CS325 Artificial Intelligence Ch. 5, Games!

Size: px
Start display at page:

Download "CS325 Artificial Intelligence Ch. 5, Games!"

Transcription

1 CS325 Artificial Intelligence Ch. 5, Games! Cengiz Günay, Emory Univ. vs. Spring 2013 Günay Ch. 5, Games! Spring / 19

2 AI in Games A lot of work is done on it. Why? Günay Ch. 5, Games! Spring / 19

3 AI in Games A lot of work is done on it. Why? Fun, provide entertainment Also, simpler than life: toy problems Günay Ch. 5, Games! Spring / 19

4 AI in Games A lot of work is done on it. Why? Fun, provide entertainment Also, simpler than life: toy problems Types of game AIs: Günay Ch. 5, Games! Spring / 19

5 AI in Games A lot of work is done on it. Why? Fun, provide entertainment Also, simpler than life: toy problems Types of game AIs: Adversaries zerg rush Günay Ch. 5, Games! Spring / 19

6 AI in Games A lot of work is done on it. Why? Fun, provide entertainment Also, simpler than life: toy problems Types of game AIs: Adversaries Simulated reality (non-playable characters, world reaction to player). zerg rush Günay Ch. 5, Games! Spring / 19

7 AI in Games A lot of work is done on it. Why? Fun, provide entertainment Also, simpler than life: toy problems Types of game AIs: Adversaries Simulated reality (non-playable characters, world reaction to player). Game theory (next class) zerg rush Günay Ch. 5, Games! Spring / 19

8 Entry/Exit Surveys Exit survey: Hidden Markov Models In the mining robot example, when is the uncertainty of the robot s trajectories reduced? How is Particle Filtering like and unlike a water filter? Entry survey: Adversarial Games (0.25 points of final grade) What algorithm would be useful in games? Give examples with two different algorithms you learned in class. How would you help an agent solve a problem against an adversary? Think of a game like chess or checkers for starters. Günay Ch. 5, Games! Spring / 19

9 Previously on AI for Games... Can previous algorithms help in games? Single-state agent: Günay Ch. 5, Games! Spring / 19

10 Previously on AI for Games... Can previous algorithms help in games? Single-state agent: vacuum world, solving a maze Günay Ch. 5, Games! Spring / 19

11 Previously on AI for Games... Can previous algorithms help in games? Single-state agent: vacuum world, solving a maze Bayes Nets: Günay Ch. 5, Games! Spring / 19

12 Previously on AI for Games... Can previous algorithms help in games? Single-state agent: vacuum world, solving a maze Bayes Nets: card games Günay Ch. 5, Games! Spring / 19

13 Previously on AI for Games... Can previous algorithms help in games? Single-state agent: vacuum world, solving a maze Bayes Nets: card games Machine Learning: Günay Ch. 5, Games! Spring / 19

14 Previously on AI for Games... Can previous algorithms help in games? Single-state agent: vacuum world, solving a maze Bayes Nets: card games Machine Learning: guessing games, learning user moves Günay Ch. 5, Games! Spring / 19

15 Previously on AI for Games... Can previous algorithms help in games? Single-state agent: vacuum world, solving a maze Bayes Nets: card games Machine Learning: guessing games, learning user moves Logic, planning: Günay Ch. 5, Games! Spring / 19

16 Previously on AI for Games... Can previous algorithms help in games? Single-state agent: vacuum world, solving a maze Bayes Nets: card games Machine Learning: guessing games, learning user moves Logic, planning: board game with complex rules (Machinarium) Günay Ch. 5, Games! Spring / 19

17 Previously on AI for Games... Can previous algorithms help in games? Single-state agent: vacuum world, solving a maze Bayes Nets: card games Machine Learning: guessing games, learning user moves Logic, planning: board game with complex rules (Machinarium) MDPs, Reinforcement Learning: Günay Ch. 5, Games! Spring / 19

18 Previously on AI for Games... Can previous algorithms help in games? Single-state agent: vacuum world, solving a maze Bayes Nets: card games Machine Learning: guessing games, learning user moves Logic, planning: board game with complex rules (Machinarium) MDPs, Reinforcement Learning: pathfinding, optimal strategy for zerg Günay Ch. 5, Games! Spring / 19

19 Previously on AI for Games... Can previous algorithms help in games? Single-state agent: vacuum world, solving a maze Bayes Nets: card games Machine Learning: guessing games, learning user moves Logic, planning: board game with complex rules (Machinarium) MDPs, Reinforcement Learning: pathfinding, optimal strategy for zerg HMMs, Particle Filter: Günay Ch. 5, Games! Spring / 19

20 Previously on AI for Games... Can previous algorithms help in games? Single-state agent: vacuum world, solving a maze Bayes Nets: card games Machine Learning: guessing games, learning user moves Logic, planning: board game with complex rules (Machinarium) MDPs, Reinforcement Learning: pathfinding, optimal strategy for zerg HMMs, Particle Filter: state estimation and future prediction, partially observable environment with traps (sonic?) Günay Ch. 5, Games! Spring / 19

21 Previously on AI for Games... Can previous algorithms help in games? Single-state agent: vacuum world, solving a maze Bayes Nets: card games Machine Learning: guessing games, learning user moves Logic, planning: board game with complex rules (Machinarium) MDPs, Reinforcement Learning: pathfinding, optimal strategy for zerg HMMs, Particle Filter: state estimation and future prediction, partially observable environment with traps (sonic?) None for adversaries? Günay Ch. 5, Games! Spring / 19

22 Properties of Games as Agent Environment Stochastic Part.-Observ. Unknown Adversarial Game Chess, Checkers Robot Soccer Poker Hide-and-go-seek Starcraft Battle for Wesnoth Halo/CoD/MoH Solitaire Minesweeper Zuma Günay Ch. 5, Games! Spring / 19

23 Properties of Games as Agent Environment Stochastic Part.-Observ. Unknown Adversarial Game X Chess, Checkers Robot Soccer Poker Hide-and-go-seek Starcraft Battle for Wesnoth Halo/CoD/MoH Solitaire Minesweeper Zuma Günay Ch. 5, Games! Spring / 19

24 Properties of Games as Agent Environment Stochastic Part.-Observ. Unknown Adversarial Game X Chess, Checkers X X X Robot Soccer Poker Hide-and-go-seek Starcraft Battle for Wesnoth Halo/CoD/MoH Solitaire Minesweeper Zuma Günay Ch. 5, Games! Spring / 19

25 Properties of Games as Agent Environment Stochastic Part.-Observ. Unknown Adversarial Game X Chess, Checkers X X X Robot Soccer X X Poker Hide-and-go-seek Starcraft Battle for Wesnoth Halo/CoD/MoH Solitaire Minesweeper Zuma Günay Ch. 5, Games! Spring / 19

26 Properties of Games as Agent Environment Stochastic Part.-Observ. Unknown Adversarial Game X Chess, Checkers X X X Robot Soccer X X Poker X X X X Hide-and-go-seek Starcraft Battle for Wesnoth Halo/CoD/MoH Solitaire Minesweeper Zuma Günay Ch. 5, Games! Spring / 19

27 Properties of Games as Agent Environment Stochastic Part.-Observ. Unknown Adversarial Game X Chess, Checkers X X X Robot Soccer X X Poker X X X X Hide-and-go-seek X X Starcraft Battle for Wesnoth Halo/CoD/MoH Solitaire Minesweeper Zuma Günay Ch. 5, Games! Spring / 19

28 Properties of Games as Agent Environment Stochastic Part.-Observ. Unknown Adversarial Game X Chess, Checkers X X X Robot Soccer X X Poker X X X X Hide-and-go-seek X X Starcraft X X X Battle for Wesnoth Halo/CoD/MoH Solitaire Minesweeper Zuma Günay Ch. 5, Games! Spring / 19

29 Properties of Games as Agent Environment Stochastic Part.-Observ. Unknown Adversarial Game X Chess, Checkers X X X Robot Soccer X X Poker X X X X Hide-and-go-seek X X Starcraft X X X Battle for Wesnoth X X X Halo/CoD/MoH Solitaire Minesweeper Zuma Günay Ch. 5, Games! Spring / 19

30 Properties of Games as Agent Environment Stochastic Part.-Observ. Unknown Adversarial Game X Chess, Checkers X X X Robot Soccer X X Poker X X X X Hide-and-go-seek X X Starcraft X X X Battle for Wesnoth X X X Halo/CoD/MoH X Solitaire X Minesweeper X Zuma Günay Ch. 5, Games! Spring / 19

31 Single Player Games Deterministic, single-state agent Single-player game using tree search initial state player state possible actions results of actions utility values goal test Günay Ch. 5, Games! Spring / 19

32 Adversarial Games Adversarial Games 1 Start by adapting single-state agent to games 2 Define adversary as someone who wants you to lose 3 And makes decisions based on the outcome of your moves Günay Ch. 5, Games! Spring / 19

33 Adversarial Games Adversarial Games 1 Start by adapting single-state agent to games 2 Define adversary as someone who wants you to lose 3 And makes decisions based on the outcome of your moves 2-player games: Deterministic Zero-sum: Reward distributed between players Minimax algorithm: max & min players choose +/- utility, resp. Günay Ch. 5, Games! Spring / 19

34 Adversarial Games Adversarial Games 1 Start by adapting single-state agent to games 2 Define adversary as someone who wants you to lose 3 And makes decisions based on the outcome of your moves 2-player games: Deterministic Zero-sum: Reward distributed between players Minimax algorithm: max & min players choose +/- utility, resp. Günay Ch. 5, Games! Spring / 19

35 2-Player Value Function defun value(s): if s is : U(s) if s is : maxvalue(s) if s is : minvalue(s) Günay Ch. 5, Games! Spring / 19

36 2-Player Value Function defun value(s): if s is : U(s) if s is : maxvalue(s) if s is : minvalue(s) defun m = maxvalue(s): m = for (a, s ) in successors(s): v = value(s ) m = maxvalue(m, v) Günay Ch. 5, Games! Spring / 19

37 2-Player Value Function defun value(s): if s is : U(s) if s is : maxvalue(s) if s is : minvalue(s) defun m = maxvalue(s): m = for (a, s ) in successors(s): v = value(s ) m = maxvalue(m, v) Assumes opponent is perfect! Günay Ch. 5, Games! Spring / 19

38 Time Complexity For a tree with branching factor, b, and depth, m? 1 O(bm) 2 O(b m ) 3 O(m b ) Günay Ch. 5, Games! Spring / 19

39 Time Complexity For a tree with branching factor, b, and depth, m? 1 O(bm) 2 O(b m ) 3 O(m b ) Günay Ch. 5, Games! Spring / 19

40 Time Complexity For a tree with branching factor, b, and depth, m? 1 O(bm) 2 O(b m ) 3 O(m b ) For chess: b 30, m 40 How long would it take with: 1 billion processors 1 billion/s evals? 1 seconds 2 minutes 3 hours 4 years 5 forever Günay Ch. 5, Games! Spring / 19

41 Time Complexity For a tree with branching factor, b, and depth, m? 1 O(bm) 2 O(b m ) 3 O(m b ) For chess: b 30, m 40 How long would it take with: 1 billion processors 1 billion/s evals? 1 seconds 2 minutes 3 hours 4 years 5 forever Günay Ch. 5, Games! Spring / 19

42 Space Complexity For a tree with branching factor, b, and depth, m? 1 O(bm) 2 O(b m ) 3 O(m b ) Günay Ch. 5, Games! Spring / 19

43 Space Complexity For a tree with branching factor, b, and depth, m? 1 O(bm) 2 O(b m ) 3 O(m b ) Günay Ch. 5, Games! Spring / 19

44 Space Complexity For a tree with branching factor, b, and depth, m? 1 O(bm) 2 O(b m ) 3 O(m b ) Do not need more than total number of nodes. Günay Ch. 5, Games! Spring / 19

45 Complexity Reduction? How to do it? 1 Reduce b 2 Reduce m 3 Tree graph Günay Ch. 5, Games! Spring / 19

46 Complexity Reduction? How to do it? 1 Reduce b 2 Reduce m 3 Tree graph All of the above! Günay Ch. 5, Games! Spring / 19

47 Example defun value(s): if s is : U(s) if s is : maxvalue(s) if s is : minvalue(s) defun m = maxvalue(s): m = for (a, s ) in successors(s): v = value(s ) m = maxvalue(m, v) Günay Ch. 5, Games! Spring / 19

48 Example defun value(s): if s is : U(s) if s is : maxvalue(s) if s is : minvalue(s) defun m = maxvalue(s): m = for (a, s ) in successors(s): v = value(s ) m = maxvalue(m, v) Günay Ch. 5, Games! Spring / 19

49 Reducing Branching Factor, b Günay Ch. 5, Games! Spring / 19

50 Reducing Branching Factor, b Günay Ch. 5, Games! Spring / 19

51 Reducing Branching Factor, b Günay Ch. 5, Games! Spring / 19

52 Reducing Branching Factor, b Günay Ch. 5, Games! Spring / 19

53 Reducing Branching Factor, b Which one to prune? Günay Ch. 5, Games! Spring / 19

54 Reducing Depth, m Select a cutoff: Limit m (e.g., plan 3 steps ahead in chess) Estimate terminal nodes utility with evaluation function like heuristics Learn from experience In chess, use board state, value of pieces, etc. For value of pieces:eval(s) = i w ip i can use machine learning for w i Günay Ch. 5, Games! Spring / 19

55 Formalize as Alpha-Beta Pruning defun value(s): cutoff at depth m : eval(s) if s is : U(s) if s is : maxvalue(s, depth, α, β) if s is : minvalue(s, depth, α, β) where α, β are overall max and min values, resp. Günay Ch. 5, Games! Spring / 19

56 Formalize as Alpha-Beta Pruning defun value(s): cutoff at depth m : eval(s) if s is : U(s) if s is : maxvalue(s, depth, α, β) if s is : minvalue(s, depth, α, β) where α, β are overall max and min values, resp. defun v = maxvalue(s, depth, α, β): v = for (a, s ) in successors(s): v = max(v, value(s, depth + 1, α, β)) if v > β return v α = max(α, v) Günay Ch. 5, Games! Spring / 19

57 Formalize as Alpha-Beta Pruning defun value(s): cutoff at depth m : eval(s) if s is : U(s) if s is : maxvalue(s, depth, α, β) if s is : minvalue(s, depth, α, β) where α, β are overall max and min values, resp. defun v = maxvalue(s, depth, α, β): v = for (a, s ) in successors(s): v = max(v, value(s, depth + 1, α, β)) if v > β return v α = max(α, v) Günay Ch. 5, Games! Spring / 19

58 Formalize as Alpha-Beta Pruning defun value(s): cutoff at depth m : eval(s) if s is : U(s) if s is : maxvalue(s, depth, α, β) if s is : minvalue(s, depth, α, β) where α, β are overall max and min values, resp. defun v = maxvalue(s, depth, α, β): v = for (a, s ) in successors(s): v = max(v, value(s, depth + 1, α, β)) if v > β return v α = max(α, v) Can cut up to O(b m/2 )! Günay Ch. 5, Games! Spring / 19

59 Complexity Reduction by Tree Graph Convert into graph search problem: to reach special opening and closing states to make and protect from killer-moves Günay Ch. 5, Games! Spring / 19

60 Complexity Reduction by Tree Graph Convert into graph search problem: to reach special opening and closing states to make and protect from killer-moves Utility: How many food particles can pacman eat? Günay Ch. 5, Games! Spring / 19

61 Complexity Reduction by Tree Graph Convert into graph search problem: to reach special opening and closing states to make and protect from killer-moves Utility: How many food particles can pacman eat? Günay Ch. 5, Games! Spring / 19

62 Complexity Reduction by Tree Graph Convert into graph search problem: to reach special opening and closing states to make and protect from killer-moves Utility: How many food particles can pacman eat? 2-step limit causes horizon effect? Günay Ch. 5, Games! Spring / 19

63 Stochastic Games Günay Ch. 5, Games! Spring / 19

64 Stochastic Games defun value(s): cutoff at depth m : eval(s) if s is : U(s) if s is : maxvalue(s, depth, α, β) if s is : minvalue(s, depth, α, β) if s is?: expvalue(s, depth, α, β) Günay Ch. 5, Games! Spring / 19

65 Coin-flip Game Günay Ch. 5, Games! Spring / 19

66 Coin-flip Game Günay Ch. 5, Games! Spring / 19

Adversarial Search 1

Adversarial Search 1 Adversarial Search 1 Adversarial Search The ghosts trying to make pacman loose Can not come up with a giant program that plans to the end, because of the ghosts and their actions Goal: Eat lots of dots

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2011 Lecture 7: Minimax and Alpha-Beta Search 2/9/2011 Pieter Abbeel UC Berkeley Many slides adapted from Dan Klein 1 Announcements W1 out and due Monday 4:59pm P2

More information

CS 188: Artificial Intelligence. Overview

CS 188: Artificial Intelligence. Overview CS 188: Artificial Intelligence Lecture 6 and 7: Search for Games Pieter Abbeel UC Berkeley Many slides adapted from Dan Klein 1 Overview Deterministic zero-sum games Minimax Limited depth and evaluation

More information

School of EECS Washington State University. Artificial Intelligence

School of EECS Washington State University. Artificial Intelligence School of EECS Washington State University Artificial Intelligence 1 } Classic AI challenge Easy to represent Difficult to solve } Zero-sum games Total final reward to all players is constant } Perfect

More information

Announcements. CS 188: Artificial Intelligence Spring Game Playing State-of-the-Art. Overview. Game Playing. GamesCrafters

Announcements. CS 188: Artificial Intelligence Spring Game Playing State-of-the-Art. Overview. Game Playing. GamesCrafters CS 188: Artificial Intelligence Spring 2011 Announcements W1 out and due Monday 4:59pm P2 out and due next week Friday 4:59pm Lecture 7: Mini and Alpha-Beta Search 2/9/2011 Pieter Abbeel UC Berkeley Many

More information

Announcements. Homework 1. Project 1. Due tonight at 11:59pm. Due Friday 2/8 at 4:00pm. Electronic HW1 Written HW1

Announcements. Homework 1. Project 1. Due tonight at 11:59pm. Due Friday 2/8 at 4:00pm. Electronic HW1 Written HW1 Announcements Homework 1 Due tonight at 11:59pm Project 1 Electronic HW1 Written HW1 Due Friday 2/8 at 4:00pm CS 188: Artificial Intelligence Adversarial Search and Game Trees Instructors: Sergey Levine

More information

Adversarial Search. Rob Platt Northeastern University. Some images and slides are used from: AIMA CS188 UC Berkeley

Adversarial Search. Rob Platt Northeastern University. Some images and slides are used from: AIMA CS188 UC Berkeley Adversarial Search Rob Platt Northeastern University Some images and slides are used from: AIMA CS188 UC Berkeley What is adversarial search? Adversarial search: planning used to play a game such as chess

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Adversarial Search Vibhav Gogate The University of Texas at Dallas Some material courtesy of Rina Dechter, Alex Ihler and Stuart Russell, Luke Zettlemoyer, Dan Weld Adversarial

More information

Adversarial Search. Human-aware Robotics. 2018/01/25 Chapter 5 in R&N 3rd Ø Announcement: Slides for this lecture are here:

Adversarial Search. Human-aware Robotics. 2018/01/25 Chapter 5 in R&N 3rd Ø Announcement: Slides for this lecture are here: Adversarial Search 2018/01/25 Chapter 5 in R&N 3rd Ø Announcement: q Slides for this lecture are here: http://www.public.asu.edu/~yzhan442/teaching/cse471/lectures/adversarial.pdf Slides are largely based

More information

Adversarial Search. Hal Daumé III. Computer Science University of Maryland CS 421: Introduction to Artificial Intelligence 9 Feb 2012

Adversarial Search. Hal Daumé III. Computer Science University of Maryland CS 421: Introduction to Artificial Intelligence 9 Feb 2012 1 Hal Daumé III (me@hal3.name) Adversarial Search Hal Daumé III Computer Science University of Maryland me@hal3.name CS 421: Introduction to Artificial Intelligence 9 Feb 2012 Many slides courtesy of Dan

More information

CS 380: ARTIFICIAL INTELLIGENCE ADVERSARIAL SEARCH. Santiago Ontañón

CS 380: ARTIFICIAL INTELLIGENCE ADVERSARIAL SEARCH. Santiago Ontañón CS 380: ARTIFICIAL INTELLIGENCE ADVERSARIAL SEARCH Santiago Ontañón so367@drexel.edu Recall: Problem Solving Idea: represent the problem we want to solve as: State space Actions Goal check Cost function

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence CS482, CS682, MW 1 2:15, SEM 201, MS 227 Prerequisites: 302, 365 Instructor: Sushil Louis, sushil@cse.unr.edu, http://www.cse.unr.edu/~sushil Games and game trees Multi-agent systems

More information

2/5/17 ADVERSARIAL SEARCH. Today. Introduce adversarial games Minimax as an optimal strategy Alpha-beta pruning Real-time decision making

2/5/17 ADVERSARIAL SEARCH. Today. Introduce adversarial games Minimax as an optimal strategy Alpha-beta pruning Real-time decision making ADVERSARIAL SEARCH Today Introduce adversarial games Minimax as an optimal strategy Alpha-beta pruning Real-time decision making 1 Adversarial Games People like games! Games are fun, engaging, and hard-to-solve

More information

Programming Project 1: Pacman (Due )

Programming Project 1: Pacman (Due ) Programming Project 1: Pacman (Due 8.2.18) Registration to the exams 521495A: Artificial Intelligence Adversarial Search (Min-Max) Lectured by Abdenour Hadid Adjunct Professor, CMVS, University of Oulu

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Adversarial Search Vibhav Gogate The University of Texas at Dallas Some material courtesy of Rina Dechter, Alex Ihler and Stuart Russell, Luke Zettlemoyer, Dan Weld Adversarial

More information

Artificial Intelligence. 4. Game Playing. Prof. Bojana Dalbelo Bašić Assoc. Prof. Jan Šnajder

Artificial Intelligence. 4. Game Playing. Prof. Bojana Dalbelo Bašić Assoc. Prof. Jan Šnajder Artificial Intelligence 4. Game Playing Prof. Bojana Dalbelo Bašić Assoc. Prof. Jan Šnajder University of Zagreb Faculty of Electrical Engineering and Computing Academic Year 2017/2018 Creative Commons

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificial Intelligence Adversarial Search Prof. Scott Niekum The University of Texas at Austin [These slides are based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Adversarial Search Instructors: David Suter and Qince Li Course Delivered @ Harbin Institute of Technology [Many slides adapted from those created by Dan Klein and Pieter Abbeel

More information

Adversarial Search. CS 486/686: Introduction to Artificial Intelligence

Adversarial Search. CS 486/686: Introduction to Artificial Intelligence Adversarial Search CS 486/686: Introduction to Artificial Intelligence 1 Introduction So far we have only been concerned with a single agent Today, we introduce an adversary! 2 Outline Games Minimax search

More information

Game Playing State-of-the-Art

Game Playing State-of-the-Art Adversarial Search [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.] Game Playing State-of-the-Art

More information

Adversarial Search. Read AIMA Chapter CIS 421/521 - Intro to AI 1

Adversarial Search. Read AIMA Chapter CIS 421/521 - Intro to AI 1 Adversarial Search Read AIMA Chapter 5.2-5.5 CIS 421/521 - Intro to AI 1 Adversarial Search Instructors: Dan Klein and Pieter Abbeel University of California, Berkeley [These slides were created by Dan

More information

Adversarial Search. CS 486/686: Introduction to Artificial Intelligence

Adversarial Search. CS 486/686: Introduction to Artificial Intelligence Adversarial Search CS 486/686: Introduction to Artificial Intelligence 1 AccessAbility Services Volunteer Notetaker Required Interested? Complete an online application using your WATIAM: https://york.accessiblelearning.com/uwaterloo/

More information

CS 5522: Artificial Intelligence II

CS 5522: Artificial Intelligence II CS 5522: Artificial Intelligence II Adversarial Search Instructor: Alan Ritter Ohio State University [These slides were adapted from CS188 Intro to AI at UC Berkeley. All materials available at http://ai.berkeley.edu.]

More information

Adversarial Search and Game Playing

Adversarial Search and Game Playing Games Adversarial Search and Game Playing Russell and Norvig, 3 rd edition, Ch. 5 Games: multi-agent environment q What do other agents do and how do they affect our success? q Cooperative vs. competitive

More information

Lecture 5: Game Playing (Adversarial Search)

Lecture 5: Game Playing (Adversarial Search) Lecture 5: Game Playing (Adversarial Search) CS 580 (001) - Spring 2018 Amarda Shehu Department of Computer Science George Mason University, Fairfax, VA, USA February 21, 2018 Amarda Shehu (580) 1 1 Outline

More information

CS 380: ARTIFICIAL INTELLIGENCE

CS 380: ARTIFICIAL INTELLIGENCE CS 380: ARTIFICIAL INTELLIGENCE ADVERSARIAL SEARCH 10/23/2013 Santiago Ontañón santi@cs.drexel.edu https://www.cs.drexel.edu/~santi/teaching/2013/cs380/intro.html Recall: Problem Solving Idea: represent

More information

Adversarial Search. Robert Platt Northeastern University. Some images and slides are used from: 1. CS188 UC Berkeley 2. RN, AIMA

Adversarial Search. Robert Platt Northeastern University. Some images and slides are used from: 1. CS188 UC Berkeley 2. RN, AIMA Adversarial Search Robert Platt Northeastern University Some images and slides are used from: 1. CS188 UC Berkeley 2. RN, AIMA What is adversarial search? Adversarial search: planning used to play a game

More information

CSE 473: Artificial Intelligence Autumn 2011

CSE 473: Artificial Intelligence Autumn 2011 CSE 473: Artificial Intelligence Autumn 2011 Adversarial Search Luke Zettlemoyer Based on slides from Dan Klein Many slides over the course adapted from either Stuart Russell or Andrew Moore 1 Adversarial

More information

CSE 573: Artificial Intelligence Autumn 2010

CSE 573: Artificial Intelligence Autumn 2010 CSE 573: Artificial Intelligence Autumn 2010 Lecture 4: Adversarial Search 10/12/2009 Luke Zettlemoyer Based on slides from Dan Klein Many slides over the course adapted from either Stuart Russell or Andrew

More information

CS440/ECE448 Lecture 9: Minimax Search. Slides by Svetlana Lazebnik 9/2016 Modified by Mark Hasegawa-Johnson 9/2017

CS440/ECE448 Lecture 9: Minimax Search. Slides by Svetlana Lazebnik 9/2016 Modified by Mark Hasegawa-Johnson 9/2017 CS440/ECE448 Lecture 9: Minimax Search Slides by Svetlana Lazebnik 9/2016 Modified by Mark Hasegawa-Johnson 9/2017 Why study games? Games are a traditional hallmark of intelligence Games are easy to formalize

More information

CS 188: Artificial Intelligence Spring 2007

CS 188: Artificial Intelligence Spring 2007 CS 188: Artificial Intelligence Spring 2007 Lecture 7: CSP-II and Adversarial Search 2/6/2007 Srini Narayanan ICSI and UC Berkeley Many slides over the course adapted from Dan Klein, Stuart Russell or

More information

CSE 473: Artificial Intelligence Fall Outline. Types of Games. Deterministic Games. Previously: Single-Agent Trees. Previously: Value of a State

CSE 473: Artificial Intelligence Fall Outline. Types of Games. Deterministic Games. Previously: Single-Agent Trees. Previously: Value of a State CSE 473: Artificial Intelligence Fall 2014 Adversarial Search Dan Weld Outline Adversarial Search Minimax search α-β search Evaluation functions Expectimax Reminder: Project 1 due Today Based on slides

More information

Game Playing: Adversarial Search. Chapter 5

Game Playing: Adversarial Search. Chapter 5 Game Playing: Adversarial Search Chapter 5 Outline Games Perfect play minimax search α β pruning Resource limits and approximate evaluation Games of chance Games of imperfect information Games vs. Search

More information

Adversarial Search Lecture 7

Adversarial Search Lecture 7 Lecture 7 How can we use search to plan ahead when other agents are planning against us? 1 Agenda Games: context, history Searching via Minimax Scaling α β pruning Depth-limiting Evaluation functions Handling

More information

Game Playing. Philipp Koehn. 29 September 2015

Game Playing. Philipp Koehn. 29 September 2015 Game Playing Philipp Koehn 29 September 2015 Outline 1 Games Perfect play minimax decisions α β pruning Resource limits and approximate evaluation Games of chance Games of imperfect information 2 games

More information

Game playing. Chapter 6. Chapter 6 1

Game playing. Chapter 6. Chapter 6 1 Game playing Chapter 6 Chapter 6 1 Outline Games Perfect play minimax decisions α β pruning Resource limits and approximate evaluation Games of chance Games of imperfect information Chapter 6 2 Games vs.

More information

ARTIFICIAL INTELLIGENCE (CS 370D)

ARTIFICIAL INTELLIGENCE (CS 370D) Princess Nora University Faculty of Computer & Information Systems ARTIFICIAL INTELLIGENCE (CS 370D) (CHAPTER-5) ADVERSARIAL SEARCH ADVERSARIAL SEARCH Optimal decisions Min algorithm α-β pruning Imperfect,

More information

Game Playing State-of-the-Art. CS 188: Artificial Intelligence. Behavior from Computation. Video of Demo Mystery Pacman. Adversarial Search

Game Playing State-of-the-Art. CS 188: Artificial Intelligence. Behavior from Computation. Video of Demo Mystery Pacman. Adversarial Search CS 188: Artificial Intelligence Adversarial Search Instructor: Marco Alvarez University of Rhode Island (These slides were created/modified by Dan Klein, Pieter Abbeel, Anca Dragan for CS188 at UC Berkeley)

More information

CS 188: Artificial Intelligence Spring Game Playing in Practice

CS 188: Artificial Intelligence Spring Game Playing in Practice CS 188: Artificial Intelligence Spring 2006 Lecture 23: Games 4/18/2006 Dan Klein UC Berkeley Game Playing in Practice Checkers: Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994.

More information

Games vs. search problems. Game playing Chapter 6. Outline. Game tree (2-player, deterministic, turns) Types of games. Minimax

Games vs. search problems. Game playing Chapter 6. Outline. Game tree (2-player, deterministic, turns) Types of games. Minimax Game playing Chapter 6 perfect information imperfect information Types of games deterministic chess, checkers, go, othello battleships, blind tictactoe chance backgammon monopoly bridge, poker, scrabble

More information

Game playing. Chapter 6. Chapter 6 1

Game playing. Chapter 6. Chapter 6 1 Game playing Chapter 6 Chapter 6 1 Outline Games Perfect play minimax decisions α β pruning Resource limits and approximate evaluation Games of chance Games of imperfect information Chapter 6 2 Games vs.

More information

CSE 573: Artificial Intelligence

CSE 573: Artificial Intelligence CSE 573: Artificial Intelligence Adversarial Search Dan Weld Based on slides from Dan Klein, Stuart Russell, Pieter Abbeel, Andrew Moore and Luke Zettlemoyer (best illustrations from ai.berkeley.edu) 1

More information

ADVERSARIAL SEARCH. Chapter 5

ADVERSARIAL SEARCH. Chapter 5 ADVERSARIAL SEARCH Chapter 5... every game of skill is susceptible of being played by an automaton. from Charles Babbage, The Life of a Philosopher, 1832. Outline Games Perfect play minimax decisions α

More information

Game playing. Chapter 5. Chapter 5 1

Game playing. Chapter 5. Chapter 5 1 Game playing Chapter 5 Chapter 5 1 Outline Games Perfect play minimax decisions α β pruning Resource limits and approximate evaluation Games of chance Games of imperfect information Chapter 5 2 Types of

More information

Adversarial search (game playing)

Adversarial search (game playing) Adversarial search (game playing) References Russell and Norvig, Artificial Intelligence: A modern approach, 2nd ed. Prentice Hall, 2003 Nilsson, Artificial intelligence: A New synthesis. McGraw Hill,

More information

CSE 473: Artificial Intelligence. Outline

CSE 473: Artificial Intelligence. Outline CSE 473: Artificial Intelligence Adversarial Search Dan Weld Based on slides from Dan Klein, Stuart Russell, Pieter Abbeel, Andrew Moore and Luke Zettlemoyer (best illustrations from ai.berkeley.edu) 1

More information

Adversarial Search. Soleymani. Artificial Intelligence: A Modern Approach, 3 rd Edition, Chapter 5

Adversarial Search. Soleymani. Artificial Intelligence: A Modern Approach, 3 rd Edition, Chapter 5 Adversarial Search CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2017 Soleymani Artificial Intelligence: A Modern Approach, 3 rd Edition, Chapter 5 Outline Game

More information

Outline. Game Playing. Game Problems. Game Problems. Types of games Playing a perfect game. Playing an imperfect game

Outline. Game Playing. Game Problems. Game Problems. Types of games Playing a perfect game. Playing an imperfect game Outline Game Playing ECE457 Applied Artificial Intelligence Fall 2007 Lecture #5 Types of games Playing a perfect game Minimax search Alpha-beta pruning Playing an imperfect game Real-time Imperfect information

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence CS482, CS682, MW 1 2:15, SEM 201, MS 227 Prerequisites: 302, 365 Instructor: Sushil Louis, sushil@cse.unr.edu, http://www.cse.unr.edu/~sushil Non-classical search - Path does not

More information

Project 1. Out of 20 points. Only 30% of final grade 5-6 projects in total. Extra day: 10%

Project 1. Out of 20 points. Only 30% of final grade 5-6 projects in total. Extra day: 10% Project 1 Out of 20 points Only 30% of final grade 5-6 projects in total Extra day: 10% 1. DFS (2) 2. BFS (1) 3. UCS (2) 4. A* (3) 5. Corners (2) 6. Corners Heuristic (3) 7. foodheuristic (5) 8. Suboptimal

More information

CS 2710 Foundations of AI. Lecture 9. Adversarial search. CS 2710 Foundations of AI. Game search

CS 2710 Foundations of AI. Lecture 9. Adversarial search. CS 2710 Foundations of AI. Game search CS 2710 Foundations of AI Lecture 9 Adversarial search Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square CS 2710 Foundations of AI Game search Game-playing programs developed by AI researchers since

More information

Game playing. Outline

Game playing. Outline Game playing Chapter 6, Sections 1 8 CS 480 Outline Perfect play Resource limits α β pruning Games of chance Games of imperfect information Games vs. search problems Unpredictable opponent solution is

More information

Local Search. Hill Climbing. Hill Climbing Diagram. Simulated Annealing. Simulated Annealing. Introduction to Artificial Intelligence

Local Search. Hill Climbing. Hill Climbing Diagram. Simulated Annealing. Simulated Annealing. Introduction to Artificial Intelligence Introduction to Artificial Intelligence V22.0472-001 Fall 2009 Lecture 6: Adversarial Search Local Search Queue-based algorithms keep fallback options (backtracking) Local search: improve what you have

More information

Games and Adversarial Search

Games and Adversarial Search 1 Games and Adversarial Search BBM 405 Fundamentals of Artificial Intelligence Pinar Duygulu Hacettepe University Slides are mostly adapted from AIMA, MIT Open Courseware and Svetlana Lazebnik (UIUC) Spring

More information

Ar#ficial)Intelligence!!

Ar#ficial)Intelligence!! Introduc*on! Ar#ficial)Intelligence!! Roman Barták Department of Theoretical Computer Science and Mathematical Logic So far we assumed a single-agent environment, but what if there are more agents and

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificial Intelligence Adversarial Search Instructor: Stuart Russell University of California, Berkeley Game Playing State-of-the-Art Checkers: 1950: First computer player. 1959: Samuel s self-taught

More information

Algorithms for Data Structures: Search for Games. Phillip Smith 27/11/13

Algorithms for Data Structures: Search for Games. Phillip Smith 27/11/13 Algorithms for Data Structures: Search for Games Phillip Smith 27/11/13 Search for Games Following this lecture you should be able to: Understand the search process in games How an AI decides on the best

More information

Artificial Intelligence Adversarial Search

Artificial Intelligence Adversarial Search Artificial Intelligence Adversarial Search Adversarial Search Adversarial search problems games They occur in multiagent competitive environments There is an opponent we can t control planning again us!

More information

Game playing. Chapter 5, Sections 1 6

Game playing. Chapter 5, Sections 1 6 Game playing Chapter 5, Sections 1 6 Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c Stuart Russel and Peter Norvig, 2004 Chapter 5, Sections 1 6 1 Outline Games Perfect play

More information

Game-Playing & Adversarial Search

Game-Playing & Adversarial Search Game-Playing & Adversarial Search This lecture topic: Game-Playing & Adversarial Search (two lectures) Chapter 5.1-5.5 Next lecture topic: Constraint Satisfaction Problems (two lectures) Chapter 6.1-6.4,

More information

Announcements. CS 188: Artificial Intelligence Fall Local Search. Hill Climbing. Simulated Annealing. Hill Climbing Diagram

Announcements. CS 188: Artificial Intelligence Fall Local Search. Hill Climbing. Simulated Annealing. Hill Climbing Diagram CS 188: Artificial Intelligence Fall 2008 Lecture 6: Adversarial Search 9/16/2008 Dan Klein UC Berkeley Many slides over the course adapted from either Stuart Russell or Andrew Moore 1 Announcements Project

More information

CITS3001. Algorithms, Agents and Artificial Intelligence. Semester 2, 2016 Tim French

CITS3001. Algorithms, Agents and Artificial Intelligence. Semester 2, 2016 Tim French CITS3001 Algorithms, Agents and Artificial Intelligence Semester 2, 2016 Tim French School of Computer Science & Software Eng. The University of Western Australia 8. Game-playing AIMA, Ch. 5 Objectives

More information

Data Structures and Algorithms

Data Structures and Algorithms Data Structures and Algorithms CS245-2015S-P4 Two Player Games David Galles Department of Computer Science University of San Francisco P4-0: Overview Example games (board splitting, chess, Network) /Max

More information

ADVERSARIAL SEARCH. Today. Reading. Goals. AIMA Chapter , 5.7,5.8

ADVERSARIAL SEARCH. Today. Reading. Goals. AIMA Chapter , 5.7,5.8 ADVERSARIAL SEARCH Today Reading AIMA Chapter 5.1-5.5, 5.7,5.8 Goals Introduce adversarial games Minimax as an optimal strategy Alpha-beta pruning (Real-time decisions) 1 Questions to ask Were there any

More information

Artificial Intelligence. Minimax and alpha-beta pruning

Artificial Intelligence. Minimax and alpha-beta pruning Artificial Intelligence Minimax and alpha-beta pruning In which we examine the problems that arise when we try to plan ahead to get the best result in a world that includes a hostile agent (other agent

More information

Adversarial Search. CMPSCI 383 September 29, 2011

Adversarial Search. CMPSCI 383 September 29, 2011 Adversarial Search CMPSCI 383 September 29, 2011 1 Why are games interesting to AI? Simple to represent and reason about Must consider the moves of an adversary Time constraints Russell & Norvig say: Games,

More information

CSE 40171: Artificial Intelligence. Adversarial Search: Game Trees, Alpha-Beta Pruning; Imperfect Decisions

CSE 40171: Artificial Intelligence. Adversarial Search: Game Trees, Alpha-Beta Pruning; Imperfect Decisions CSE 40171: Artificial Intelligence Adversarial Search: Game Trees, Alpha-Beta Pruning; Imperfect Decisions 30 4-2 4 max min -1-2 4 9??? Image credit: Dan Klein and Pieter Abbeel, UC Berkeley CS 188 31

More information

Game Playing State-of-the-Art CSE 473: Artificial Intelligence Fall Deterministic Games. Zero-Sum Games 10/13/17. Adversarial Search

Game Playing State-of-the-Art CSE 473: Artificial Intelligence Fall Deterministic Games. Zero-Sum Games 10/13/17. Adversarial Search CSE 473: Artificial Intelligence Fall 2017 Adversarial Search Mini, pruning, Expecti Dieter Fox Based on slides adapted Luke Zettlemoyer, Dan Klein, Pieter Abbeel, Dan Weld, Stuart Russell or Andrew Moore

More information

Outline. Game playing. Types of games. Games vs. search problems. Minimax. Game tree (2-player, deterministic, turns) Games

Outline. Game playing. Types of games. Games vs. search problems. Minimax. Game tree (2-player, deterministic, turns) Games utline Games Game playing Perfect play minimax decisions α β pruning Resource limits and approximate evaluation Chapter 6 Games of chance Games of imperfect information Chapter 6 Chapter 6 Games vs. search

More information

Artificial Intelligence 1: game playing

Artificial Intelligence 1: game playing Artificial Intelligence 1: game playing Lecturer: Tom Lenaerts Institut de Recherches Interdisciplinaires et de Développements en Intelligence Artificielle (IRIDIA) Université Libre de Bruxelles Outline

More information

DIT411/TIN175, Artificial Intelligence. Peter Ljunglöf. 2 February, 2018

DIT411/TIN175, Artificial Intelligence. Peter Ljunglöf. 2 February, 2018 DIT411/TIN175, Artificial Intelligence Chapters 4 5: Non-classical and adversarial search CHAPTERS 4 5: NON-CLASSICAL AND ADVERSARIAL SEARCH DIT411/TIN175, Artificial Intelligence Peter Ljunglöf 2 February,

More information

CS 331: Artificial Intelligence Adversarial Search II. Outline

CS 331: Artificial Intelligence Adversarial Search II. Outline CS 331: Artificial Intelligence Adversarial Search II 1 Outline 1. Evaluation Functions 2. State-of-the-art game playing programs 3. 2 player zero-sum finite stochastic games of perfect information 2 1

More information

Multiple Agents. Why can t we all just get along? (Rodney King)

Multiple Agents. Why can t we all just get along? (Rodney King) Multiple Agents Why can t we all just get along? (Rodney King) Nash Equilibriums........................................ 25 Multiple Nash Equilibriums................................. 26 Prisoners Dilemma.......................................

More information

CS 4700: Artificial Intelligence

CS 4700: Artificial Intelligence CS 4700: Foundations of Artificial Intelligence Fall 2017 Instructor: Prof. Haym Hirsh Lecture 10 Today Adversarial search (R&N Ch 5) Tuesday, March 7 Knowledge Representation and Reasoning (R&N Ch 7)

More information

CS 771 Artificial Intelligence. Adversarial Search

CS 771 Artificial Intelligence. Adversarial Search CS 771 Artificial Intelligence Adversarial Search Typical assumptions Two agents whose actions alternate Utility values for each agent are the opposite of the other This creates the adversarial situation

More information

Game Playing AI Class 8 Ch , 5.4.1, 5.5

Game Playing AI Class 8 Ch , 5.4.1, 5.5 Game Playing AI Class Ch. 5.-5., 5.4., 5.5 Bookkeeping HW Due 0/, :59pm Remaining CSP questions? Cynthia Matuszek CMSC 6 Based on slides by Marie desjardin, Francisco Iacobelli Today s Class Clear criteria

More information

CS 1571 Introduction to AI Lecture 12. Adversarial search. CS 1571 Intro to AI. Announcements

CS 1571 Introduction to AI Lecture 12. Adversarial search. CS 1571 Intro to AI. Announcements CS 171 Introduction to AI Lecture 1 Adversarial search Milos Hauskrecht milos@cs.pitt.edu 39 Sennott Square Announcements Homework assignment is out Programming and experiments Simulated annealing + Genetic

More information

Game Engineering CS F-24 Board / Strategy Games

Game Engineering CS F-24 Board / Strategy Games Game Engineering CS420-2014F-24 Board / Strategy Games David Galles Department of Computer Science University of San Francisco 24-0: Overview Example games (board splitting, chess, Othello) /Max trees

More information

ADVERSARIAL SEARCH. Today. Reading. Goals. AIMA Chapter Read , Skim 5.7

ADVERSARIAL SEARCH. Today. Reading. Goals. AIMA Chapter Read , Skim 5.7 ADVERSARIAL SEARCH Today Reading AIMA Chapter Read 5.1-5.5, Skim 5.7 Goals Introduce adversarial games Minimax as an optimal strategy Alpha-beta pruning 1 Adversarial Games People like games! Games are

More information

Games vs. search problems. Adversarial Search. Types of games. Outline

Games vs. search problems. Adversarial Search. Types of games. Outline Games vs. search problems Unpredictable opponent solution is a strategy specifying a move for every possible opponent reply dversarial Search Chapter 5 Time limits unlikely to find goal, must approximate

More information

Game-playing AIs: Games and Adversarial Search FINAL SET (w/ pruning study examples) AIMA

Game-playing AIs: Games and Adversarial Search FINAL SET (w/ pruning study examples) AIMA Game-playing AIs: Games and Adversarial Search FINAL SET (w/ pruning study examples) AIMA 5.1-5.2 Games: Outline of Unit Part I: Games as Search Motivation Game-playing AI successes Game Trees Evaluation

More information

CS885 Reinforcement Learning Lecture 13c: June 13, Adversarial Search [RusNor] Sec

CS885 Reinforcement Learning Lecture 13c: June 13, Adversarial Search [RusNor] Sec CS885 Reinforcement Learning Lecture 13c: June 13, 2018 Adversarial Search [RusNor] Sec. 5.1-5.4 CS885 Spring 2018 Pascal Poupart 1 Outline Minimax search Evaluation functions Alpha-beta pruning CS885

More information

Games CSE 473. Kasparov Vs. Deep Junior August 2, 2003 Match ends in a 3 / 3 tie!

Games CSE 473. Kasparov Vs. Deep Junior August 2, 2003 Match ends in a 3 / 3 tie! Games CSE 473 Kasparov Vs. Deep Junior August 2, 2003 Match ends in a 3 / 3 tie! Games in AI In AI, games usually refers to deteristic, turntaking, two-player, zero-sum games of perfect information Deteristic:

More information

Intuition Mini-Max 2

Intuition Mini-Max 2 Games Today Saying Deep Blue doesn t really think about chess is like saying an airplane doesn t really fly because it doesn t flap its wings. Drew McDermott I could feel I could smell a new kind of intelligence

More information

Game Playing Part 1 Minimax Search

Game Playing Part 1 Minimax Search Game Playing Part 1 Minimax Search Yingyu Liang yliang@cs.wisc.edu Computer Sciences Department University of Wisconsin, Madison [based on slides from A. Moore http://www.cs.cmu.edu/~awm/tutorials, C.

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 42. Board Games: Alpha-Beta Search Malte Helmert University of Basel May 16, 2018 Board Games: Overview chapter overview: 40. Introduction and State of the Art 41.

More information

CS 440 / ECE 448 Introduction to Artificial Intelligence Spring 2010 Lecture #5

CS 440 / ECE 448 Introduction to Artificial Intelligence Spring 2010 Lecture #5 CS 440 / ECE 448 Introduction to Artificial Intelligence Spring 2010 Lecture #5 Instructor: Eyal Amir Grad TAs: Wen Pu, Yonatan Bisk Undergrad TAs: Sam Johnson, Nikhil Johri Topics Game playing Game trees

More information

Foundations of AI. 6. Adversarial Search. Search Strategies for Games, Games with Chance, State of the Art. Wolfram Burgard & Bernhard Nebel

Foundations of AI. 6. Adversarial Search. Search Strategies for Games, Games with Chance, State of the Art. Wolfram Burgard & Bernhard Nebel Foundations of AI 6. Adversarial Search Search Strategies for Games, Games with Chance, State of the Art Wolfram Burgard & Bernhard Nebel Contents Game Theory Board Games Minimax Search Alpha-Beta Search

More information

COMP219: COMP219: Artificial Intelligence Artificial Intelligence Dr. Annabel Latham Lecture 12: Game Playing Overview Games and Search

COMP219: COMP219: Artificial Intelligence Artificial Intelligence Dr. Annabel Latham Lecture 12: Game Playing Overview Games and Search COMP19: Artificial Intelligence COMP19: Artificial Intelligence Dr. Annabel Latham Room.05 Ashton Building Department of Computer Science University of Liverpool Lecture 1: Game Playing 1 Overview Last

More information

CS440/ECE448 Lecture 11: Stochastic Games, Stochastic Search, and Learned Evaluation Functions

CS440/ECE448 Lecture 11: Stochastic Games, Stochastic Search, and Learned Evaluation Functions CS440/ECE448 Lecture 11: Stochastic Games, Stochastic Search, and Learned Evaluation Functions Slides by Svetlana Lazebnik, 9/2016 Modified by Mark Hasegawa Johnson, 9/2017 Types of game environments Perfect

More information

CS 4700: Foundations of Artificial Intelligence

CS 4700: Foundations of Artificial Intelligence CS 4700: Foundations of Artificial Intelligence selman@cs.cornell.edu Module: Adversarial Search R&N: Chapter 5 1 Outline Adversarial Search Optimal decisions Minimax α-β pruning Case study: Deep Blue

More information

Adversarial Search and Game Playing. Russell and Norvig: Chapter 5

Adversarial Search and Game Playing. Russell and Norvig: Chapter 5 Adversarial Search and Game Playing Russell and Norvig: Chapter 5 Typical case 2-person game Players alternate moves Zero-sum: one player s loss is the other s gain Perfect information: both players have

More information

Game Playing State of the Art

Game Playing State of the Art Game Playing State of the Art Checkers: Chinook ended 40 year reign of human world champion Marion Tinsley in 1994. Used an endgame database defining perfect play for all positions involving 8 or fewer

More information

Artificial Intelligence, CS, Nanjing University Spring, 2018, Yang Yu. Lecture 4: Search 3.

Artificial Intelligence, CS, Nanjing University Spring, 2018, Yang Yu. Lecture 4: Search 3. Artificial Intelligence, CS, Nanjing University Spring, 2018, Yang Yu Lecture 4: Search 3 http://cs.nju.edu.cn/yuy/course_ai18.ashx Previously... Path-based search Uninformed search Depth-first, breadth

More information

Set 4: Game-Playing. ICS 271 Fall 2017 Kalev Kask

Set 4: Game-Playing. ICS 271 Fall 2017 Kalev Kask Set 4: Game-Playing ICS 271 Fall 2017 Kalev Kask Overview Computer programs that play 2-player games game-playing as search with the complication of an opponent General principles of game-playing and search

More information

Adversarial Search (Game Playing)

Adversarial Search (Game Playing) Artificial Intelligence Adversarial Search (Game Playing) Chapter 5 Adapted from materials by Tim Finin, Marie desjardins, and Charles R. Dyer Outline Game playing State of the art and resources Framework

More information

CSE 40171: Artificial Intelligence. Adversarial Search: Games and Optimality

CSE 40171: Artificial Intelligence. Adversarial Search: Games and Optimality CSE 40171: Artificial Intelligence Adversarial Search: Games and Optimality 1 What is a game? Game Playing State-of-the-Art Checkers: 1950: First computer player. 1994: First computer champion: Chinook

More information

Games (adversarial search problems)

Games (adversarial search problems) Mustafa Jarrar: Lecture Notes on Games, Birzeit University, Palestine Fall Semester, 204 Artificial Intelligence Chapter 6 Games (adversarial search problems) Dr. Mustafa Jarrar Sina Institute, University

More information

Game Tree Search. CSC384: Introduction to Artificial Intelligence. Generalizing Search Problem. General Games. What makes something a game?

Game Tree Search. CSC384: Introduction to Artificial Intelligence. Generalizing Search Problem. General Games. What makes something a game? CSC384: Introduction to Artificial Intelligence Generalizing Search Problem Game Tree Search Chapter 5.1, 5.2, 5.3, 5.6 cover some of the material we cover here. Section 5.6 has an interesting overview

More information

Adversarial Search and Game- Playing C H A P T E R 6 C M P T : S P R I N G H A S S A N K H O S R A V I

Adversarial Search and Game- Playing C H A P T E R 6 C M P T : S P R I N G H A S S A N K H O S R A V I Adversarial Search and Game- Playing C H A P T E R 6 C M P T 3 1 0 : S P R I N G 2 0 1 1 H A S S A N K H O S R A V I Adversarial Search Examine the problems that arise when we try to plan ahead in a world

More information