniques for Incomplete Channel Measurement Data Abbas, Taimoor; Gustafson, Carl; Tufvesson, Fredrik Unpublished: 2014-01-01 Link to publication Citation for published version (APA):

More information

Comparing Radio Propagation Channels Between 28 and 140 GHz Bands in a Shopping Mall

Comparing Radio Propagation Channels Between 28 and 140 GHz Bands in a Shopping Mall S. L. H. Nguyen et al., Comparing Radio Propagation Channels Between 28 and 14 GHz Bands in a Shopping Mall, to be published in 218 European Conference on Antennas and Propagation (EuCAP), London, UK,

More information

Distance Dependent Radiation Patterns in Vehcile-to-Vehicle Communications

Distance Dependent Radiation Patterns in Vehcile-to-Vehicle Communications SP Technical Research Institute of Sweden Distance Dependent Radiation Patterns in Vehcile-to-Vehicle Communications Kristian Karlsson, Jan Carlsson, Torbjörn Andersson, Magnus Olbäck, Lennart Strandberg,

More information

Interference Scenarios and Capacity Performances for Femtocell Networks

Interference Scenarios and Capacity Performances for Femtocell Networks Interference Scenarios and Capacity Performances for Femtocell Networks Esra Aycan, Berna Özbek Electrical and Electronics Engineering Department zmir Institute of Technology, zmir, Turkey esraaycan@iyte.edu.tr,

More information

Performance, Accuracy and Generalization Capability of Indoor Propagation Models in Different Types of Buildings

Performance, Accuracy and Generalization Capability of Indoor Propagation Models in Different Types of Buildings Performance, Accuracy and Generalization Capability of Indoor Propagation Models in Different Types of Buildings Gerd Wölfle, Philipp Wertz, and Friedrich M. Landstorfer Institut für Hochfrequenztechnik,

More information

Measurements and Metrology for 5G

Measurements and Metrology for 5G Measurements and Metrology for 5G Nada Golmie Wireless Networks Division Communications Technology National Institute of Standards and Technology NIST s Communication Technology - Mission Material Measurement

More information

Directional channel model for ultra-wideband indoor applications

Directional channel model for ultra-wideband indoor applications First published in: ICUWB 2009 (September 9-11, 2009) Directional channel model for ultra-wideband indoor applications Malgorzata Janson, Thomas Fügen, Thomas Zwick, and Werner Wiesbeck Institut für Hochfrequenztechnik

More information

The Radio Channel. COS 463: Wireless Networks Lecture 14 Kyle Jamieson. [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P.

The Radio Channel. COS 463: Wireless Networks Lecture 14 Kyle Jamieson. [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P. The Radio Channel COS 463: Wireless Networks Lecture 14 Kyle Jamieson [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P. Steenkiste] Motivation The radio channel is what limits most radio

More information

Stationarity Region of Mm-Wave Channel Based on Outdoor Microcellular Measurements at 28 GHz

Stationarity Region of Mm-Wave Channel Based on Outdoor Microcellular Measurements at 28 GHz Stationarity Region of Mm-Wave Channel Based on Outdoor Microcellular Measurements at 28 GHz R. Wang 1, Student Member, IEEE, C. U. Bas 1, Student Member, IEEE, S. Sangodoyin 1, Student Member, IEEE, S.

More information

Radio channel modeling: from GSM to LTE

Radio channel modeling: from GSM to LTE Radio channel modeling: from GSM to LTE and beyond Alain Sibille Telecom ParisTech Comelec / RFM Outline Introduction: why do we need channel models? Basics Narrow band channels Wideband channels MIMO

More information

Performance Evaluation of Mobile Wireless Communication Channel Gangeshwar Singh 1 Vaseem Khan 2

Performance Evaluation of Mobile Wireless Communication Channel Gangeshwar Singh 1 Vaseem Khan 2 IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 11, 2015 ISSN (online): 2321-0613 Performance Evaluation of Mobile Wireless Communication Channel Gangeshwar Singh 1 Vaseem

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2003 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

Simulation of Outdoor Radio Channel

Simulation of Outdoor Radio Channel Simulation of Outdoor Radio Channel Peter Brída, Ján Dúha Department of Telecommunication, University of Žilina Univerzitná 815/1, 010 6 Žilina Email: brida@fel.utc.sk, duha@fel.utc.sk Abstract Wireless

More information

MIMO Wireless Communications

MIMO Wireless Communications MIMO Wireless Communications Speaker: Sau-Hsuan Wu Date: 2008 / 07 / 15 Department of Communication Engineering, NCTU Outline 2 2 MIMO wireless channels MIMO transceiver MIMO precoder Outline 3 3 MIMO

More information

January doc.: thz_THz_Wireless_Communications_Challenges_and_Opportunities

January doc.: thz_THz_Wireless_Communications_Challenges_and_Opportunities January 2017 doc.: 15-17-0007-00-0thz_THz_Wireless_Communications_Challenges_and_Opportunities Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: THz Wireless

More information

Evaluation of V2X Antenna Performance Using a Multipath Simulation Tool

Evaluation of V2X Antenna Performance Using a Multipath Simulation Tool Evaluation of V2X Antenna Performance Using a Multipath Simulation Tool Edith Condo Neira 1, Ulf Carlberg 1, Jan Carlsson 1,2, Kristian Karlsson 1, Erik G. Ström 2 1 SP Technical Research Institute of

More information

Performance Evaluation of Mobile Wireless Communication Channel in Hilly Area Gangeshwar Singh 1 Kalyan Krishna Awasthi 2 Vaseem Khan 3

Performance Evaluation of Mobile Wireless Communication Channel in Hilly Area Gangeshwar Singh 1 Kalyan Krishna Awasthi 2 Vaseem Khan 3 IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 11, 2015 ISSN (online): 2321-0613 Performance Evaluation of Mobile Wireless Communication Channel in Area Gangeshwar Singh

More information

Testing c2k Mobile Stations Using a Digitally Generated Faded Signal

Testing c2k Mobile Stations Using a Digitally Generated Faded Signal Testing c2k Mobile Stations Using a Digitally Generated Faded Signal Agenda Overview of Presentation Fading Overview Mitigation Test Methods Agenda Fading Presentation Fading Overview Mitigation Test Methods

More information

Written Exam Channel Modeling for Wireless Communications - ETIN10

Written Exam Channel Modeling for Wireless Communications - ETIN10 Written Exam Channel Modeling for Wireless Communications - ETIN10 Department of Electrical and Information Technology Lund University 2017-03-13 2.00 PM - 7.00 PM A minimum of 30 out of 60 points are

More information

Influence of moving people on the 60GHz channel a literature study

Influence of moving people on the 60GHz channel a literature study Influence of moving people on the 60GHz channel a literature study Authors: Date: 2009-07-15 Name Affiliations Address Phone email Martin Jacob Thomas Kürner Technische Universität Braunschweig Technische

More information

Kåredal, Johan; Johansson, Anders J; Tufvesson, Fredrik; Molisch, Andreas

Kåredal, Johan; Johansson, Anders J; Tufvesson, Fredrik; Molisch, Andreas Shadowing effects in MIMO channels for personal area networks Kåredal, Johan; Johansson, Anders J; Tufvesson, Fredrik; Molisch, Andreas Published in: [Host publication title missing] DOI:.9/VTCF.26.47

More information

Application Note 37. Emulating RF Channel Characteristics

Application Note 37. Emulating RF Channel Characteristics Application Note 37 Emulating RF Channel Characteristics Wireless communication is one of the most demanding applications for the telecommunications equipment designer. Typical signals at the receiver

More information

Finding a Closest Match between Wi-Fi Propagation Measurements and Models

Finding a Closest Match between Wi-Fi Propagation Measurements and Models Finding a Closest Match between Wi-Fi Propagation Measurements and Models Burjiz Soorty School of Engineering, Computer and Mathematical Sciences Auckland University of Technology Auckland, New Zealand

More information

Channel Modelling for Beamforming in Cellular Systems

Channel Modelling for Beamforming in Cellular Systems Channel Modelling for Beamforming in Cellular Systems Salman Durrani Department of Engineering, The Australian National University, Canberra. Email: salman.durrani@anu.edu.au DERF June 26 Outline Introduction

More information

Vehicular Communications: Survey and Challenges of Channel and Propagation Models

Vehicular Communications: Survey and Challenges of Channel and Propagation Models 1 Vehicular Communications: Survey and Challenges of Channel and Propagation Models Wantanee Viriyasitavat, Mate Boban, Hsin-Mu Tsai, and Athanasios V. Vasilakos Faculty of Information and Communication

More information

Stress Test Of Vehicular Communication Transceivers Using Software Defined Radio

Stress Test Of Vehicular Communication Transceivers Using Software Defined Radio Stress Test Of Vehicular Communication Transceivers Using Software Defined Radio Vlastaras, Dimitrios; Malkowsky, Steffen; Tufvesson, Fredrik Published in: 81st Vehicular Technology Conference Published:

More information

Channel Modelling ETI 085

Channel Modelling ETI 085 Channel Modelling ETI 085 Lecture no: 7 Directional channel models Channel sounding Why directional channel models? The spatial domain can be used to increase the spectral efficiency i of the system Smart

More information

arxiv: v1 [cs.it] 6 Dec 2018

arxiv: v1 [cs.it] 6 Dec 2018 1 Propagation Channels for mmwave Vehicular Communications: State-of-the-art and Future Research Directions Furqan Jameel, Shurjeel Wyne, Syed Junaid Nawaz, and Zheng Chang Abstract arxiv:1812.02483v1

More information

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 56, NO. 5, MAY

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 56, NO. 5, MAY IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 56, NO. 5, MAY 2008 1451 An Integrated Overview of the Open Literature s Empirical Data on the Indoor Radiowave Channel s Delay Properties Mohamad Khattar

More information

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Powered by TCPDF (www.tcpdf.org) This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Nguyen, Sinh; Järveläinen, Jan; Karttunen,

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2004 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

Statistical Modeling of Small-Scale Fading in Directional Radio Channels

Statistical Modeling of Small-Scale Fading in Directional Radio Channels 584 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 20, NO. 3, APRIL 2002 Statistical Modeling of Small-Scale Fading in Directional Radio Channels Ralf Kattenbach, Member, IEEE Abstract After a

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [60 GHz Channel Measurements for Video Supply in Trains, Busses and Aircraft Scenario] Date Submitted: [14

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2005 Lecture 6: Fading Last lecture: Large scale propagation properties of wireless systems - slowly varying properties that depend primarily

More information

II. MODELING SPECIFICATIONS

II. MODELING SPECIFICATIONS The 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC'07) EFFECT OF METAL DOOR ON INDOOR RADIO CHANNEL Jinwon Choi, Noh-Gyoung Kang, Jong-Min Ra, Jun-Sung

More information

mmwave Channel Propagation Modeling for V2X Communication Systems

mmwave Channel Propagation Modeling for V2X Communication Systems mmwave Channel Propagation Modeling for V2X Communication Systems Bogdan Antonescu ECE Department Northeastern University Email: antonescu.b@husky.neu.edu Miead Tehrani Moayyed ECE Department Northeastern

More information

The Measurement and Characterisation of Ultra Wide-Band (UWB) Intentionally Radiated Signals

The Measurement and Characterisation of Ultra Wide-Band (UWB) Intentionally Radiated Signals The Measurement and Characterisation of Ultra Wide-Band (UWB) Intentionally Radiated Signals Rafael Cepeda Toshiba Research Europe Ltd University of Bristol November 2007 Rafael.cepeda@toshiba-trel.com

More information

Published in: Proceedings of the 2004 International Symposium on Spread Spectrum Techniques and Applications

Published in: Proceedings of the 2004 International Symposium on Spread Spectrum Techniques and Applications Aalborg Universitet Measurements of Indoor 16x32 Wideband MIMO Channels at 5.8 GHz Nielsen, Jesper Ødum; Andersen, Jørgen Bach; Eggers, Patrick Claus F.; Pedersen, Gert F.; Olesen, Kim; Sørensen, E. H.;

More information

Antennas and Propagation. Chapter 6a: Propagation Definitions, Path-based Modeling

Antennas and Propagation. Chapter 6a: Propagation Definitions, Path-based Modeling Antennas and Propagation a: Propagation Definitions, Path-based Modeling Introduction Propagation How signals from antennas interact with environment Goal: model channel connecting TX and RX Antennas and

More information

Diffuse Scattering Models for mmwave V2X Communications in Urban Scenarios

Diffuse Scattering Models for mmwave V2X Communications in Urban Scenarios Diffuse Scattering Models for mmwave V2X Communications in Urban Scenarios Bogdan Antonescu ECE Department Northeastern University Email: antonescu.b@husky.neu.edu Miead Tehrani Moayyed ECE Department

More information

DOMINANT PATHS FOR THE FIELD STRENGTH PREDICTION

DOMINANT PATHS FOR THE FIELD STRENGTH PREDICTION DOMINANT PATHS FOR THE FIELD STRENGTH PREDICTION G. Wölfle and F. M. Landstorfer Institut für Hochfrequenztechnik, University of Stuttgart, Pfaffenwaldring 47, D-755 Stuttgart, Germany e-mail: woelfle@ihf.uni-stuttgart.de

More information

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to publication record in Explore Bristol Research PDF-document

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to publication record in Explore Bristol Research PDF-document Abdullah, NF., Piechocki, RJ., & Doufexi, A. (2010). Spatial diversity for IEEE 802.11p V2V safety broadcast in a highway environment. In ITU Workshop on Fully Networked Car, Geneva International Telecommunication

More information

On Predicting Large Scale Fading Characteristics with the MR-FDPF Method

On Predicting Large Scale Fading Characteristics with the MR-FDPF Method Author manuscript, published in "6th European Conference on Antennas and Propagation (EECAP) 212, Prague : Czech Republic (212)" On Predicting Large Scale Fading Characteristics with the MR-FDPF Method

More information

Revision of Lecture One

Revision of Lecture One Revision of Lecture One System blocks and basic concepts Multiple access, MIMO, space-time Transceiver Wireless Channel Signal/System: Bandpass (Passband) Baseband Baseband complex envelope Linear system:

More information

Wideband Channel Characterization. Spring 2017 ELE 492 FUNDAMENTALS OF WIRELESS COMMUNICATIONS 1

Wideband Channel Characterization. Spring 2017 ELE 492 FUNDAMENTALS OF WIRELESS COMMUNICATIONS 1 Wideband Channel Characterization Spring 2017 ELE 492 FUNDAMENTALS OF WIRELESS COMMUNICATIONS 1 Wideband Systems - ISI Previous chapter considered CW (carrier-only) or narrow-band signals which do NOT

More information

Unit 7 - Week 6 - Wide Sense Stationary Uncorrelated Scattering (WSSUS) Channel Model

Unit 7 - Week 6 - Wide Sense Stationary Uncorrelated Scattering (WSSUS) Channel Model X Courses» Introduction to Wireless and Cellular Communications Announcements Course Forum Progress Mentor Unit 7 - Week 6 - Wide Sense Stationary Uncorrelated Scattering (WSSUS) Channel Model Course outline

More information

MIMO Channel Modeling and Capacity Analysis for 5G Millimeter-Wave Wireless Systems

MIMO Channel Modeling and Capacity Analysis for 5G Millimeter-Wave Wireless Systems M. K. Samimi, S. Sun, T. S. Rappaport, MIMO Channel Modeling and Capacity Analysis for 5G Millimeter-Wave Wireless Systems, in the 0 th European Conference on Antennas and Propagation (EuCAP 206), April

More information

UWB Small Scale Channel Modeling and System Performance

UWB Small Scale Channel Modeling and System Performance UWB Small Scale Channel Modeling and System Performance David R. McKinstry and R. Michael Buehrer Mobile and Portable Radio Research Group Virginia Tech Blacksburg, VA, USA {dmckinst, buehrer}@vt.edu Abstract

More information

A MIMO Correlation Matrix based Metric for Characterizing Non-Stationarity

A MIMO Correlation Matrix based Metric for Characterizing Non-Stationarity A MIMO Correlation Matrix based Metric for Characterizing Non-Stationarity Markus Herdin and Ernst Bonek Institut für Nachrichtentechnik und Hochfrequenztechnik, Technische Universität Wien Gußhausstrasse

More information

IEEE Working Group on Mobile Broadband Wireless Access <http://grouper.ieee.org/groups/802/mbwa>

IEEE Working Group on Mobile Broadband Wireless Access <http://grouper.ieee.org/groups/802/mbwa> 2003-01-10 IEEE C802.20-03/09 Project Title IEEE 802.20 Working Group on Mobile Broadband Wireless Access Channel Modeling Suitable for MBWA Date Submitted Source(s)

More information

Ultra Wideband Radio Propagation Measurement, Characterization and Modeling

Ultra Wideband Radio Propagation Measurement, Characterization and Modeling Ultra Wideband Radio Propagation Measurement, Characterization and Modeling Rachid Saadane rachid.saadane@gmail.com GSCM LRIT April 14, 2007 achid Saadane rachid.saadane@gmail.com ( GSCM Ultra Wideband

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P82.15 Working Group for Wireless Personal Area Networks N (WPANs( WPANs) Title: [UWB Channel Model for Indoor Residential Environment] Date Submitted: [2 September, 24] Source: [Chia-Chin

More information

Effectiveness of a Fading Emulator in Evaluating the Performance of MIMO Systems by Comparison with a Propagation Test

Effectiveness of a Fading Emulator in Evaluating the Performance of MIMO Systems by Comparison with a Propagation Test Effectiveness of a Fading in Evaluating the Performance of MIMO Systems by Comparison with a Propagation Test A. Yamamoto *, T. Sakata *, T. Hayashi *, K. Ogawa *, J. Ø. Nielsen #, G. F. Pedersen #, J.

More information

ChSim A wireless channel simulator for OMNeT++

ChSim A wireless channel simulator for OMNeT++ ChSim A wireless channel simulator for OMNeT++ Simulation workshop TKN, TU Berlin September 08, 2006 Computer Networks Group Universität Paderborn Outline Introduction Example scenario, results & modeling

More information

Measured propagation characteristics for very-large MIMO at 2.6 GHz

Measured propagation characteristics for very-large MIMO at 2.6 GHz Measured propagation characteristics for very-large MIMO at 2.6 GHz Gao, Xiang; Tufvesson, Fredrik; Edfors, Ove; Rusek, Fredrik Published in: [Host publication title missing] Published: 2012-01-01 Link

More information

Small-Scale Fading I PROF. MICHAEL TSAI 2011/10/27

Small-Scale Fading I PROF. MICHAEL TSAI 2011/10/27 Small-Scale Fading I PROF. MICHAEL TSAI 011/10/7 Multipath Propagation RX just sums up all Multi Path Component (MPC). Multipath Channel Impulse Response An example of the time-varying discrete-time impulse

More information

WIRELESS COMMUNICATION TECHNOLOGIES (16:332:546) LECTURE 5 SMALL SCALE FADING

WIRELESS COMMUNICATION TECHNOLOGIES (16:332:546) LECTURE 5 SMALL SCALE FADING WIRELESS COMMUNICATION TECHNOLOGIES (16:332:546) LECTURE 5 SMALL SCALE FADING Instructor: Dr. Narayan Mandayam Slides: SabarishVivek Sarathy A QUICK RECAP Why is there poor signal reception in urban clutters?

More information

Indoor MIMO Channel Sounding at 3.5 GHz

Indoor MIMO Channel Sounding at 3.5 GHz Indoor MIMO Channel Sounding at 3.5 GHz Hanna Farhat, Yves Lostanlen, Thierry Tenoux, Guy Grunfelder, Ghaïs El Zein To cite this version: Hanna Farhat, Yves Lostanlen, Thierry Tenoux, Guy Grunfelder, Ghaïs

More information

Revision of Lecture One

Revision of Lecture One Revision of Lecture One System block Transceiver Wireless Channel Signal / System: Bandpass (Passband) Baseband Baseband complex envelope Linear system: complex (baseband) channel impulse response Channel:

More information

STATISTICAL DISTRIBUTION OF INCIDENT WAVES TO MOBILE ANTENNA IN MICROCELLULAR ENVIRONMENT AT 2.15 GHz

STATISTICAL DISTRIBUTION OF INCIDENT WAVES TO MOBILE ANTENNA IN MICROCELLULAR ENVIRONMENT AT 2.15 GHz EUROPEAN COOPERATION IN COST259 TD(99) 45 THE FIELD OF SCIENTIFIC AND Wien, April 22 23, 1999 TECHNICAL RESEARCH EURO-COST STATISTICAL DISTRIBUTION OF INCIDENT WAVES TO MOBILE ANTENNA IN MICROCELLULAR

More information

Chalmers Publication Library

Chalmers Publication Library Chalmers Publication Library Over-the-air performance testing of wireless terminals by data throughput measurements in reverberation chamber This document has been downloaded from Chalmers Publication

More information