Module 2. Milling calculations, coordinates and program preparing. 1 Pepared By: Tareq Al Sawafta

Size: px
Start display at page:

Download "Module 2. Milling calculations, coordinates and program preparing. 1 Pepared By: Tareq Al Sawafta"

Transcription

1 Module 2 Milling calculations, coordinates and program preparing 1

2 Module Objectives: 1. Calculate the cutting speed, feed rate and depth of cut 2. Recognize coordinate 3. Differentiate between Cartesian and Polar coordinate systems. 4. Recognize the milling machine axes 5. Recognize positive and negative directions on milling machines. 6. Know the program procedure and zero points. Module Contents 1. Cutting speed, feed rate and depth of cut 2. Coordinate systems 3. CNC machines coordinates 4. Conventional and CNC machining 5. Programming procedure 2

3 2.1: Milling cutting values 2.1.1: Cutting speed (C S ) The cutting speed is the speed at which the circumference of the work part moves along the cutter. The magnitude of cutting speed is determined by the: 1. Material of the work part. 2. Material of the cutter. 3. Infeed (surface quality roughing, finishing). 4. Life of the tool. Note: The cutting speed is chosen from tabulated values : Rotational speed (n): Once the cutting speed is chosen, the rotational speed has to be calculated. The following formula can be used to calculate the rotational speed: Where: C S : the cutting speed in (m/min). d: the cutting tool diameter in (m). n: the rotational speed in revolution per minute (RPM) (Rev/min). Example 1: Calculate the cutting speed for milling if the milling tool diameter (d) = 50 mm and the number of rotations (n) = 520 rev. /min? Solution: = 82 m/min 3

4 Example 2: Calculate the number of rotations (n) if the milling tool diameter = 12 mm and the cutting speed Vc = 120 m/min. Solution: = 3185 rev/min Example 3: Calculate the cutting speed for turning if the cutting is done on 60 mm diameter workpiece and at rotational speed of 1500 RPM? Solution: = = 283 m/min 2.1.3: Feed speed (V f ) Together with the cutting movement, infeed allows a continuous chip removal during several rotations. The infeed speed (V f ) is indicated in mm/min. The following formula is used to calculate the infeed speed: V f = n f Where, V f : the infeed speed in mm/min n: revolution per minute (RPM). f: the feed in mm/rev; chosen from tabulated values. 4

5 Example: A plate is to be milled in one cut using an end-face mill with indexable inserts. The spindle speed = 1500 rev/min, and the feed in mm/rev is How high is the infeed speed V f? Known: 1. n = 1500 rev /min Unknown: V f in mm/min Solution: 2. f = 0.40 mm/rev V f = n f = 1500 x 0.40 = 600 mm/min 3.1.4: Cutting depth is the difference in height between machined surface and the work surface. Example: When roughing a bar of aluminum we want to reduce the diameter in a bar from 25mm to 23 mm diameter in one cut. What is the depth of cut? depth of cut = Depth of cut = D = = 1.0 mm 5

6 2.2: Coordinate systems The cutting tool should move in contact with the workpiece at certain specific points, in order to shape metal by machine tools while the workpiece or cutting tool is rotating. Coordinate system is required to define the movement on the milling machine : Types of coordinates systems To know the current and target positions of the cutting tool we need a coordinate system. There are two common coordinate systems: A. Cartesian coordinate system. It is used to describe the position of a point in the space. 1. When dealing with 2 dimensions (2D), the two-dimensional coordinate system is used; Fig. 1 Fig. 1 Cartesian coordinate system 2. When dealing with three dimensions (3D), the three-dimensional coordinate system is used; Fig. 2 Fig. 2 Cartesian coordinate system 6

7 Example 1: Locate points P1 through P4 on the coordinate system shown in Fig. 3. A Point X Z P P P P Fig. 3. A Example 2: Locate points P1 and P2 on the coordinate system shown in Fig. 3. B Point X Y Z P P P Fig. 3. B 7

8 B. Polar Coordinate system. The point is located by its distance (radius r) to the point of origin and its angle (alpha α) to a specified axis. 1. The angle is positive if it is measured in Counter clockwise direction starting from positive X-axis; Fig. 4. A Fig. 4. A 2. The angle is negative if it is measured in the clockwise direction starting from positive X-axis; Fig 4. B 2.2.2: CNC Machines' coordinates: Fig. 4. B The machine tool has its own "coordinate system", to indicate the position of the workpiece and read the specified coordinates correctly; The following points are part of this system. A. Machine Zero Point (M): It is the origin of the coordinate system, and defined by the manufacturer and cannot be changed. Fig. 5 8

9 B. Workpiece Zero Point: Fig. 5 Defined by the programmer and can be changed. The workpiece zero point "W", can be specified as desired; Fig. 6 Fig : Milling machine axes: A milling machine has at least 3 controllable feed axes marked as X, Y and Z, Fig The Spindle axis is Z axis. 2. X axis is the axis of left and right movement of the machine table. 3. Y axis is the axis for in and out movement on the vertical milling machine or up and down movement on horizontal milling machine. Fig. 7 Notes: 1.The X axis and the Y axis are usually parallel to the clamping plane of the work part. 2. When standing in front of the machine the positive X direction runs to the right and the Y axis away from the viewer. 3. For an easier calculation of the points needed for programming it is advisable to use the outer edges of the upper or the lower area. 9

10 Types of zero and reference points 2.2.4: Dimensioning To machine a workpiece we need a technical drawing on which we should illustrate the required dimensions (information) to make the required shape. To dimension the workpiece we need to specify a certain point on it, from which we should take the measurement. There are two types of dimensioning: 1. Absolute Dimensioning: All measurements are taken from the workpiece zero point. See Fig. 8 Fig. 7 Absolute dimensioning 11

11 2. Incremental Dimensioning: Uses incremental values that are always measured from the current point to the next point. See Fig. 8 Fig. 8 Incremental dimensioning 2.2.5: Conventional and CNC machining CNC-manufacturing has advantages over manufacturing with conventional machine tools, e.g. shorter production times. Advantages of CNC 1. Increased productivity 2. Constant quality of the work part 3. Less waste (scrap) 4. Increased dimension accuracy (up to 1/1000 mm) 5. Producing complex parts Disadvantages of CNC 1. High initial cost (capital cost) 2. Need high qualified operator. CNC machine tools use special NC tools. These tools meet the following criteria: 1. Better milling performance 2. Short changing and setup times 3. Standardized tools 4. Improved tool management 11

12 2.2.6: Quality assurance during CNC production The quality of parts manufactured on conventional machine tools is especially dependent upon the machine operator s training and constancy. The following factors can affect the quality of the manufactured work part: 1. The created NC-program 2. Tool cutting-edge life) 3. The work part material 4. The CNC-machine precision Programming standards (ISO) The ISO-Norm 6983 strives for standardizing the NC-programming of machines in the production area. This is however limited to standardizing certain commands as well the general structure of a NC-program 2.3: Programming procedure Generating NC-programs in the workshop is known as machine-based programming. The NC-programs can either be directly created on a machine or at a programming terminal near the machines. The NC-programs written in the workshop and in production planning are directly controlled and optimized on the CNC-machine tool by the operator during set-up. A skilled worker on a milling machine must defined by the programmer in advance. The programming steps are: 1. Definition of machining steps 12

13 Specifying the machining sequence structures and individual operations based on the production drawing. 2. Definition of necessary tools The programmer specifies the tools needed for each machining step. 3. Calculations of technological data The cutting data with respect to the material and the used tool must be specified for each machining step. 4. Calculation of geometric data The coordinates needed are taken from the production drawing or are specified by calculating known coordinates. 5. Generating NC programs With respect to the previously determined geometric and technological data, the programming steps are registered on a programming sheet. 6. Control of NC programs The travel movements are simulated on a CNC-machine tool in order to detect and control programming errors. 13

14 14

15 Student's Notes 15

16 Student's Notes 16

17 17

Trade of Toolmaking. Module 6: Introduction to CNC Unit 2: Part Programming Phase 2. Published by. Trade of Toolmaking Phase 2 Module 6 Unit 2

Trade of Toolmaking. Module 6: Introduction to CNC Unit 2: Part Programming Phase 2. Published by. Trade of Toolmaking Phase 2 Module 6 Unit 2 Trade of Toolmaking Module 6: Introduction to CNC Unit 2: Part Programming Phase 2 Published by SOLAS 2014 Unit 2 1 Table of Contents Document Release History... 3 Unit Objective... 4 Introduction... 4

More information

CNC Machinery. Module 4: CNC Programming "Turning" IAT Curriculum Unit PREPARED BY. August 2009

CNC Machinery. Module 4: CNC Programming Turning IAT Curriculum Unit PREPARED BY. August 2009 CNC Machinery Module 4: CNC Programming "Turning" PREPARED BY IAT Curriculum Unit August 2009 Institute of Applied Technology, 2009 2 Module 4: CNC Programming "Turning" Module 4: CNC Programming "Turning"

More information

CNC Machinery. Module 5: CNC Programming / Milling. IAT Curriculum Unit PREPARED BY. August 2009

CNC Machinery. Module 5: CNC Programming / Milling. IAT Curriculum Unit PREPARED BY. August 2009 CNC Machinery Module 5: CNC Programming / Milling PREPARED BY IAT Curriculum Unit August 2009 Institute of Applied Technology, 2009 ATM313-CNC Module 5: CNC Programming / Milling Module Objectives: 1.

More information

Trade of Sheet Metalwork. Module 7: Introduction to CNC Sheet Metal Manufacturing Unit 4: CNC Drawings & Documentation Phase 2

Trade of Sheet Metalwork. Module 7: Introduction to CNC Sheet Metal Manufacturing Unit 4: CNC Drawings & Documentation Phase 2 Trade of Sheet Metalwork Module 7: Introduction to CNC Sheet Metal Manufacturing Unit 4: CNC Drawings & Documentation Phase 2 Table of Contents List of Figures... 5 List of Tables... 5 Document Release

More information

Milling operations TA 102 Workshop Practice. By Prof.A.chANDRASHEKHAR

Milling operations TA 102 Workshop Practice. By Prof.A.chANDRASHEKHAR Milling operations TA 102 Workshop Practice By Prof.A.chANDRASHEKHAR Introduction Milling machines are used to produce parts having flat as well as curved shapes. Milling machines are capable of performing

More information

Cutting Speed, Feed, and Depth of Cut

Cutting Speed, Feed, and Depth of Cut Cutting Speed, Feed, and Depth of Cut Cutting Speed Rate at which point on work circumference travels past cutting tool Always expressed in feet per minute (ft/min) or meters per minute (m/min) Important

More information

Computer Numeric Control

Computer Numeric Control Computer Numeric Control TA202A 2017-18(2 nd ) Semester Prof. J. Ramkumar Department of Mechanical Engineering IIT Kanpur Computer Numeric Control A system in which actions are controlled by the direct

More information

Indexable Milling Tools

Indexable Milling Tools Tools Difference and selection between down milling and up milling X Vf Vf Y B Up milling magnified X Dowm milling magnified Y Climb milling (also called down milling): the feed direction of workpiece

More information

Servomill. Multipurpose Milling Machine Servomill. Conventional Multipurpose Milling Machine.

Servomill. Multipurpose Milling Machine Servomill. Conventional Multipurpose Milling Machine. Multipurpose Milling Machine Conventional Multipurpose Milling Machine for workshop applications, single parts production and training purposes Servo motors and preloaded ball screws on all axes infinitely

More information

Chapter 22 MACHINING OPERATIONS AND MACHINE TOOLS

Chapter 22 MACHINING OPERATIONS AND MACHINE TOOLS Chapter 22 MACHINING OPERATIONS AND MACHINE TOOLS Turning and Related Operations Drilling and Related Operations Milling Machining Centers and Turning Centers Other Machining Operations High Speed Machining

More information

90 Indexable Positive Milling Cutter

90 Indexable Positive Milling Cutter 90 Indexable Positive Cutter Inserts HIGH POSITIVE 90 MILLING CUTTER Cutting Rake - 20 for 11 positive 85 parallelogram AP inserts Application TOOL ANGLES: Cutting Rake +20 Axial Rake 6 Radial Rake -6

More information

Turning Operations. L a t h e

Turning Operations. L a t h e Turning Operations L a t h e Turning Operations Machine Tool LATHE Job (workpiece) rotary motion Tool linear motions Mother of Machine Tools Cylindrical and flat surfaces Some Typical Lathe Jobs Turning/Drilling/Grooving/

More information

WF WF Tool Milling Machines. Milling Machines for Die Making with digital position indicator.

WF WF Tool Milling Machines. Milling Machines for Die Making with digital position indicator. Tool Milling Machines Milling Machines for Die Making with digital position indicator automatic feeds on all 3 axes vertical head quill for drilling quill stroke 80 mm versatile for many applications for

More information

HORN Technology Days Technical Presentation: Tangential Milling Quality & Effectiveness. Speaker: Jeff Shope

HORN Technology Days Technical Presentation: Tangential Milling Quality & Effectiveness. Speaker: Jeff Shope HORN Technology Days 2015 Technical Presentation: Tangential Milling Quality & Effectiveness Speaker: Jeff Shope 2 Outline Quality & Effectiveness A Comparison of Tangential and Radial Systems System Description

More information

WF WF Tool Milling Machines. Milling Machines for Die Making with digital position indicator.

WF WF Tool Milling Machines. Milling Machines for Die Making with digital position indicator. Tool Milling Machines Milling Machines for Die Making with digital position indicator automatic feeds on all 3 axes vertical head quill for drilling quill stroke 3" versatile for many applications for

More information

Table 5.1: Drilling canned cycles. Action at the bottom of the hole. Cancels drilling canned cycle Intermittent or continuous feed.

Table 5.1: Drilling canned cycles. Action at the bottom of the hole. Cancels drilling canned cycle Intermittent or continuous feed. 5.18 CANNED CYCLES FOR DRILLING On a lathe, equipped with live tooling (which allows a tool, obviously a drilling or a similar tool, to rotate at the specified RPM, as in a milling machine) and an additional

More information

Multipurpose Milling Machine Servomill 700. Conventional Multipurpose Milling Machine.

Multipurpose Milling Machine Servomill 700. Conventional Multipurpose Milling Machine. Multipurpose Milling Machine Conventional Multipurpose Milling Machine For workshop application, single parts production and training purposes Servo motors and preloaded ball screws on all axes Infinitely

More information

Chapter 23: Machining Processes: Turning and Hole Making

Chapter 23: Machining Processes: Turning and Hole Making Manufacturing Engineering Technology in SI Units, 6 th Edition Chapter 23: Machining Processes: Turning and Hole Making Chapter Outline 1. Introduction 2. The Turning Process 3. Lathes and Lathe Operations

More information

Lesson 2 Understanding Turning Center Speeds and Feeds

Lesson 2 Understanding Turning Center Speeds and Feeds Lesson 2 Understanding Turning Center Speeds and Feeds Speed and feed selection is one of the most important basic-machining-practice-skills a programmer must possess. Poor selection of spindle speed and

More information

Metal Cutting - 5. Content. Milling Characteristics. Parts made by milling Example of Part Produced on a CNC Milling Machine 7.

Metal Cutting - 5. Content. Milling Characteristics. Parts made by milling Example of Part Produced on a CNC Milling Machine 7. Content Metal Cutting - 5 Assoc Prof Zainal Abidin Ahmad Dept. of Manufacturing & Industrial Engineering Faculty of Mechanical Engineering Universiti Teknologi Malaysia 7. MILLING Introduction Horizontal

More information

DONAUMERIC 440 DONAUPORT 540. RAPID RADIAL DRILLING MACHINES

DONAUMERIC 440 DONAUPORT 540. RAPID RADIAL DRILLING MACHINES DONAUMERIC 440 DONAUPORT 540 RAPID RADIAL DRILLING MACHINES www.donau-wzm.de DONAU FlexiblE DRILLING Since 1955 DONAU is manufacturing Rapid Radial drilling machines. Thousandfold proven machines from

More information

Controlled Machine Tools

Controlled Machine Tools ME 440: Numerically Controlled Machine Tools CNCSIMULATOR Choose the correct application (Milling, Turning or Plasma Cutting) CNCSIMULATOR http://www.cncsimulator.com Teaching Asst. Ergin KILIÇ (M.S.)

More information

Projects. 5 For each component, produce a drawing showing the intersection BO.O. C'BORE 18 DIA x 5 DEEP FROM SECTION ON A - A

Projects. 5 For each component, produce a drawing showing the intersection BO.O. C'BORE 18 DIA x 5 DEEP FROM SECTION ON A - A Projects ~ Figure Pl Project 1 If you have worked systematically through the assignments in this workbook, you should now be able to tackle the following milling and turning projects. It is suggested that

More information

HPC FACE MILLS for rough and finish machining

HPC FACE MILLS for rough and finish machining HOLLFELDER CUTTING TOOLS THE ORIGINAL HPC FACE MILLS for rough and finish machining THE ULTIMATE EVOLUTION! AXIALLY CLOSED CHIP FLUTES EXTREMELY HIGH NUMBER OF CUTTING EDGE FOR FINISH MACHINING CUTTERS

More information

Trade of Toolmaking. Module 3: Milling Unit 6: Angle Slotting & Reaming Phase 2. Published by. Trade of Toolmaking Phase 2 Module 3 Unit 6

Trade of Toolmaking. Module 3: Milling Unit 6: Angle Slotting & Reaming Phase 2. Published by. Trade of Toolmaking Phase 2 Module 3 Unit 6 Trade of Toolmaking Module 3: Milling Unit 6: Angle Slotting & Reaming Phase 2 Published by SOLAS 2014 Unit 6 1 Table of Contents Document Release History... 3 Unit Objective... 4 Introduction... 4 1.0

More information

Basic NC and CNC. Dr. J. Ramkumar Professor, Department of Mechanical Engineering Micro machining Lab, I.I.T. Kanpur

Basic NC and CNC. Dr. J. Ramkumar Professor, Department of Mechanical Engineering Micro machining Lab, I.I.T. Kanpur Basic NC and CNC Dr. J. Ramkumar Professor, Department of Mechanical Engineering Micro machining Lab, I.I.T. Kanpur Micro machining Lab, I.I.T. Kanpur Outline 1. Introduction to CNC machine 2. Component

More information

SinuTrain. Milling made easy with ShopMill. Training Documentation 08/2006 SINUMERIK

SinuTrain. Milling made easy with ShopMill. Training Documentation 08/2006 SINUMERIK SinuTrain Milling made easy with ShopMill Training Documentation 08/2006 SINUMERIK 4 th and revised edition 08/2006 Valid from software version V06.04 All rights reserved Duplication or transmission of

More information

Chapter 23. Machining Processes Used to Produce Round Shapes: Turning and Hole Making

Chapter 23. Machining Processes Used to Produce Round Shapes: Turning and Hole Making Chapter 23 Machining Processes Used to Produce Round Shapes: Turning and Hole Making R. Jerz 1 2/24/2006 Processes Turning (outside surface) straight, taper, facing, contour, form, cut-off, threading,

More information

FANUC SERIES 21i/18i/16i TA. Concise guide Edition 03.01

FANUC SERIES 21i/18i/16i TA. Concise guide Edition 03.01 FANUC SERIES 21i/18i/16i TA Concise guide Edition 03.01 0.1 GENERAL INDEX- CONCISE GUIDE FOR PROGRAMMER PAGE PAR. CONTENTS 7 1.0 FOREWORD 8 2.0 NC MAIN FUNCTIONS AND ADDRESSES 8 2.1 O Program and sub-program

More information

General advice on work safety

General advice on work safety General advice on work safety To prevent injury to the lathe operator and other persons the relevant safety regulations laid down by the Professional Trade Association (UVV) must be observed at all times.

More information

High Precision CNC Lathe

High Precision CNC Lathe High Precision CNC Lathe GN3200 High efficiency through space savings A compact design with a total machine width of 700 mm and a floor space requirement of 1.04 m2 has made it possible to shorten production

More information

Chapter 24 Machining Processes Used to Produce Various Shapes.

Chapter 24 Machining Processes Used to Produce Various Shapes. Chapter 24 Machining Processes Used to Produce Various Shapes. 24.1 Introduction In addition to parts with various external or internal round profiles, machining operations can produce many other parts

More information

Lecture 15. Chapter 23 Machining Processes Used to Produce Round Shapes. Turning

Lecture 15. Chapter 23 Machining Processes Used to Produce Round Shapes. Turning Lecture 15 Chapter 23 Machining Processes Used to Produce Round Shapes Turning Turning part is rotating while it is being machined Typically performed on a lathe Turning produces straight, conical, curved,

More information

CHAPTER 6 EXPERIMENTAL VALIDATION AND RESULTS AND DISCUSSIONS

CHAPTER 6 EXPERIMENTAL VALIDATION AND RESULTS AND DISCUSSIONS 119 CHAPTER 6 EXPERIMENTAL VALIDATION AND RESULTS AND DISCUSSIONS 6.1 CNC INTRODUCTION The CNC systems were first commercially introduced around 1970, and they applied the soft-wired controller approach

More information

Unit-I: Theory of Metal Cutting

Unit-I: Theory of Metal Cutting Unit-I: Theory of Metal Cutting Type-I (Cutting Forces Analysis) 1. In orthogonal cutting of a 60mm diameter MS bar on lathe, the following data was obtained, Rake angle = 15 0, Cutting Speed = 100 m/min,

More information

Prismatic Machining Preparation Assistant

Prismatic Machining Preparation Assistant Prismatic Machining Preparation Assistant Overview Conventions What's New Getting Started Open the Design Part and Start the Workbench Automatically Create All Machinable Features Open the Manufacturing

More information

Lower Spindle Power Consumptionn

Lower Spindle Power Consumptionn ower Spindle Power Consumptionn > Five cutters for drilling Ø13~Ø50 mm. > One insert for all kind of materials. > The drilling is done by helical interpolation. (circular ramping milling) Nine9 NC Helix

More information

CAD/CAM/CAE Computer Aided Design/Computer Aided Manufacturing/Computer Aided Manufacturing. Part-10 CNC Milling Programming

CAD/CAM/CAE Computer Aided Design/Computer Aided Manufacturing/Computer Aided Manufacturing. Part-10 CNC Milling Programming CAD/CAM/CAE Computer Aided Design/Computer Aided Manufacturing/Computer Aided Manufacturing Part-10 CNC Milling Programming To maximize the power of modern CNC milling machines, a programmer has to master

More information

Chapter 24. Machining Processes Used to Produce Various Shapes: Milling

Chapter 24. Machining Processes Used to Produce Various Shapes: Milling Chapter 24 Machining Processes Used to Produce Various Shapes: Milling Parts Made with Machining Processes of Chapter 24 Figure 24.1 Typical parts and shapes that can be produced with the machining processes

More information

SUMMARY. Valves, pipes and manifold-type parts are ideal candidates for Turn-Cut.

SUMMARY. Valves, pipes and manifold-type parts are ideal candidates for Turn-Cut. SUMMARY Turn-Cut is a programming option available on Okuma horizontal machining centers that allows the machine to create bores and diameters that include circular and/or angular features. It allows users

More information

JOB QUALIFICATION STANDARD (JQS)

JOB QUALIFICATION STANDARD (JQS) Occupation: Work Process: MACHINIST (CNC) CNC Setup Practical Hours: 2000 hrs. DOL Standard: CNC Setup: Apply a working knowledge in the setup of Computer Numerical Controls (CNC) machines that execute

More information

Metal Cutting - 4. Content. 6. Proses Melarik. 6.1 Pengenalan. larik. 6.6 Peranti pemegang bendakerja 6.7 Keadaan pemotongan

Metal Cutting - 4. Content. 6. Proses Melarik. 6.1 Pengenalan. larik. 6.6 Peranti pemegang bendakerja 6.7 Keadaan pemotongan Metal Cutting - 4 Assoc Prof Zainal Abidin Ahmad Dept. of Manufacturing & Industrial Engineering Faculty of Mechanical Engineering Universiti Teknologi Malaysia 6. Proses Melarik Content 6.1 Pengenalan

More information

Machine Tools MILLING PROCESS. BY LAKSHMIPATHI YERRA Asst.professor Dept.of Mechanical Engg.

Machine Tools MILLING PROCESS. BY LAKSHMIPATHI YERRA Asst.professor Dept.of Mechanical Engg. Machine Tools MILLING PROCESS BY LAKSHMIPATHI YERRA Asst.professor Dept.of Mechanical Engg. FIG. 1 Typical parts and shapes produced by various cutting processes Fig. 2 Schematic illustration of milling

More information

The CAD, CAM & CNC Workbook

The CAD, CAM & CNC Workbook About STEPCRAFT The STEPCRAFT GmbH & Co. KG based in Menden, Germany, was established in 2012. The company produces and sells multifunctional CNC machines and accessories for private use and small-business

More information

VHF 3 VHF 3. Universal Milling Machine. Rigid Universal Milling Machine for drilling and milling, with large travels.

VHF 3 VHF 3. Universal Milling Machine. Rigid Universal Milling Machine for drilling and milling, with large travels. Universal Milling Machine Rigid Universal Milling Machine for drilling and milling, with large travels incl. 3-axis position indicator travel distances X axis 750 mm Y axis 280 mm Z axis 430 mm speed range

More information

Features. Excellent Repeatability >> Applications >>

Features. Excellent Repeatability >> Applications >> Chamfer Mill 45 >> Nine9 chamfer mill is designed for chamfering and countersinking with an indexable insert. The insert is a specifically designed for use in high speed machining ; the multiple flutes

More information

Thread Mills. Solid Carbide Thread Milling Cutters

Thread Mills. Solid Carbide Thread Milling Cutters Thread Mills Solid Carbide Thread Milling Cutters Thread milling cutters by Features and Benefits: Sub-micro grain carbide substrate Longer tool life with tighter tolerances More cost-effective than indexable

More information

Multi-axis milling/turning system IMTA 320 T2 320 T3. Interaction Milling Turning Application

Multi-axis milling/turning system IMTA 320 T2 320 T3. Interaction Milling Turning Application Multi-axis milling/turning system IMTA 320 T2 320 T3 Interaction Milling Turning Application T e c h n i c a l D a t a s h e e t The consistent 75 step bed design allows the near rectangular arrangement

More information

CNC Programming Guide MILLING

CNC Programming Guide MILLING CNC Programming Guide MILLING Foreword The purpose of this guide is to help faculty teach CNC programming without tears. Most books currently available on CNC programming are not only inadequate, but also

More information

UW I D. ProduCt... for maximum flexibility. Grinding wheel change. Full flexibility. Compact automation

UW I D. ProduCt... for maximum flexibility. Grinding wheel change. Full flexibility. Compact automation UW I D The all-rounder among the tool grinding machines A Saacke ProduCt... for maximum flexibility Grinding wheel change in just 12 seconds Full flexibility with individual configurations for different

More information

Care and Maintenance of Milling Cutters

Care and Maintenance of Milling Cutters The Milling Machine Care and Maintenance of Milling Cutters The life of a milling cutter can be greatly prolonged by intelligent use and proper storage. Take care to operate the machine at the proper speed

More information

Stop and think! Tool changes are automatic but rigging, supervision and quality control are all manual operations.

Stop and think! Tool changes are automatic but rigging, supervision and quality control are all manual operations. CNC Background CNC (Computer Numeric Control) is a collective term for computer controlled machine tools used in the fabrication and manufacture of parts. There are hundreds of different types of CNC machine.

More information

NC Spot Drill with Patented indexable carbide insert.

NC Spot Drill with Patented indexable carbide insert. with Patented indexable carbide insert. High Efficiency! Low Cost! CNC Lathes, CNC Turning Centers and Machining Centers. One tool will perform multiple applications. Long tool life. Each insert has four

More information

Techniques With Motion Types

Techniques With Motion Types Techniques With Motion Types The vast majority of CNC programs require but three motion types: rapid, straight line, and circular interpolation. And these motion types are well discussed in basic courses.

More information

Vertical and horizontal Turning/Grinding Centers

Vertical and horizontal Turning/Grinding Centers Vertical and horizontal Turning/Grinding Centers INDEX Turning/Grinding Centers Turning and grinding of course with INDEX The INDEX Turning/Grinding Centers combine the advantages of turning and grinding

More information

MANUFACTURING PROCESSES

MANUFACTURING PROCESSES 1 MANUFACTURING PROCESSES - AMEM 201 Lecture 5: Milling Processes DR. SOTIRIS L. OMIROU Milling Machining - Definition Milling machining is one of the very common manufacturing processes used in machinery

More information

Dr Ghassan Al-Kindi - MECH2118 Lecture 9

Dr Ghassan Al-Kindi - MECH2118 Lecture 9 Dr Ghassan Al-Kindi - MECH2118 Lecture 9 Machining A material removal process in which a sharp cutting tool is used to mechanically cut away material so that the desired part geometry remains Most common

More information

SINUMERIK live: turning technologies longitudinal turning and plunge-turning. Differences and use with SINUMERIK Operate

SINUMERIK live: turning technologies longitudinal turning and plunge-turning. Differences and use with SINUMERIK Operate SINUMERIK live: turning technologies longitudinal turning and plunge-turning Differences and use with SINUMERIK Operate siemens.com/cnc4you SINUMERIK live - Application technology explained in an easily

More information

Pro/NC. Prerequisites. Stats

Pro/NC. Prerequisites. Stats Pro/NC Pro/NC tutorials have been developed with great emphasis on the practical application of the software to solve real world problems. The self-study course starts from the very basic concepts and

More information

SAMSUNG Machine Tools PL2000SY CNC TURNING CENTER

SAMSUNG Machine Tools PL2000SY CNC TURNING CENTER SAMSUNG Machine Tools CNC TURNING CENTER SAMSUNG'S Advanced Engineering and Machine Design Cast iron structure for superior dampening characteristics and thermal displacement Rigid 30 degree slant bed

More information

CNC Applications. Programming Machining Centers

CNC Applications. Programming Machining Centers CNC Applications Programming Machining Centers Planning and Programming Just as with the turning center, you must follow a series of steps to create a successful program: 1. Examine the part drawing thoroughly

More information

VHF 2 VHF 2. Vertical Milling Machine

VHF 2 VHF 2. Vertical Milling Machine Vertical Milling Machine VHF - ideal series for mechanic workshops, training, single part and replacement part manufacturing, and prototyping including 3-axis position indicator travel x-axis 600 mm y-axis

More information

Workshop Practice (ME192)

Workshop Practice (ME192) Workshop Practice (ME192) Credits: 3 Contacts: Mail: poddar05@gmail.com Web: http://www.ajourneywithtime.weebly.com Exp 03: To make a pin as given profile from a φ20 mm mild steel rod in a lathe. Material

More information

2 ¾ D Machining On a 4 Axis RF-30 Mill/Drill, version 1.4

2 ¾ D Machining On a 4 Axis RF-30 Mill/Drill, version 1.4 2 ¾ D Machining On a 4 Axis RF-30 Mill/Drill, version 1.4 By R. G. Sparber Copyleft protects this document. 1 It would not be hard to make this part with a 5 axis screw machine and the related 3D software

More information

CNC MACHINING OF MONOBLOCK PROPELLERS TO FINAL FORM AND FINISH. Bodo Gospodnetic

CNC MACHINING OF MONOBLOCK PROPELLERS TO FINAL FORM AND FINISH. Bodo Gospodnetic CNC MACHINING OF MONOBLOCK PROPELLERS TO FINAL FORM AND FINISH Bodo Gospodnetic Dominis Engineering Ltd. 5515 Canotek Rd., Unit 15 Gloucester, Ontario Canada K1J 9L1 tel.: (613) 747-0193 fax.: (613) 746-3321

More information

External Turning. Outline Review of Turning. Cutters for Turning Centers

External Turning. Outline Review of Turning. Cutters for Turning Centers Outline Review of Turning External Turning 3 External Turning Parameters Cutting Tools Inserts Toolholders Machining Operations Roughing Finishing General Recommendations Turning Calculations Machining

More information

MAIN MACHINE FEATURES

MAIN MACHINE FEATURES DATE: 05/2011 MAIN MACHINE FEATURES 2 Axis Surface Grinding Machine with Hydraulic Table. Sub-assemblies exhibit high static and dynamic stiffness and excellent damping qualities. All assemblies have good

More information

A General Procedure (Solids of Revolution) Some Useful Area Formulas

A General Procedure (Solids of Revolution) Some Useful Area Formulas Goal: Given a solid described by rotating an area, compute its volume. A General Procedure (Solids of Revolution) (i) Draw a graph of the relevant functions/regions in the plane. Draw a vertical line and

More information

Machining Processes Used to Produce Various Shapes. Dr. Mohammad Abuhaiba

Machining Processes Used to Produce Various Shapes. Dr. Mohammad Abuhaiba Machining Processes Used to Produce Various Shapes 1 Homework Assignment Due Wensday 28/4/2010 1. Show that the distance lc in slab milling is approximately equal to for situations where D>>d. (see Figure

More information

SINUMERIK. SINUMERIK 802D sl T/M. Manual Machine Plus Turning. Foreword. Description 1. Software interface 2. Turning On, Reference Point Approach 3

SINUMERIK. SINUMERIK 802D sl T/M. Manual Machine Plus Turning. Foreword. Description 1. Software interface 2. Turning On, Reference Point Approach 3 Foreword Description 1 SINUMERIK SINUMERIK 802D sl Programming and Operating Manual Software interface 2 Turning On, Reference Point Approach 3 Setting-up 4 Manual machining 5 Machining the machining step

More information

Conversational CAM Manual

Conversational CAM Manual Legacy Woodworking Machinery CNC Turning & Milling Machines Conversational CAM Manual Legacy Woodworking Machinery 435 W. 1000 N. Springville, UT 84663 2 Content Conversational CAM Conversational CAM overview...

More information

Plastics. Machining can be this exciting.

Plastics. Machining can be this exciting. Plastics Machining can be this exciting. 2 3 A decision for generations: MARTIN know-how Plastic processing with MARTIN. Our know-how are your opportunities With almost 100 years of experience in mechanical

More information

Technical T-A & GEN2 T-A GEN3SYS APX. Revolution & Core Drill. ASC 320 Solid Carbide. AccuPort 432. Page CONTENTS. Set-up Instructions 256

Technical T-A & GEN2 T-A GEN3SYS APX. Revolution & Core Drill. ASC 320 Solid Carbide. AccuPort 432. Page CONTENTS. Set-up Instructions 256 Technical ASC 0 Solid Carbide CONTENTS Page Set-up Instructions 6 AccuPort 4 Recommended Speeds & Feeds 60 Guaranteed Application Request Form 99 +44 (0)84 400 900 +44 (0)84 400 0 enquiries@alliedmaxcut.com

More information

WF 400 MA WF 600 MA Universal Milling Machine

WF 400 MA WF 600 MA Universal Milling Machine WF 600 MA Universal Milling Machine WF 600 MA _ Easy and Manageable WF 400 MA universality The main spheres of application for the WF 400 MA and the WF 600 MA are workshops and training as well as the

More information

CNC Turning. Module 3: CNC Turning Machine. Academic Services PREPARED BY. January 2013

CNC Turning. Module 3: CNC Turning Machine. Academic Services PREPARED BY. January 2013 CNC Turning Module 3: CNC Turning Machine PREPARED BY Academic Services January 2013 Applied Technology High Schools, 2013 Module 3: CNC Turning Machine Module Objectives Upon the successful completion

More information

Table of Contents. Preface 9 Prerequisites 9. Key Concept 1: Know Your Machine From A Programmer s Viewpoint 13. Table of Contents

Table of Contents. Preface 9 Prerequisites 9. Key Concept 1: Know Your Machine From A Programmer s Viewpoint 13. Table of Contents Preface 9 Prerequisites 9 Basic machining practice experience 9 Controls covered 10 Limitations 10 Programming method 10 The need for hands -on practice 10 Instruction method 11 Scope 11 Key Concepts approach

More information

Manual Machine Plus Turning SINUMERIK. SINUMERIK 802D sl T/M. Manual Machine Plus Turning. Foreword. Description. Software interface 2

Manual Machine Plus Turning SINUMERIK. SINUMERIK 802D sl T/M. Manual Machine Plus Turning. Foreword. Description. Software interface 2 Foreword Description 1 SINUMERIK SINUMERIK 802D sl Programming and Operating Manual Software interface 2 Turning On, Reference Point Approach 3 Setting-up 4 Manual machining 5 Machining the machining step

More information

11/15/2009. There are three factors that make up the cutting conditions: cutting speed depth of cut feed rate

11/15/2009. There are three factors that make up the cutting conditions: cutting speed depth of cut feed rate s Geometry & Milling Processes There are three factors that make up the cutting conditions: cutting speed depth of cut feed rate All three of these will be discussed in later lessons What is a cutting

More information

TUR 6MN WITH LOADING CRANES. TUR 4MN 3000 x

TUR 6MN WITH LOADING CRANES. TUR 4MN 3000 x TUR 4MN 3000 x 22 000 TUR 6MN WITH LOADING CRANES This lathe, produced for American client, has a unique bed configuration. It consists of two independent beds mounted on a special foundation. This solution

More information

TURNING BORING TURNING:

TURNING BORING TURNING: TURNING BORING TURNING: FACING: Machining external cylindrical and conical surfaces. Work spins and the single cutting tool does the cutting. Done in Lathe. Single point tool, longitudinal feed. Single

More information

CNC Grinding Center Model Evolution

CNC Grinding Center Model Evolution CNC Grinding Center Model Evolution High-Precision Tool Grinding Machine with 5 Axes The newest dimension in tool grinding Quality without compromise The Model Evolution has been developed for the production

More information

The Selection of Manufacturing Engineering Process; By Dr. Saied. M. Darwish

The Selection of Manufacturing Engineering Process; By Dr. Saied. M. Darwish CONTENTS MILLING OPERATIONS CONTENTS 6.1 Milling operation Milling is a machining operation in which a workpiece is fed past a rotating cylindrical tool with multiple cutting edges. This cutting tool in

More information

.com More than a machine. Power your life

.com More than a machine. Power your life Heavy Duty Swivel Head Bed-Type Universal Milling Machine Ideal for Machining Large Work-pieces This kind of MM-KB2100 is the Heavy Duty Swivel Head Bed-Type Universal Milling Machine featuring large cross

More information

Processing and Quality Assurance Equipment

Processing and Quality Assurance Equipment Processing and Quality Assurance Equipment The machine tool, the wash station, and the coordinate measuring machine (CMM) are the principal processing equipment. These machines provide the essential capability

More information

Review Label the Parts of the CNC Lathe

Review Label the Parts of the CNC Lathe Review Label the Parts of the CNC Lathe Chuck Bed Saddle Headstock Cutting tool Toolpost Tailstock Centre Handwheel Cross Slide CNC Controller http://image.made-in- china.com/2f0j00zzftqvdrefoe/hobby-lover-metal-lathe-

More information

Trade of Toolmaking Module 2: Turning Unit 3: Drilling, Reaming & Tapping Phase 2

Trade of Toolmaking Module 2: Turning Unit 3: Drilling, Reaming & Tapping Phase 2 Trade of Toolmaking Module 2: Turning Unit 3: Drilling, Reaming & Tapping Phase 2 Published by SOLAS 2014 Unit 3 1 Table of Contents Document Release History... 3 Unit Objective... 4 Introduction... 4

More information

A study of accuracy of finished test piece on multi-tasking machine tool

A study of accuracy of finished test piece on multi-tasking machine tool A study of accuracy of finished test piece on multi-tasking machine tool M. Saito 1, Y. Ihara 1, K. Shimojima 2 1 Osaka Institute of Technology, Japan 2 Okinawa National College of Technology, Japan yukitoshi.ihara@oit.ac.jp

More information

Various other types of drilling machines are available for specialized jobs. These may be portable, bench type, multiple spindle, gang, multiple

Various other types of drilling machines are available for specialized jobs. These may be portable, bench type, multiple spindle, gang, multiple Drilling The process of making holes is known as drilling and generally drilling machines are used to produce the holes. Drilling is an extensively used process by which blind or though holes are originated

More information

Motion Manipulation Techniques

Motion Manipulation Techniques Motion Manipulation Techniques You ve already been exposed to some advanced techniques with basic motion types (lesson six) and you seen several special motion types (lesson seven) In this lesson, we ll

More information

CNC Turning Center with 2 Spindles, 2 Turrets and 1 Y-axis Slide BNE-34/51

CNC Turning Center with 2 Spindles, 2 Turrets and 1 Y-axis Slide BNE-34/51 CNC Turning Center with 2 Spindles, 2 Turrets and 1 Y-axis Slide BNE-34/51 "Evolution and Innovation" is the Future The BNE series handles your high value barwork. 2 Miyano BNE-34/51 The BNE Series was

More information

MACHINING PROCESSES: TURNING AND HOLE MAKING. Dr. Mohammad Abuhaiba 1

MACHINING PROCESSES: TURNING AND HOLE MAKING. Dr. Mohammad Abuhaiba 1 MACHINING PROCESSES: TURNING AND HOLE MAKING Dr. Mohammad Abuhaiba 1 HoweWork Assignment Due Wensday 7/7/2010 1. Estimate the machining time required to rough cut a 0.5 m long annealed copper alloy round

More information

cutter NEW! back burr & path ü Uniform edge shape ü Faster operating time ü Longer tool life 1

cutter NEW! back burr & path ü Uniform edge shape ü Faster operating time ü Longer tool life  1 R Deburring Technologies, LLC back burr cutter & path NEW! ü Uniform edge shape ü Faster operating time ü Longer tool life 1.800.306.5901 1 P Applicable Areas Four edges processed in one approach Up to

More information

Ahsanullah University of Science and Technology (AUST) Department of Mechanical and Production Engineering

Ahsanullah University of Science and Technology (AUST) Department of Mechanical and Production Engineering Ahsanullah University of Science and Technology (AUST) Department of Mechanical and Production Engineering LABORATORY MANUAL For the students of Department of Mechanical and Production Engineering 1 st

More information

Application and Technical Information Thread Milling System (TMS) Minimum Bore Diameters for Thread Milling

Application and Technical Information Thread Milling System (TMS) Minimum Bore Diameters for Thread Milling Inserts Application and Technical Information Minimum Bore iameters for Thread Milling UN-ISO-BSW tpi 48 3 4 0 16 1 10 8 7 6 5 4.5 4 Technical ata Accessories Vintage Cutters Widia Cutters Thread Milling

More information

MTC200 Description of NC Cycles. Application Manual SYSTEM200 DOK-MTC200-CYC*DES*V22-AW02-EN-P

MTC200 Description of NC Cycles. Application Manual SYSTEM200 DOK-MTC200-CYC*DES*V22-AW02-EN-P X rapid feed feed first feed * n... appr.. * appr.. * 1... end point Z gradient starting point Z end p. X start. p. X Z MTC200 Description of NC Cycles Application Manual SYSTEM200 About this Documentation

More information

CNC Production Mill-Operation

CNC Production Mill-Operation Course Outcome Summary 31420315 CNC Production Mill-Operation Course Information Description: Career Cluster: Instructional Level: Total Credits: 1.00 Total Hours: 36.00 Operation of CNC (Computer Numerical

More information

Optimized flute design Better chip evacuation. Carbide substrate Higher heat resistance, higher speed.

Optimized flute design Better chip evacuation. Carbide substrate Higher heat resistance, higher speed. Thread Mills Available for the first time, our solid thread mills are designed to be the highest quality thread milling solution. WIDIA-GTD Cut up to 63 HRC. Improved overall thread quality. Optimized

More information

ACP 160. Cylinder boring machine. BERCO S.p.A. A Company of ThyssenKrupp Technologies

ACP 160. Cylinder boring machine. BERCO S.p.A. A Company of ThyssenKrupp Technologies ACP 160 Cylinder boring machine A Company of ThyssenKrupp Technologies BERCO S.p.A. ACP 160 Cylinder boring machine Berco's high productivity ACP160 series presents the ultimate in engine block boring

More information

THE PROBLEM OF TOOL SELECTION FOR MILLING LARGE INTERNAL THREADS

THE PROBLEM OF TOOL SELECTION FOR MILLING LARGE INTERNAL THREADS THE PROBLEM OF TOOL SELECTION FOR MILLING LARGE INTERNAL THREADS Mladen Bošnjaković Dragomir Moškun Marko Jerković M.Sc. Mladen Bošnjaković, Slavonski Brod University of Applied Science, Dr. M. Budaka

More information

SA SERIES SURFACING MACHINES

SA SERIES SURFACING MACHINES SA SERIES SURFACING MACHINES The S8A is designed to surface large diesel heads, blocks and manifolds. All SA machines use the same tooling and fixturing for quick, rigid setup and versatility. Fine surface

More information