CHAPTER 2 LITERATURE REVIEW

Size: px
Start display at page:

Download "CHAPTER 2 LITERATURE REVIEW"

Transcription

1 7 CHAPTER 2 LITERATURE REVIEW 2.1 INTRODUCTION The current state of knowledge in the area of fixture design and optimization is reviewed in this chapter. However, the Literature on fixture configuration system requires the details in the following areas: Machining errors Fixture design Workpiece model - rigid body model, workpiece-fixture elastic contact model and workpiece elastic model Fixture stability analysis Finite Element Method (FEM) Fixture configuration / Layout design Friction at workpiece-locator contact point Fixture layout optimization methods Clamping force optimization

2 8 Number of fixture elements optimization Genetic Algorithm (GA) Artificial Neural Networks (ANN) Design of Experiments (DOE) 2.2 STUDIES RELATED TO MACHINING ERRORS To begin with, imperfections in manufacturing processes induce machining errors in components. Machining errors are introduced, transformed and accumulated when the workpiece is being machined. Djurdjanovic and Ni (2001) proposed an analytical engineering tool for machining error analysis and root cause identification. Static form errors in the peripheral milling of complex thin-walled workpieces have been predicted by Wan et al (2005) using the finite element formulation. Also they investigated cutter modelling, finite element discretization of cutting forces, tool-workpiece coupling and variation of the workpiece s rigidity in milling. An error compensation model by considering the geometric and cutting force induced errors in a 3-axis CNC milling machine has been proposed (Raksiri and Parnichkun 2004) and the combination of geometric and cutting force induced errors are modelled by the combined back propagation neural network. The influence of the wear of the cutting tool on machining errors has been demonstrated by an experimental study (Rahou et al 2010) and the circularity error has been evaluated from the measured profiles using computational geometric techniques (Venkaiah and Shunmugam 2007). Abdullah et al (2011) quantified geometric and dimensional error of an Autonomous Underwater Vehicle (AUV) propeller blade by comparing the profiles obtained from

3 9 optical method. They reported that the thickness error depends on deformation ratio of the blade. Wang et al (2005) addressed the special features of the deformation analysis between complex shaped components and fixture elements and reported that the deformation error of the fixture depends on the fixture layout. Cioata and Kiss (2009) presented analytic models of calculus of the errors due to contact deformation between locators and workpiece using the finite element method in order to determine the contact deformation. Literature related to machining errors concludes that the part errors are mainly because of machining errors and 20% to 60% of the overall machining errors are caused due to fixture errors (Cioata and Kiss 2009). 2.3 STUDIES RELATED TO FIXTURE DESIGN Fixture is an important element in most of the manufacturing processes and related to machining errors the role of fixture is very crucial. Studies pertaining to the design of machining fixture are generally of two categories i. e. fixture analysis and fixture synthesis. While fixture analysis deals with forces and deformations, the fixture synthesis is concerned with the design of fixture configuration to completely immobilize the work part when subjected to external forces. In the fixture analysis and synthesis, a concern on the conditions for constraining a workpiece is critical. The essential requirement of fixturing is the century-old concept and the same has been extensively studied by Mishra et al (1987) and Markenscoff et al (1990) in the field of robotics with efficient algorithms to synthesize positive grips for bounded polyhedral objects. Chou et al (1989) developed a mathematical theory for automatic configuration of machining fixtures for prismatic parts. The performance of fixture has been analyzed

4 10 based on the popular screw theory and engineering mechanics. The determination of locating and clamping points on workpiece surface and the determination of clamping forces have also been synthesized. Trappey and Liu (1990) carried out a literature survey of fixture design automation and emphasized computer aided fixture design. In the frictionless case, Lakshminarayana (1978) investigated the minimum requirements for the form closure of a rigid body and proved that at least four and seven contacts are necessary to achieve force closure for 2D and 3D parts respectively. For the same frictionless case, Salisbury and Roth (1982) demonstrated that a necessary and sufficient condition for force closure is that a strictly positive linear combination of the primitive wrenches at contacts is zero and the primitive wrenches span the whole wrench space. Mishra and Silver (1989) later proved that when friction is taken into account, three contacts are sufficient in the planar case while four are adequate in the spatial case. A Projective Spatial Occupancy Enumeration (PSOE) approach has been applied as a representational and manipulating scheme for developing algorithms in automatic fixture configuration by Trappey and Liu (1993). King and Lazaro (1994) optimized fixture for a particular datum specification and sequence of operations. Then the fixture system has been analyzed and presented via the CAD system. Deiab and Elbestawi (2005) stated that the tangential friction force plays an important role in fixture configuration design and presented the results of an experimental investigation of the workpiece-fixture contact characteristics. Roy and Liao (2002) reported that stability analysis plays a critical role in determining the applicability of a fixture design and developed a computational methodology for quantitatively analyzing the stability of the workpiece in the automated fixture design environment.

5 11 Liu et al (2004) proposed an algorithm for searching form-closure grasps of hard fingers on the surface of a three-dimensional object represented by discrete points with the consideration of both frictional and frictionless cases. This algorithm starts to search a form-closure grasp from a randomly selected grasp using an efficient local search procedure until encountering a local minimum. Workpiece location error is examined by considering the fixture geometric error and elastic deformation of the fixture and workpiece due to fixturing forces (Raghu and Melkote 2005). The deformations at the contact points are obtained by solving a constrained optimization model and the experimental validation is also provided for several fixtureworkpiece variable levels using a machining fixture. Kang and Peng (2009) reported designing and fabricating fixtures can take up to 10-20% of the total cost of a manufacturing system and reviewed various approaches used in Computer-Aided Fixture Planning (CAFP). Wang et al (2010) presented a literature survey of computer aided fixture design and automation, including their approaches, requirements and working principles. Related to computer aided fixture design approaches, an interactive Computer Aided Fixture Design (CAFD) system using the Gauss Elimination Method for the design of a fixture to hold prismatic components during machining on a CNC machining centre is described by Krishnamachary and Reddy (2005). Cecil (1995), Pehlivan et al (2009) and Nee et al (1987) have reported the other feature-based methodologies in CAFD. Boyle et al (2011) reviewed over seventy-five CAFD tools and approaches in terms of the fixture design phases and technology and reported two research issues that require further effort. The first is that current CAFD research is segmented in nature and there remains a need to provide more cohesive fixture design support. Secondly, a greater focus is

6 12 required on supporting the detailed design of a fixture s physical structure. The general situation of research on agile fixture design is summarized and pointed out the achievements and deficiencies in the field of case-based agile fixture design (Li et al 2002). The automation of fixture design and integration of setup and fixture planning is discussed by Stampfer (2009). Boonsuk and Frank (2009) presented a methodology for the automated design of a fixturing system for a rapid machining process. An adaptive fixture design system with an evolutionary search algorithm has been developed by Fathianathan et al (2007) to deal with the automatic design changes to meet the requirements of different domains. Armillotta et al (2010) described the procedure for kinematic and tolerance analysis and demonstrated its significance on a sample case of fixture design. Kinematic analysis verifies that any relative motion between the part and the worktable is constrained and the tolerance analysis tests the robustness of part orientation with respect to manufacturing errors on datum surfaces. Luo et al (2011) developed a novel model for workpiece positioning analysis by using surface-to-surface signed distance function and a two-sided quadratic model for fixture locating analysis. This model has potential applications in fixture design, tolerance analysis and fault diagnosis. Studies related to fixture design show that fixture design has received considerable attention in recent years. However, little attention has been focused on the optimum fixture layout and clamping forces.

7 AI and Expert System in Fixture Design In recent years, artificial intelligence (AI) techniques are widely used in many engineering optimization problems and the usage of AI in the field of fixture design is also notable. Latombe and Ingrand (1980) described an expert system for automatic fixture design and Nee et al (1987) set forth an artificial intelligence system for the development of fixture design where the basic fixture elements are clamping elements, positioning and guiding elements, supporting and base elements. A methodology for the automated design and robotic assembly of modular fixturing systems based on the integration of state-of-the-art methodologies is also proposed (Gandhi and Thompson 1987). Ferreira and Liu (1988) dealt with the automatic generation of workpiece orientations on a machine for machining operations and Boerma and Kals (1988) described the automatic selection of the faces for the positioning, clamping and support of workpieces. An automated fixture-design system using a rule/objectbased approach to group the machining features into appropriate fixture setups, and to recommend suitable clamping, locating and supporting points has been developed by Senthilkumar et al (1992). Darvishi and Gill (1988) presented an exploratory approach to the design of fixtures using an expert system. An automatic fixture design using a development method together with a knowledge model is also proposed by Hunter et al (2010) and a semi-automated methodology to aid the generation of the fixture design for a given part design is developed by Peng et al (2011). Studies related to AI in fixture design reveal that the scope of AI is more intense in the field machining fixture layout design.

8 Modular Fixtures To improve flexibility in the manufacturing field, the dedicated fixtures are replaced by modular fixturing systems and these are most widely used in industry for job and batch production. Liu (1994) provided a systematic design method to help dedicated fixture users to convert into modular fixturing system users. Rong and Bai (1997) designed a modular fixture element assembly Relationship Graph (MFEARG) to represent combination relationships between fixture elements and developed algorithms to search all suitable fixturing unit candidates and mount them into appropriate positions on a baseplate with interference checking. A modular fixture design method based on case based reasoning (CBR) algorithm is proposed by Sun and Chen (2007). Zheng and Qian (2007) introduced a systematic study of 3-D modular fixtures, particularly for complex objects. For fixturing the object, seven fixels on the base plates are used to contact the object in various directions to achieve form closure. The importance of fixture design automation is emphasized and a general structure of the automated design system for modular fixture design system is presented (Vukelic et al 2009) and also a system for computer-aided fixture design has been verified by Vukelic et al (2011) which comprise of methods and techniques for fixture design and it allowed fixtures to be designed based on geometric features of workpiece, process planning and machining information.

9 STUDIES RELATED TO FIXTURE CONFIGURATION / LOCATING SCHEME The fixture configuration mainly consists of locators and clamps. The function of each locator is to provide a deterministic location of the workpiece whereas the function of each clamp is to exert suitable force on the surface of the workpiece to prevent it from losing contact with the locators. Based on the classical screw theory several formal methods for the fixture analysis have been developed. Most of the dedicated fixtures for prismatic parts are designed using the locating principle. Here, refers to 3 locators on the primary locating surface, 2 locators on the secondary locating surface and 1 locator on the tertiary locating surface of the workpiece. The twelve degrees of freedom of a free body in space are shown in Figure 2.1 and out of twelve, nine degrees of freedom are restricted by using locating principle as shown in Figures 2.2, 2.3 and 2.4. Source : Figure 2.1 Twelve degrees of freedom of a free body

10 16 Source : Figure 2.2 Three supports on the primary locating surface restrict five degrees of freedom Source : Figure 2.3 Addition of two locators on a side restricts eight degrees of freedom

11 17 Source : Figure 2.4 Addition of final locator to another side restricts nine degrees of freedom, completing the location Due to its less complexity and effectiveness, the locating scheme has been used by most of the researchers. Kang and Peng (2009) illustrated the locating method for a prismatic workpiece called valve body which is shown in Figure 2.5. The valve body is located by three perpendicular locating planes where the bottom surface of the valve body forms the primary locating plane, the secondary locating plane is the side surface contacting two locators and the tertiary locating plane is the side surface against one locator. Four vertical clamps have been applied on the top surface. For fixture clamping force optimization, the workpiece-fixture configuration used by Li and Melkote (2001a) is shown in Figure 2.6 where, L 1 -L 6 are the workpiece-fixture locator contacts and Xg, Yg, Zg, are the global coordinate frames. They (Li and Melkote 2001) also used locating scheme for optimizing fixture design based on workpiece

12 18 dynamics which is shown in Figure 2.7, where C 1 -C 4 are clamps. Figure 2.8 shows the N-2-1 fixturing scheme presented by S anchez et al (2006) in the Fixture analysis methods for calculating the contact load distribution and the valid clamping regions in the machining processes. Source: Kang and Peng (2009) Figure locating method for a valve body Source: Li and Melkote (2001) Figure 2.6 Fixture configuration with locating scheme

13 19 Source: Li and Melkote (2001) Figure fixturing scheme : L 1 -L 6, locators; C 1 -C 4, clamps Source: S anchez et al (2006) Figure 2.8 N-2-1 fixturing system The fixture-workpiece system considered to predict workpiece deformation using the finite element method reported by Siebenaler and Melkote (2005) is shown in Figure 2.9. In this study, a hollow block of rectangular section and uniform wall thickness has been restrained by a fixture layout. A fixture layout with two clamps for a rectangular hollow workpiece shown in Figure 2.10 has been used by

14 20 Raghu and Melkote (2005) for modelling of workpiece location error because of fixture geometric error and fixture-workpiece compliance. Literature related to locating scheme shows that most of the researchers have used locating scheme to constrain prismatic workpieces and literature for optimization of number of fixture elements is rarely found. Source: Siebenaler and Melkote (2005) Figure fixture layout for a hollow workpiece Source: Raghu and Melkote (2005) Figure 2.10 Schematic of fixture layout with 2 clamps

15 21 Studies related to locating schemes show that most researchers concentrated with layout and indicate that more attention can be given for optimization of number of locators. 2.5 STUDIES RELATED TO OPTIMUM FIXTURE LAYOUT DESIGN Fixture layout is the positioning of fixturing elements such as locators and clamps on the workpiece. The optimum fixture layout shows minimum elastic deformation of the workpiece under machining condition. Menassa and DeVries (1991) proposed a nonlinear optimization algorithm to determine the optimal positions of the three supports on the primary locating plane. Here, the support positions are design variables and the deflection of the workpiece is the objective function. Finite element analysis (FEA) is used for calculating deflection at selected points as the design criteria. Trappey et al (1995) used the finite element analysis (FEA) approach to estimate the dynamic stress-strain behavior of a work-piece when machining and clamping forces are applied and a mathematical optimization model has been formulated to minimize the deformation of a workpiece under the corresponding force effects for a feasible configuration. De Meter (1995) disclosed an algorithm using min-max loading criteria for optimal locations of locators and clamps. Kashyap and DeVries (1999) scheduled a nonlinear programming method of analysing and optimizing a fixture design for minimal workpiece deflection during machining. Finite Element Analysis (FEA) is used for calculating deflection at selected points. Li and Melkote (1999) used a nonlinear programming method to solve the layout optimization problem. The method minimizes workpiece location errors due to localized elastic deformation of the workpiece at the fixturing points

16 22 by optimally placing the locators and clamps around the workpiece. The problem of fixture synthesis for fixture elements placement (Wang 2000) and the problem of characterizing the accuracy of deterministic localization of fixtures (Wang 2002) have been addressed. The fixturing tolerance and stability verification have been explored by Kang et al (2003) with the framework of computer-aided fixture design verification based on geometric and kinematic models. Kim and Ding (2004) investigated the various aspects of optimal fixture layout design in multistation panel assembly processes which are variation modelling, design criteria and optimization methods. Different optimization methods have been explored and compared. Wang et al (2006) established the optimal fixture layout in a global range and it is especially suitable for the workpiece with complex surfaces. Zhu and Ding (2007) proposed an efficient algorithm for grasp synthesis and fixture layout design in discrete domain and it is implemented by solving a single linear program. Loose et al (2007) have developed a linear model to describe the dimensional variation propagation of machining processes through kinematic analysis of the relationships among fixture, datum, machine geometric errors, and the dimensional quality of the product. Zhu and Ding (2009) has carried out a comparative study on several widely used optimality criteria for fixture layout design and Vishnupriyan et al (2010) optimized machining fixture layout for tolerance requirements under the influence of locating errors. Qin et al (2006) have elucidated a general analysis methodology that is able to characterize the effects of localization source errors based on the position and orientation of the workpiece. Also they have presented locating correctness based on Venn diagram and a general algorithm to determine the locator number and layout (Qin et al 2010). Qin et al (2008)

17 23 developed a machining-dimension-based locating scheme design approach. In that approach, first the relationship is established between the machining dimensions and the Degrees of Freedoms (DOFs) to be constrained. Then, the fixture locating scheme is established to characterize the practical constrained DOFs of a workpiece in terms of the known locator number and positions. Genetic Algorithm (GA) has been proven to be a useful technique in solving optimization problems in engineering. Fixture design has a large solution space and requires a search tool to find the better design. GAs has been used by few researchers for fixture design and fixture layout problems. Vallapuzha et al (2002) reviewed the various optimization methods for optimizing the layout of fixture elements and reported that the best overall performance is provided by optimization methods that use both the genetic algorithm and continuous interpolation for the distribution of boundary conditions. The application of genetic algorithms to the fixture configuration optimization problem is presented by Wu and Chan (1996) while Kulankara et al (2002) expounded GA-based iterative fixture layout and clamping force design optimization procedure for a compliant workpiece. The algorithm minimizes the workpiece elastic deformation for the entire cutting process by alternatively varying the fixture layout and clamping force. Kaya (2006) has used GA integrated with a commercial finite element solver to find the optimal locator and clamp positions in 2D workpiece. Initially, GA is tested by using two test cases and it can be seen that the GA successfully converges to global minimum. Yildiz and Ozturk (2006) used hybrid enhanced genetic algorithm to select optimal machining parameters in turning operation. Then GA is used to optimize the 2D fixture layout. Prabhakaran et al (2007) posited a fixture layout

18 24 optimization method that uses genetic algorithm (GA) and Ant Colony Algorithm (ACA) separately. In this connection, three different number of node systems are defined on the same workpiece geometry to find the consistency in the performance of GA and ACA. For all three different number of node systems, the optimal solution, which is the most minimum deformation value among the entire possible layout is determined separately. The solution obtained using GA and ACA for each node system is compared with their respective optimal solution separately and ACA reports faster and accurate solutions. ACA is also used by Padmanaban et al (2009) for machining fixture layout design. Chen et al (2008) highlighted a fixture layout design and clamping force optimization procedure based on the GA and Finite Element Method (FEM). The objectives are minimizing the maximum deformation of the machined surfaces and maximizing the uniformity of the deformation. Padmanaban and Prabhakaran (2008) have exemplified an ACA and GA based fixture layout optimization with the objective of minimizing the dynamic response of the workpiece. A non-linear multivariable optimization model formulated by Ramesh and Jerald (2009) is tested for various stack-up conditions on a simple mechanical assembly using GA to get optimal tolerance value. Amaral et al (2005) developed a method for modelling workpiece boundary conditions and applied loads during a machining process using FEA. The workpiece boundary conditions are defined by locators and clamps and the locators are placed in a fixture configuration and clamps are modelled as point loads. The workpiece is loaded to model cutting forces during drilling and milling machining operations. The literature relevant to fixture layout optimization specifies that most of the researchers used FEM along with GA to optimize fixture

19 25 layouts and indicates that more attention can be focussed on workpiece elastic deformation to reduce part errors. 2.6 STUDIES RELATED TO FIXTURE LAYOUT AND CLAMPING FORCE OPTIMIZATION Along with fixture layout optimization only a few researchers have considered clamping force optimization to minimize machining errors. Few works are also carried out in determining the minimum clamping forces, required in the fixture system, because these are critical and decide the stick/slip conditions during machining. Since FEM is a better tool for determining the deformation of the workpiece, many researchers have used FEM with suitable optimization tools for fixture layout and clamping forces optimization problems. The influence of clamping preload and machining force on the surface quality of the machined workpiece is investigated by Liao and Hu (2001). They developed an integrated finite element analysis model of the entire fixture-workpiece system and found that the magnitude of surface error is linearly proportionally affected by the magnitudes of the external loads (clamping and machining forces). Also the analysis concluded that based on the material, structure and fixturing scheme of a workpiece, the clamping preloads and machining forces have different influences on the machined surface error. De Meter et al (2001) invented a linear, clamp pre-load (LCPL) model that computes the minimum required pre-loads necessary to prevent workpiece slip at the fixture-workpiece joints throughout the machining process. Li and Melkote (2001) offered a fixture layout and clamping force optimal synthesis approach that accounts for workpiece dynamics

20 26 during machining with the objective of minimizing the maximum positional error at the machining point. Also they (Li and Melkote 2001) pioneered a new method for determining the optimum clamping forces for a multiple clamp fixture work-piece system subjected to quasi-static machining loads and developed an algorithm for clamping force optimization based on contact mechanics. Xiong et al (2002) presented a qualitative analysis to minimize the sum of all normal contact forces and the maximum normal contact force. The problem of synthesizing robust optimal clamping schemes on three-dimensional parts with and without friction is addressed by Marin and Ferreira (2002). They proposed a method to compute optimum clamping forces and positions on cylindrical faces. Kang and Rong (2003) introduced a first comprehensive CAFDV framework which uses both geometric and kinetic models (Kang and Rong 2003c) to verify locating completeness, locating accuracy (Kang and Rong 2003a), and fixturing stability (Kang and Rong 2003b). The models have also been used for locating tolerance assignment and the determination of minimum clamping force required in machining operations. Raghu and Melkote (2004) modelled analytically the effect of clamping sequence on the workpiece location error for a fixture-workpiece system. An algorithmic procedure is designed to understand the change in forces and deformations as clamps are applied, whereas Deng and Melkote (2006) endorsed a model-based framework for determining the minimum required clamping forces that ensure the dynamic stability of fixtured workpiece during machining. It consists of a dynamic model for simulating the vibratory behavior during machining, a geometric model for capturing continuously changing geometry during machining, a static model for determining the contact deformation due to clamping, a model for checking dynamic stability and a

21 27 model determining the optimal set of clamping forces that satisfies the stability criteria. Hamedi (2005) has used Artificial Neural Network (ANN) for clamping force optimization to predict the deformation and it has been proved that ANN predicts the required output. Aoyama et al (2006) developed a clamping condition optimization system to determine the optimum clamping positions and clamping force by analyzing the deformation of the workpiece model using FEM. The genetic algorithm is applied to the optimization of clamping positions and the effectiveness is confirmed. S anchez et al (2006a) proposed two analysis methods for fixturing systems in machining to determine the most suitable clamping regions. Chen et al (2007) established a dual optimization model of fixture layout and dynamic clamping force for machining the thin-walled workpieces. Based on the optimal fixture layout dynamic clamping forces are optimized. The workpiece deformation has been analysed by using finite element method and a genetic algorithm has been developed to solve the optimization model. Weifang Chen et al (2008) proffered a fixture layout design and clamping force optimization procedure based on the GA and FEM, in which multi objective optimization procedure is used. The objectives are minimizing the maximum deformation of the machined surfaces and maximizing the uniformity of the deformation. The ANSYS software package has been used for FEM calculation of fitness values. Jiang and Meng (2010) have analyzed the workpiece elastic deformation caused by clamping force, its location and support location using the case of Aluminum alloy 6061 part. Sun et al (2011) have analyzed the clamping process using FEM to optimize fixture layout and clamping force for minimizing the workpiece deformation via GA.

22 28 Fixture layout and clamping forces optimization studies express the fact that FEM and GA are the most common techniques used and so due importance can be given on the influence of fixture layout and clamping forces on the overall workpice elastic deformation. 2.7 STUDIES RELATED TO MODELLING AND ANALYSIS OF WORKPIECE-FIXTURE SYSTEM Numerous research efforts have been reported in the past decades for modelling and analysis of machining fixture-workpiece systems. The majority of prior work treats the fixture-workpiece system as quasi-static and ignores the system dynamics. In reality, machining processes such as milling are characterized by periodic forces. Li and Melkote (1999) modelled the workpiece as elastic in the contact region and rigid elsewhere. The fixture is assumed to be completely rigid. The locators are modelled as displacement constraints that prevent workpiece translation in the normal direction. They modelled the clamping force as uniformly distributed force acting over the workpiece-clamp contact area and workpiece is considered as 3D. Static analysis is conducted to predict the elastic deformation by ignoring machining force. Li et al (2000) proposed a model for analysing the reaction forces and moments for machining fixtures with large contact areas and it has been developed using a contact mechanics approach where the workpiece is assumed to be elastic in the contact region and the fixture element is treated as rigid. The model has also been used to determine the minimum clamping force necessary to keep the workpiece in static equilibrium during machining. Kishnakumar et al (2002) considered the workpiece as elastic and the fixturing elements are rigid. Static analysis is considered to determine the workpiece deformation. Tan et al (2004) described the

23 29 modelling and analysis of optimal fixturing configurations by the methods of force closure, optimization, and FEM. Force closure has been employed to find optimal clamping positions and optimization is used for determining the minimum clamping forces required to balance the cutting forces. FEM is used to determine the deformation in the workpiece and fixtures. Satyanarayana and Melkote (2004) analysed the effects of different finite element boundary conditions on the deformation and reaction force predictions for a single fixture-workpiece contact. They developed specific guidelines for finite element modelling of locatorworkpiece/clamp-workpiece contacts. Song and Rong (2005) proposed a methodology to characterize fixture system s geometry constraint status with focus on under-constraint. Kaya (2006) used dynamic analysis to find out the deformation of the workpiece under machining. The entire tool path is discrtized into 13 load steps. The workpiece-fixture model is analysed with respect to tool movement. The workpiece is assumed to be elastic. The fixture is assumed to be completely rigid. Prabhakaran et al (2006) modelled the workpiece-fixture system by considering the workpiece as an elastic body and fixture as a rigid body. The locators are modelled as displacement constraints that prevent workpiece translation in the normal direction. The clamping force is modelled as point force. The workpiece is considered as 2D by assuming that the workpiece is subjected to plane stress. Static analysis is used to find out the elastic deformation of the workpiece under machining. Chen et al (2007) modelled the workpiecefixture system as semi-elastic contact model considering friction effect, where the materials are assumed linearly elastic. Each locator or support is represented by three orthogonal springs that provide restraints in the X, Y and Z directions and each clamp is similar to a locator but clamping force

24 30 in normal direction. The spring in normal direction is called normal spring and the other two springs are called tangential springs. The literature pertaining to modelling and analysis of workpiece-fixture system depicts most of the studies using either workpiece rigid-body model or workpiece-elastic contact model and the workpiece elastic deformation caused during machining is rarely considered. 2.8 STUDIES RELATED TO MODELLING OF MACHINING FORCES AND MATERIAL REMOVAL EFFECT The removal of the material during machining alters the geometry and the structural stiffness of the workpiece, in turn, leads to higher deformation. Thus, there is a need to consider material removal effects for achieving realistic results in the dynamic analysis. Kulankara et al (2002) used FEM to simulate the machining operation. The machining and clamping forces are considered as point forces acting over the tool path. Static analysis is performed to simulate the machining operation in which the material removal effect is not considered. Kaya and Ozturk (2003) simulated the machining operations by using a finite-element model. The machining forces are considered as area force applied over the tool workpiece contact area. The model is analysed with respect to tool movement and material removal using element death technique. Three dimensional nonlinear finite element analysis is carried out. Deng (2006) developed a model-based framework for analysis and synthesis of the dynamic performance, emphasizing fixturing dynamic stability, of a machining fixture-workpiece system accounting for the material removal effect.

25 31 Kaya (2006) used time-dependent forces to define the machining operation. The material removal effect is taken into account in the analysis. The entire tool path is divided into 13 load steps. The workpiece-fixture model is analysed with respect to tool movement. The workpiece is assumed to be elastic. The fixture is assumed to be completely rigid. These studies represent, in most cases, the workpiece is assumed as elastic; fixture is assumed as completely rigid; machining and clamping forces are considered as point forces and material removal effect is considered by using element death technique. 2.9 STUDIES RELATED TO NUMBER OF FIXTURE ELEMENTS OPTIMIZATION Hurtado and Melkote (2002) presented a model for the synthesis of the fixturing configuration in pin-array type flexible machining fixtures to keep the workpiece rigid body motion due to fixture elastic deformation at or below a user-specified value. The minimum clamping loads and the optimal number, position and dimensions of the pins necessary to achieve the conformability have also been found. Wang and Pelinescu (2003) described an approach to optimal design of a fixture layout with the minimum required number of elements. This approach has been applied to parts with arbitrary 3-D geometry and is restricted to be within a discrete domain of locations for placing the fixture elements of nonfrictional contacts. Liu et al (2007) proposed an optimization method to optimize the number and positions of the locators in the peripheral milling of a lowrigidity workpiece simultaneously. First the initial layout of the locators is determined and based on the initial layout, the number and positions of the locators are optimized. Qin et al (2010) presented locating correctness

26 32 based on Venn diagram and a general algorithm to determine the locator number and layout. On the whole, studies related to number of fixture elements optimization display very little attention has been shown towards the number of fixturing elements optimization and most of the researchers have used locating principle CONCLUDING REMARKS Review of the literature in the above areas reveals the following: Most of the studies use either the rigid-body model or workpiece-elastic contact model and these studies do not consider the workpiece elastic deformation caused during machining Only little attention has been focused on the fixture layout and clamping forces optimization with an objective of minimizing the dimensional and form errors caused due to workpiece elastic deformation In most of the researches finite element method (FEM) has been mainly used for determining the elastic deformation only at workpiece-fixture contact points Most of the studies use linear or nonlinear programming methods, which often do not give the global optimum solution. Most of the fixture layout optimization procedures start with an initial feasible layout. Solutions from these methods depend on the initial fixture layout. They do not consider the fixture layout optimization on overall workpiece deformation

27 33 Though it is more suitable tool in the field of fixture layout optimization, the application of ANN for the optimization of machining fixture layout to minimize the deformation of the workpiece is rarely found in the literature Most of the studies do not consider the dynamic machining forces in the fixture layout optimization design to minimize the dynamic response of the workpiece Most researchers considered 2D workpiece-fixture system by ignoring the normal force acting on the workpiece during machining. Most researchers did not consider the material removal effects in their analysis. In most cases GA has been interfaced with FEM for the fixture layout optimization problems Most of the researchers have used locating principle and the optimization of the number of fixturing elements towards minimum workpiece elastic deformation is rarely considered The above listed findings motivated the author to carry out the research work in the field of fixture layout optimization to minimize the workpiece elastic deformation caused during machining. The following sections present the research problem and objectives considered in this research work RESEARCH PROBLEM During machining operation, fixtures are used to locate and constrain a workpiece. The most important criteria for fixturing are workpiece position accuracy and workpiece deformation. In any

28 34 manufacturing operation, a certain amount of deformation will occur in the workpiece due to the clamping and machining forces. Deformation in the workpiece will lead to dimensional and form errors in the workpiece. To achieve the specified workpiece dimensions and tolerances, it should be properly located and clamped. A good fixture design minimizes workpiece geometric and machining errors by limiting the workpiece elastic deformation. An ideal fixture design consists of optimal fixture layout, optimum clamping forces and optimum number of fixturing elements such as locators and clamps. So, Optimization has three main aspects in fixture design which are the positions of locators and clamps, number of locators and clamps and the magnitude of clamping forces. These should be properly selected and calculated so that the workpiece deformation due to clamping and cutting forces is minimized and uniformed. Either the rigid-body model or work piece-elastic contact model has been used in most of the fixture layout optimization literatures where the workpiece elastic deformation caused during machining is rarely considered. Most researchers have used locating principle where the number of fixturing elements optimization is rarely considered and the usage of artificial neural networks is very limited for the optimization of fixture layout to minimize the overall deformation of the workpiece. Hence, in this research work, the machining fixture layout, number of fixturing elements and clamping forces optimization problems are considered with an objective of minimizing the workpiece elastic deformation caused during machining.

29 OBJECTIVES OF THE RESEARCH WORK The dimensional and form errors induced in the workpiece during machining are the major influencing factors of the component quality. To minimize the dimensional and form errors and to enhance the quality of components fixture design has to be optimized. Based on the conclusions from literature review, the following research objectives are framed: (i) (ii) (iii) The main aim is to minimize the overall workpiece elastic deformation during machining in order to minimize the dimensional and form errors in the workpiece. Optimization of number and position of fixture elements with optimal clamping forces to minimize the overall workpiece elastic deformation during machining. Developing a suitable methodology to optimize the machining fixture layout design with an objective of minimizing the workpiece elastic deformation. In this research work, the fixture layout, clamping forces and number of fixturing elements are optimized using nontraditional algorithms and mathematical approach in order to meet the research objectives.

Design, Development and Analysis of Clamping Force of a Cylinder of Fixture for Casing of Differential

Design, Development and Analysis of Clamping Force of a Cylinder of Fixture for Casing of Differential Design, Development and Analysis of Clamping of a Cylinder of Fixture for Casing of Differential R.Akshay 1, Dr.B.N.Ravikumar 2 1PG Student, Department of Mechanical Engineering Bangalore Institute of

More information

Development of motor body fixture using blackboard framework approch

Development of motor body fixture using blackboard framework approch Development of motor body fixture using blackboard framework approch Mr. A. D. PARSANA M.E.[Machine Design] Student, Department Of Mechanical Engineering, R. K. College Of Engineering And Technology, Rajkot,

More information

Fixture evaluation based on CMM

Fixture evaluation based on CMM Fixture evaluation based on CMM Y. Wang, X. Chen, Q. Liu & N. Gindy Department of Manufacturing Engineering The University of Nottingham Nottingham, UK Abstract Fixture evaluation is an important part

More information

A CASE STUDY ON TOOL & FIXTURE MODIFICATION TO INCREASE THE PRODUCTIVITY AND TO DECREASE THE REJECTION RATE IN A MANUFACTURING INDUSTRY

A CASE STUDY ON TOOL & FIXTURE MODIFICATION TO INCREASE THE PRODUCTIVITY AND TO DECREASE THE REJECTION RATE IN A MANUFACTURING INDUSTRY http:// A CASE STUDY ON TOOL & FIXTURE MODIFICATION TO INCREASE THE PRODUCTIVITY AND TO DECREASE THE REJECTION RATE IN A MANUFACTURING INDUSTRY Parvesh Antil 1, Amit Budhiraja 2 1 MAE Department, NIEC

More information

Design and Fabrication of Fixture for Angle and Radius Measurement in Hollow Workpiece

Design and Fabrication of Fixture for Angle and Radius Measurement in Hollow Workpiece Design and Fabrication of Fixture for Angle and Radius Measurement in Hollow Workpiece K.Dinesh UG Scholar, Department of Mechanical Engineering, TRP Engineering College, Tiruchirapalli, India ABSTRACT:

More information

AN INNOVATIVE FEA METHODOLOGY FOR MODELING FASTENERS

AN INNOVATIVE FEA METHODOLOGY FOR MODELING FASTENERS AN INNOVATIVE FEA METHODOLOGY FOR MODELING FASTENERS MacArthur L. Stewart 1 1 Assistant Professor, Mechanical Engineering Technology Department, Eastern Michigan University, MI, USA Abstract Abstract Researchers

More information

INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN ICED 01 GLASGOW, AUGUST 21-23, 2001

INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN ICED 01 GLASGOW, AUGUST 21-23, 2001 INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN ICED 01 GLASGOW, AUGUST 21-23, 2001 DESIGN OF PART FAMILIES FOR RECONFIGURABLE MACHINING SYSTEMS BASED ON MANUFACTURABILITY FEEDBACK Byungwoo Lee and Kazuhiro

More information

INFLUENCE OF PILES ON LOAD- SETTLEMENT BEHAVIOUR OF RAFT FOUNDATION

INFLUENCE OF PILES ON LOAD- SETTLEMENT BEHAVIOUR OF RAFT FOUNDATION INFLUENCE OF PILES ON LOAD- SETTLEMENT BEHAVIOUR OF RAFT FOUNDATION BALESHWAR SINGH Department of Civil Engineering Indian Institute of Technology Guwahati Guwahati 78139, India NINGOMBAM THOIBA SINGH

More information

Experimental investigation of crack in aluminum cantilever beam using vibration monitoring technique

Experimental investigation of crack in aluminum cantilever beam using vibration monitoring technique International Journal of Computational Engineering Research Vol, 04 Issue, 4 Experimental investigation of crack in aluminum cantilever beam using vibration monitoring technique 1, Akhilesh Kumar, & 2,

More information

Optimizing the Natural Frequencies of Beams via Notch Stamping

Optimizing the Natural Frequencies of Beams via Notch Stamping Research Journal of Applied Sciences, Engineering and Technology 4(14): 2030-2035, 2012 ISSN: 2040-7467 Maxwell Scientific Organization, 2012 Submitted: December 02, 2011 Accepted: December 26, 2011 Published:

More information

6th International Conference on Virtual Machining Process Technology (VMPT), Montréal, May 29th June 2nd, 2017

6th International Conference on Virtual Machining Process Technology (VMPT), Montréal, May 29th June 2nd, 2017 6th International Conference on Virtual Machining Process Technology (VMPT), Montréal, May 29th June 2nd, 2017 An alternative methodology for Machine Tool Error determination through workpiece measurement.

More information

Finite Element Analysis of Multi-Fastened Bolted Joint Connecting Composite Components in Aircraft Structures

Finite Element Analysis of Multi-Fastened Bolted Joint Connecting Composite Components in Aircraft Structures Finite Element Analysis of Multi-Fastened Bolted Joint Connecting Composite Components in Aircraft Structures Dr. M Satyanarayana Gupta Professor & HoD, Dept. of Aeronautical Engineering MLRIT, Hyderabad.

More information

OPTIMIZATION OF ROUGHING OPERATIONS IN CNC MACHINING FOR RAPID MANUFACTURING PROCESSES

OPTIMIZATION OF ROUGHING OPERATIONS IN CNC MACHINING FOR RAPID MANUFACTURING PROCESSES Proceedings of the 11 th International Conference on Manufacturing Research (ICMR2013), Cranfield University, UK, 19th 20th September 2013, pp 233-238 OPTIMIZATION OF ROUGHING OPERATIONS IN CNC MACHINING

More information

Effect of crack depth of Rotating stepped Shaft on Dynamic. Behaviour

Effect of crack depth of Rotating stepped Shaft on Dynamic. Behaviour Effect of crack depth of Rotating stepped Shaft on Dynamic Behaviour Mr.S.P.Bhide 1, Prof.S.D.Katekar 2 1 PG Scholar, Mechanical department, SKN Sinhgad College of Engineering, Maharashtra, India 2 Head

More information

Trade of Toolmaking. Module 5: Press Tools, Jigs & Fixtures, Mouldmaking Unit 5: Jigs and Fixtures Phase 2. Published by

Trade of Toolmaking. Module 5: Press Tools, Jigs & Fixtures, Mouldmaking Unit 5: Jigs and Fixtures Phase 2. Published by Trade of Toolmaking Module 5: Press Tools, Jigs & Fixtures, Mouldmaking Unit 5: Jigs and Fixtures Phase 2 Published by SOLAS 2014 Unit 5 1 Table of Contents Document Release History... 3 Unit Objective...

More information

Synchronous Optimization Design of Fixture Layout and Clamping Force Based on UG. Jin Fengfeng, Wang Guodong

Synchronous Optimization Design of Fixture Layout and Clamping Force Based on UG. Jin Fengfeng, Wang Guodong 3rd International Conference on Materials Engineering, Manufacturing Technology and Control (ICMEMTC 2016) Synchronous Optimization Design of Fixture Layout and Clamping Force Based on UG Jin Fengfeng,

More information

Design and Manufacturing of Single sided expanding collet for Rotary VMC Fixture

Design and Manufacturing of Single sided expanding collet for Rotary VMC Fixture Proceedings of RK University s First International Conference on Research & Entrepreneurship (Jan. 5 th & Jan. 6 th, 2016) ISBN: 978-93-5254-061-7 (Proceedings available for download at rku.ac.in/icre)

More information

Design, Development and Analysis of Hydraulic Fixture for machining Engine cylinder block on VMC

Design, Development and Analysis of Hydraulic Fixture for machining Engine cylinder block on VMC Design, Development and Analysis of Hydraulic Fixture for machining Engine cylinder block on VMC Abhijeet Swami 1, Prof. G.E. Kondhalkar 2 1PG Student, Mechanical Engineering Department, ABMSP's APCOER,

More information

An Investigation of Optimal Pitch Selection to Reduce Self-Loosening of Threaded Fastener under Transverse Loading

An Investigation of Optimal Pitch Selection to Reduce Self-Loosening of Threaded Fastener under Transverse Loading IJSTE - International Journal of Science Technology & Engineering Volume 3 Issue 01 July 2016 ISSN (online): 2349-784X An Investigation of Optimal Pitch Selection to Reduce Self-Loosening of Threaded Fastener

More information

EFFECTS OF INTERPOLATION TYPE ON THE FEED-RATE CHARACTERISTIC OF MACHINING ON A REAL CNC MACHINE TOOL

EFFECTS OF INTERPOLATION TYPE ON THE FEED-RATE CHARACTERISTIC OF MACHINING ON A REAL CNC MACHINE TOOL Engineering MECHANICS, Vol. 19, 2012, No. 4, p. 205 218 205 EFFECTS OF INTERPOLATION TYPE ON THE FEED-RATE CHARACTERISTIC OF MACHINING ON A REAL CNC MACHINE TOOL Petr Vavruška* The article is focused on

More information

Wear Analysis of Multi Point Milling Cutter using FEA

Wear Analysis of Multi Point Milling Cutter using FEA Wear Analysis of Multi Point Milling Cutter using FEA Vikas Patidar 1, Prof. Kamlesh Gangrade 2, Dr. Suman Sharma 3 1 M. E Production Engineering and Engineering Design, Sagar Institute of Research & Technology,

More information

DESIGN OF CNC MILLING FIXTURE FOR AN ALUMINUM AEROSPACE COMPONENT

DESIGN OF CNC MILLING FIXTURE FOR AN ALUMINUM AEROSPACE COMPONENT DESIGN OF CNC MILLING FIXTURE FOR AN ALUMINUM AEROSPACE COMPONENT * Dr. Ramachandra C G, Rohini M ** Rishi J P, *** Dr. Srinivas T R, **** Virupaxappa B * Department of Mechanical Engineering Srinivas

More information

Computer-Aided Design

Computer-Aided Design Computer-Aided Design 42 (2010) 1085 1094 Contents lists available at ScienceDirect Computer-Aided Design journal homepage: www.elsevier.com/locate/cad Computer aided fixture design: Recent research and

More information

Failure of Engineering Materials & Structures. Code 34. Bolted Joint s Relaxation Behavior: A FEA Study. Muhammad Abid and Saad Hussain

Failure of Engineering Materials & Structures. Code 34. Bolted Joint s Relaxation Behavior: A FEA Study. Muhammad Abid and Saad Hussain Failure of Engineering Materials & Structures Code 3 UET TAXILA MECHNICAL ENGINEERING DEPARTMENT Bolted Joint s Relaxation Behavior: A FEA Study Muhammad Abid and Saad Hussain Faculty of Mechanical Engineering,

More information

A Searching Analyses for Best PID Tuning Method for CNC Servo Drive

A Searching Analyses for Best PID Tuning Method for CNC Servo Drive International Journal of Science and Engineering Investigations vol. 7, issue 76, May 2018 ISSN: 2251-8843 A Searching Analyses for Best PID Tuning Method for CNC Servo Drive Ferit Idrizi FMI-UP Prishtine,

More information

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 05, 2016 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 05, 2016 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 05, 2016 ISSN (online): 2321-0613 Static Analysis of VMC Spindle for Maximum Cutting Force Mahesh M. Ghadage 1 Prof. Anurag

More information

Study of Fixturing Accessibilities in Computer-Aided Fixture Design

Study of Fixturing Accessibilities in Computer-Aided Fixture Design Study of Fixturing Accessibilities in Computer-Aided Fixture Design By Puja Ghatpande A Thesis Submitted to the faculty of WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirements for

More information

The jigs and fixtures are the economical ways to produce a component in mass production system. These are special work holding and tool guiding device

The jigs and fixtures are the economical ways to produce a component in mass production system. These are special work holding and tool guiding device The jigs and fixtures are the economical ways to produce a component in mass production system. These are special work holding and tool guiding device Quality of the performance of a process largely influenced

More information

Tolerance Analysis of Machining Fixture Locators

Tolerance Analysis of Machining Fixture Locators S. A. Choudhuri Department of Industrial and Manufacturing Engineering E. C. De Meter Department of Industrial and Manufacturing Engineering, Department of Mechanical Engineering, The Pennsylvania State

More information

3-D Finite Element Analysis of Bolted Joint Using Helical Thread Model

3-D Finite Element Analysis of Bolted Joint Using Helical Thread Model 3-D Finite Element Analysis of Bolted Joint Using Helical Thread Model Shaik Gousia Yasmin 1, P. Punna Rao 2, Kondaiah Bommisetty 3 1 M.Tech(CAD/CAM), Nimra College of Engineering & Technology, Vijayawada,

More information

Chapter 2 Different Phases of Setup Planning

Chapter 2 Different Phases of Setup Planning Chapter 2 Different Phases of Setup Planning Abstract In this chapter different phases of setup planning task are discussed in detail. Setup planning mainly comprises of feature grouping, setup formation,

More information

Computer-Aided Manufacturing

Computer-Aided Manufacturing Computer-Aided Manufacturing Third Edition Tien-Chien Chang, Richard A. Wysk, and Hsu-Pin (Ben) Wang PEARSON Prentice Hall Upper Saddle River, New Jersey 07458 Contents Chapter 1 Introduction to Manufacturing

More information

Modeling Multi-Bolted Systems

Modeling Multi-Bolted Systems Modeling Multi-Bolted Systems Jerome Montgomery Siemens Power Generation Abstract Modeling a single bolt in a finite element analysis raises questions of how much complexity to include. But, modeling a

More information

ASSEMBLY SETUP FOR MODULAR FIXTURE MACHINING PROCESS

ASSEMBLY SETUP FOR MODULAR FIXTURE MACHINING PROCESS ADVANCED ENGINEERING 3(2009)1, ISSN 1846-5900 ASSEMBLY SETUP FOR MODULAR FIXTURE MACHINING PROCESS Kršulja, M.; Barišić, B. & Kudlaček, J Abstract: In this paper a model of modular fixture setup relative

More information

II MACHINE DESIGN FOR PRECISION MANUFACTURING

II MACHINE DESIGN FOR PRECISION MANUFACTURING II MACHINE DESIGN FOR PRECISION MANUFACTURING 2.1 Background on machine design for manufacturing The development of machines over time can be viewed through a number of different lenses. Shirley and Jaikumar

More information

Monopile as Part of Aeroelastic Wind Turbine Simulation Code

Monopile as Part of Aeroelastic Wind Turbine Simulation Code Monopile as Part of Aeroelastic Wind Turbine Simulation Code Rune Rubak and Jørgen Thirstrup Petersen Siemens Wind Power A/S Borupvej 16 DK-7330 Brande Denmark Abstract The influence on wind turbine design

More information

Advanced Dimensional Management LLC

Advanced Dimensional Management LLC Index: Mechanical Tolerance Stackup and Analysis Bryan R. Fischer Accuracy and precision 8-9 Advanced Dimensional Management 14, 21, 78, 118, 208, 251, 286, 329-366 Ambiguity 4, 8-14 ASME B89 48 ASME Y14.5M-1994

More information

High Speed Milling of a Large Thin Sheet Copper Part with a Vacuum Fixture on a CNC Machine Tool

High Speed Milling of a Large Thin Sheet Copper Part with a Vacuum Fixture on a CNC Machine Tool 2nd Annual International Conference on Advanced Material Engineering (AME 2016) High Speed Milling of a Large Thin Sheet Copper Part with a Vacuum Fixture on a CNC Machine Tool Y. CAO*, 1 and J. L. SHI2

More information

ME 2029 DESIGN OF JIGS AND FIXTURES NOTES UNIT I LOCATING AND CLAMPING PRINCIPLES

ME 2029 DESIGN OF JIGS AND FIXTURES NOTES UNIT I LOCATING AND CLAMPING PRINCIPLES ME 2029 DESIGN OF JIGS AND FIXTURES NOTES UNIT I LOCATING AND CLAMPING PRINCIPLES Locating and clamping are the critical functions of any work holder. As such, the fundamental principles of locating and

More information

Fastener Modeling for Joining Parts Modeled by Shell and Solid Elements

Fastener Modeling for Joining Parts Modeled by Shell and Solid Elements 2007-08 Fastener Modeling for Joining Parts Modeled by Shell and Solid Elements Aleander Rutman, Chris Boshers Spirit AeroSystems Larry Pearce, John Parady MSC.Software Corporation 2007 Americas Virtual

More information

Biomimetic Design of Actuators, Sensors and Robots

Biomimetic Design of Actuators, Sensors and Robots Biomimetic Design of Actuators, Sensors and Robots Takashi Maeno, COE Member of autonomous-cooperative robotics group Department of Mechanical Engineering Keio University Abstract Biological life has greatly

More information

More Info at Open Access Database by S. Dutta and T. Schmidt

More Info at Open Access Database  by S. Dutta and T. Schmidt More Info at Open Access Database www.ndt.net/?id=17657 New concept for higher Robot position accuracy during thermography measurement to be implemented with the existing prototype automated thermography

More information

The Development of Computer Aided Engineering: Introduced from an Engineering Perspective. A Presentation By: Jesse Logan Moe.

The Development of Computer Aided Engineering: Introduced from an Engineering Perspective. A Presentation By: Jesse Logan Moe. The Development of Computer Aided Engineering: Introduced from an Engineering Perspective A Presentation By: Jesse Logan Moe What Defines CAE? Introduction Computer-Aided Engineering is the use of information

More information

Component Based Mechatronics Modelling Methodology

Component Based Mechatronics Modelling Methodology Component Based Mechatronics Modelling Methodology R.Sell, M.Tamre Department of Mechatronics, Tallinn Technical University, Tallinn, Estonia ABSTRACT There is long history of developing modelling systems

More information

Effect of Bolt Layout on the Mechanical Behavior of Four Bolted Shear Joint

Effect of Bolt Layout on the Mechanical Behavior of Four Bolted Shear Joint Effect of Bolt Layout on the Mechanical Behavior of Four Bolted Shear Joint using Three Dimensional Finite Effect of Bolt Layout on the Mechanical Behavior of Four Bolted Shear Joint using Three Dimensional

More information

Integrated Strategies for High Performance Peripheral Milling

Integrated Strategies for High Performance Peripheral Milling Integrated Strategies for High Performance Peripheral Milling Law, M. 1, *, Wabner, M. 2 and Ihlenfeldt, S. 3 Fraunhofer Institute for Machine Tools and Forming Technology IWU, Reichenhainer Str. 88, 09126

More information

International Journal of Science and Engineering Research (IJ0SER), Vol 3 Issue 3 March , (P) X

International Journal of Science and Engineering Research (IJ0SER), Vol 3 Issue 3 March , (P) X Design And Optimization Techniques Using In Turning Fixture M Rajmohan 1, K S Sakthivel 1, S Sanjay 1, A Santhosh 1, P Satheesh 2 1 ( UG Student ) 2 (Assistant professor)mechanical Department, Jay Shriram

More information

Cutting Tools in Finishing Operations for CNC Rapid Manufacturing Processes: Experimental Studies

Cutting Tools in Finishing Operations for CNC Rapid Manufacturing Processes: Experimental Studies Cutting Tools in Finishing Operations for CNC Rapid Manufacturing Processes: Experimental Studies M. N. Osman Zahid, K. Case, D. Watts Abstract This paper reports an advanced approach in the application

More information

Total Related Training Instruction (RTI) Hours: 144

Total Related Training Instruction (RTI) Hours: 144 Total Related Training (RTI) Hours: 144 Learning Unit Unit 1: Specialized CNC Controls Fanuc Haas Mazak Unit : CNC Programming Creating a CNC Program Calculation for Programming Canned Cycles Unit : CNC

More information

A Representation Model of Geometrical Tolerances Based on First Order Logic

A Representation Model of Geometrical Tolerances Based on First Order Logic A Representation Model of Geometrical Tolerances Based on First Order Logic Yuchu Qin 1, Yanru Zhong 1, Liang Chang 1, and Meifa Huang 2 1 School of Computer Science and Engineering, Guilin University

More information

Model Correlation of Dynamic Non-linear Bearing Behavior in a Generator

Model Correlation of Dynamic Non-linear Bearing Behavior in a Generator Model Correlation of Dynamic Non-linear Bearing Behavior in a Generator Dean Ford, Greg Holbrook, Steve Shields and Kevin Whitacre Delphi Automotive Systems, Energy & Chassis Systems Abstract Efforts to

More information

Chapter 22 MACHINING OPERATIONS AND MACHINE TOOLS

Chapter 22 MACHINING OPERATIONS AND MACHINE TOOLS Chapter 22 MACHINING OPERATIONS AND MACHINE TOOLS Turning and Related Operations Drilling and Related Operations Milling Machining Centers and Turning Centers Other Machining Operations High Speed Machining

More information

EXPERIMENTAL INVESTIGATION ON LASER BENDING OF METAL SHEETS USING PARABOLIC IRRADIATIONS

EXPERIMENTAL INVESTIGATION ON LASER BENDING OF METAL SHEETS USING PARABOLIC IRRADIATIONS 5 th International & 26 th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) December 12 th 14 th, 2014, IIT Guwahati, Assam, India EXPERIMENTAL INVESTIGATION ON LASER BENDING

More information

An Alternative Formulation for Determining Stiffness of Members with Bolted Connections

An Alternative Formulation for Determining Stiffness of Members with Bolted Connections An Alternative Formulation for Determining Stiffness of Members with Bolted Connections Mr. B. Routh Post Graduate Student Department of Civil Engineering National Institute of Technology Agartala Agartala,

More information

IMPROVING TOWER DEFENSE GAME AI (DIFFERENTIAL EVOLUTION VS EVOLUTIONARY PROGRAMMING) CHEAH KEEI YUAN

IMPROVING TOWER DEFENSE GAME AI (DIFFERENTIAL EVOLUTION VS EVOLUTIONARY PROGRAMMING) CHEAH KEEI YUAN IMPROVING TOWER DEFENSE GAME AI (DIFFERENTIAL EVOLUTION VS EVOLUTIONARY PROGRAMMING) CHEAH KEEI YUAN FACULTY OF COMPUTING AND INFORMATICS UNIVERSITY MALAYSIA SABAH 2014 ABSTRACT The use of Artificial Intelligence

More information

Stress Analysis of Flanged Joint Using Finite Element Method

Stress Analysis of Flanged Joint Using Finite Element Method Stress Analysis of Flanged Joint Using Finite Element Method Shivaji G. Chavan Assistant Professor, Mechanical Engineering Department, Finolex Academy of Management and Technology, Ratnagiri, Maharashtra,

More information

Robust Die Design with Spiral-shape Cavity

Robust Die Design with Spiral-shape Cavity Robust Die Design with Spiral-shape Cavity K.H. Jung, Y.B. Kim, Y.H. Kim, and G.A. Lee # Abstract Scroll compressors are used for air conditioning system in automobiles due to its relatively low pressure

More information

Module 2 WAVE PROPAGATION (Lectures 7 to 9)

Module 2 WAVE PROPAGATION (Lectures 7 to 9) Module 2 WAVE PROPAGATION (Lectures 7 to 9) Lecture 9 Topics 2.4 WAVES IN A LAYERED BODY 2.4.1 One-dimensional case: material boundary in an infinite rod 2.4.2 Three dimensional case: inclined waves 2.5

More information

Decision Science Letters

Decision Science Letters Decision Science Letters 3 (2014) 121 130 Contents lists available at GrowingScience Decision Science Letters homepage: www.growingscience.com/dsl A new effective algorithm for on-line robot motion planning

More information

This study provides models for various components of study: (1) mobile robots with on-board sensors (2) communication, (3) the S-Net (includes computa

This study provides models for various components of study: (1) mobile robots with on-board sensors (2) communication, (3) the S-Net (includes computa S-NETS: Smart Sensor Networks Yu Chen University of Utah Salt Lake City, UT 84112 USA yuchen@cs.utah.edu Thomas C. Henderson University of Utah Salt Lake City, UT 84112 USA tch@cs.utah.edu Abstract: The

More information

Vector Based Datum Transformation Scheme for Computer Aided Measurement

Vector Based Datum Transformation Scheme for Computer Aided Measurement 289 Vector Based Datum Transformation Scheme for Computer Aided Measurement Danny K. L. Lai 1 and Matthew. M. F. Yuen 2 1 The Hong Kong University of Science and Technology, dannylai@ust.hk 2 The Hong

More information

Finite Element Analysis per ASME B31.3

Finite Element Analysis per ASME B31.3 Brief Discussion: Split-Body 12in Butterfly valve, Ph: 520-265-3657 Page 1 of 13 Finite Element Analysis per ASME B31.3 Prepared by: Michael Rodgers, P.Eng. Date: July 16, 2010 Page 2 of 13 Section Headings:

More information

Solution of Pipeline Vibration Problems By New Field-Measurement Technique

Solution of Pipeline Vibration Problems By New Field-Measurement Technique Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 1974 Solution of Pipeline Vibration Problems By New Field-Measurement Technique Michael

More information

National Conference on Advances in Mechanical Engineering Science (NCAMES-2016)

National Conference on Advances in Mechanical Engineering Science (NCAMES-2016) Design and Development of Milling Attachment for CNC Turing Center Shashank S 1, Dr.Raghavendra H 2 1 Assistant Professor, Department of Mechanical Engineering, 2 Professor, Department of Mechanical Engineering,

More information

A STUDY OF THE EFFECTS OF CUTTER PATH STRATEGIES AND CUTTING SPEED VARIATIONS IN MILLING OF THIN WALLED PARTS

A STUDY OF THE EFFECTS OF CUTTER PATH STRATEGIES AND CUTTING SPEED VARIATIONS IN MILLING OF THIN WALLED PARTS A STUDY OF THE EFFECTS OF CUTTER PATH STRATEGIES AND CUTTING SPEED VARIATIONS IN MILLING OF THIN WALLED PARTS B.Jabbaripour 1, M.H.Sadeghi 2, Sh.Faridvand 3 1- PHD. Student of mechanical engineering, Tarbiat

More information

ISSN Vol.04,Issue.07, June-2016, Pages:

ISSN Vol.04,Issue.07, June-2016, Pages: WWW.IJITECH.ORG ISSN 2321-8665 Vol.04,Issue.07, June-2016, Pages:1236-1241 Cutting Dynamics of High Speed Machining of Thin Ribbed Structures VEERANALA NAGAPRASAD 1, K. CHETASWI 2 Lecturer, Dept of Mechanical

More information

Geometric Dimensioning and Tolerancing

Geometric Dimensioning and Tolerancing Geometric Dimensioning and Tolerancing (Known as GDT) What is GDT Helps ensure interchangeability of parts. Use is dictated by function and relationship of the part feature. It does not take the place

More information

1. Introduction 1.1 Motivation and Objectives

1. Introduction 1.1 Motivation and Objectives 1. Introduction 1.1 Motivation and Objectives Today, the analysis and design of complex power electronic systems such as motor drives is usually done using a modern simulation software which can provide

More information

Work Holding Principles ITCD Rajeev Madhavan Nair

Work Holding Principles ITCD Rajeev Madhavan Nair Work Holding Principles ITCD 301-001 Work Holding One of the most important elements of the machining process Work holder includes all devices that hold, grip or chuck a work piece to perform a manufacturing

More information

Integrated Forming Simulations and Die Structural Analysis for Optimal Die Designs

Integrated Forming Simulations and Die Structural Analysis for Optimal Die Designs Integrated Forming Simulations and Die Structural Analysis for Optimal Die Designs Venkat Aitharaju*, Malcolm Liu, Jennifer Dong, Jimmy Zhang, Chuan-tao Wang General Motors Corporation, Manufacturing Engineering

More information

Study on Simulation of Machining Deformation and Experiments for Thin-walled Parts of Titanium Alloy

Study on Simulation of Machining Deformation and Experiments for Thin-walled Parts of Titanium Alloy , pp. 401-410 http://dx.doi.org/10.14257/ijca.2015.8.1.38 Study on Simulation of Machining Deformation and Experiments for Thin-walled Parts of Titanium Alloy Yaonan Cheng, Diange Zuo, Mingyang Wu, Xinmin

More information

Development of Grinding Simulation based on Grinding Process

Development of Grinding Simulation based on Grinding Process TECHNICAL PAPER Development of Simulation based on Process T. ONOZAKI A. SAITO This paper describes grinding simulation technology to establish the generating mechanism of chatter and grinding burn. This

More information

Shuguang Huang, Ph.D Research Assistant Professor Department of Mechanical Engineering Marquette University Milwaukee, WI

Shuguang Huang, Ph.D Research Assistant Professor Department of Mechanical Engineering Marquette University Milwaukee, WI Shuguang Huang, Ph.D Research Assistant Professor Department of Mechanical Engineering Marquette University Milwaukee, WI 53201 huangs@marquette.edu RESEARCH INTEREST: Dynamic systems. Analysis and physical

More information

In-plane capacitance probe holding mechanism Shorya Awtar Alexander Slocum Mechanical Engineering, MIT

In-plane capacitance probe holding mechanism Shorya Awtar Alexander Slocum Mechanical Engineering, MIT In-plane capacitance probe holding mechanism Shorya Awtar Alexander Slocum Mechanical Engineering, MIT In precision metrology it is frequently required to hold capacitance probes such that they are properly

More information

FATIGUE CRACK CHARACTERIZATION IN CONDUCTING SHEETS BY NON

FATIGUE CRACK CHARACTERIZATION IN CONDUCTING SHEETS BY NON FATIGUE CRACK CHARACTERIZATION IN CONDUCTING SHEETS BY NON CONTACT STIMULATION OF RESONANT MODES Buzz Wincheski, J.P. Fulton, and R. Todhunter Analytical Services and Materials 107 Research Drive Hampton,

More information

NUMERICAL SIMULATION OF DYNAMIC YARN PULL-OUT PROCESS

NUMERICAL SIMULATION OF DYNAMIC YARN PULL-OUT PROCESS THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS NUMERICAL SIMULATION OF DYNAMIC YARN PULL-OUT PROCESS H. Ahmadi 1, Y. Wang 1 *, Y. Miao 1, X.J. Xin 1, C.F. Yen 2 1 Mechanical and Nuclear Engineering,

More information

3D Non-Linear FEA to Determine Burst and Collapse Capacity of Eccentrically Worn Casing

3D Non-Linear FEA to Determine Burst and Collapse Capacity of Eccentrically Worn Casing 3D Non-Linear FEA to Determine Burst and Collapse Capacity of Eccentrically Worn Casing Mark Haning Asst. Prof James Doherty Civil and Resource Engineering, University of Western Australia Andrew House

More information

Convenient Structural Modal Analysis Using Noncontact Vision-Based Displacement Sensor

Convenient Structural Modal Analysis Using Noncontact Vision-Based Displacement Sensor 8th European Workshop On Structural Health Monitoring (EWSHM 2016), 5-8 July 2016, Spain, Bilbao www.ndt.net/app.ewshm2016 Convenient Structural Modal Analysis Using Noncontact Vision-Based Displacement

More information

CHAPTER 5 FAULT DIAGNOSIS OF ROTATING SHAFT WITH SHAFT MISALIGNMENT

CHAPTER 5 FAULT DIAGNOSIS OF ROTATING SHAFT WITH SHAFT MISALIGNMENT 66 CHAPTER 5 FAULT DIAGNOSIS OF ROTATING SHAFT WITH SHAFT MISALIGNMENT 5.1 INTRODUCTION The problem of misalignment encountered in rotating machinery is of great concern to designers and maintenance engineers.

More information

Dynamics of High-speed Machining of Aerospace Structures using Finite-element Analysis

Dynamics of High-speed Machining of Aerospace Structures using Finite-element Analysis ~ Defence Science Journal. Vol. 52. No. 4, October 2002. pp. 403-408 O 2002. DESIDOC Dynamics of High-speed Machining of Aerospace Structures using Finite-element Analysis J. Kanchana,V. Prabhu Raja, R.

More information

THIN-WALLED HOLLOW BOLTS

THIN-WALLED HOLLOW BOLTS THIN-WALLED HOLLOW BOLTS Experimental and numerical study Teixeira, C. D. S. Department of Mechanical Engineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001, Lisbon, Portugal, 2010 Abstract

More information

Designing Better Industrial Robots with Adams Multibody Simulation Software

Designing Better Industrial Robots with Adams Multibody Simulation Software Designing Better Industrial Robots with Adams Multibody Simulation Software MSC Software: Designing Better Industrial Robots with Adams Multibody Simulation Software Introduction Industrial robots are

More information

Paper Flow Simulation Using Abaqus

Paper Flow Simulation Using Abaqus Conference Proceedings of the Simulia India Regional Users Meet 2009 Paper Flow Simulation Using Abaqus Venkata Mahesh R Lead Engineer HCL Technologies No: 8, M.T.H. Road, Ambattur Industrial Estate Ambattur,

More information

High-speed wavefront control using MEMS micromirrors T. G. Bifano and J. B. Stewart, Boston University [ ] Introduction

High-speed wavefront control using MEMS micromirrors T. G. Bifano and J. B. Stewart, Boston University [ ] Introduction High-speed wavefront control using MEMS micromirrors T. G. Bifano and J. B. Stewart, Boston University [5895-27] Introduction Various deformable mirrors for high-speed wavefront control have been demonstrated

More information

Fatigue and Fretting Studies of Gas Compressor Blade Roots

Fatigue and Fretting Studies of Gas Compressor Blade Roots Fatigue and Fretting Studies of Gas Compressor Blade Roots Gautam N Hanjigimath 1, Anup M Upadhyaya 2, Sandeep Kumar 3 Stress Engineer, Brick and Byte Innovative Product Private Ltd, Bangalore, Karnataka,

More information

Principles of Engineering

Principles of Engineering Principles of Engineering 2004 (Fifth Edition) Clifton Park, New York All rights reserved 1 The National Academy of Sciences Standards: 1.0 Science Inquiry 1.1 Ability necessary to do scientific inquiry

More information

ABSTRACT II. OBJECTIVE I. INTRODUCTION III. METHODOLOGY

ABSTRACT II. OBJECTIVE I. INTRODUCTION III. METHODOLOGY 2017 IJSRSET Volume 3 Issue 3 Print ISSN: 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology Analysis of Cylinder Head Bolt Cross Pattern Tightening and Its Effect on Gasket Sealing

More information

Geometric Dimensioning and Tolerancing

Geometric Dimensioning and Tolerancing Geometric dimensioning and tolerancing (GDT) is Geometric Dimensioning and Tolerancing o a method of defining parts based on how they function, using standard ASME/ANSI symbols; o a system of specifying

More information

Transactions on Information and Communications Technologies vol 6, 1994 WIT Press, ISSN

Transactions on Information and Communications Technologies vol 6, 1994 WIT Press,   ISSN Application of artificial neural networks to the robot path planning problem P. Martin & A.P. del Pobil Department of Computer Science, Jaume I University, Campus de Penyeta Roja, 207 Castellon, Spain

More information

Prying of a Large Span Base Plate Undergoing a Moment Load Applied by a Round Pier

Prying of a Large Span Base Plate Undergoing a Moment Load Applied by a Round Pier Prying of a Large Span Base Plate Undergoing a Moment Load Applied by a Round Pier by Anastasia Wickeler A thesis submitted in conformity with the requirements for the degree of Masters of Applied Science

More information

Course code Title Description Type

Course code Title Description Type 1st Semester 3М11OP01 3M21OM01 3M22OM01 3M23IND01 Mathematics for engineering Technical mechanics Materials and joining techniques Graphical communication 3M31IND01 Industrial design 1 Introduction to

More information

Load application in load cells - Tips for users

Load application in load cells - Tips for users Load application in load cells - Tips for users Correct load application on the load cells is a prerequisite for precise weighing results. Be it load direction, support structure or mounting aids load

More information

Y-axis parting in multi-task machines and turning centres

Y-axis parting in multi-task machines and turning centres Y-axis parting in multi-task machines and turning centres Y-axis parting offers significant productivity gains and process security improvements The design solutions of Y-axis parting rely on solid engineering

More information

Monitoring The Machine Elements In Lathe Using Vibration Signals

Monitoring The Machine Elements In Lathe Using Vibration Signals Monitoring The Machine Elements In Lathe Using Vibration Signals Jagadish. M. S. and H. V. Ravindra Dept. of Mech. Engg. P.E.S.C.E. Mandya 571 401. ABSTRACT: In any manufacturing industry, machine tools

More information

Gripping force measurement in boring and turning operations using nanocomposite-based strain sensor

Gripping force measurement in boring and turning operations using nanocomposite-based strain sensor 7th International Conference on Virtual Machining Process Technology (VMPT), Hamilton, May 7 th May 11 th, 2018 Gripping force measurement in boring and turning operations using nanocomposite-based strain

More information

Fatigue Analysis of VMC 450 Spindle

Fatigue Analysis of VMC 450 Spindle Fatigue Analysis of VMC 450 Spindle Tushar Gadekar 1, Avinash Ranaware 2, Sonal Sawant 3 1Assistant Professor, Mechanical Engg Department, College of Engineering, Phaltan, Maharashtra, India 2Assistant

More information

A rule-based system for fixture design

A rule-based system for fixture design Scientific Research and Essays Vol. 6(27), pp. 5787-5802, 16 November, 2011 DOI: 10.5897/SRE11.1138 Available online at http://www.academicjournals.org/sre ISSN 1992-2248 2011 Academic Journals Full Length

More information

FEA of Prosthetic Lens Insertion During Cataract Surgery

FEA of Prosthetic Lens Insertion During Cataract Surgery Visit the SIMULIA Resource Center for more customer examples. FEA of Prosthetic Lens Insertion During Cataract Surgery R. Stupplebeen, C. Liu, X. Qin Bausch + Lomb, SIMULIA, SIMULIA Abstract: Cataract

More information

Design and Fabrication of Special Purpose Tool Fixture for CNC Turrets

Design and Fabrication of Special Purpose Tool Fixture for CNC Turrets Design and Fabrication of Special Purpose Tool Fixture for CNC Turrets Prashanth P V 1 and Sachidananda H K 2* 1 Prashanth P V, PG student, Manufacturing Engineering and technology,school of engineering

More information

Research on aircraft components assembly tolerance design and simulation technology

Research on aircraft components assembly tolerance design and simulation technology 3rd International Conference on Material, Mechanical and Manufacturing Engineering (IC3ME 2015) Research on aircraft components assembly tolerance design and simulation technology Wei Wang 1,a HongJun

More information