In Game Theory, No Clear Path to Equilibrium

Size: px
Start display at page:

Download "In Game Theory, No Clear Path to Equilibrium"

Transcription

1 In Game Theory, No Clear Path to Equilibrium John Nash s notion of equilibrium is ubiquitous in economic theory, but a new study shows that it is often impossible to reach efficiently. By Erica Klarreich Eric Nyquist for All games have a Nash equilibrium. But will players be able to reach it? In 1950, John Nash the mathematician later featured in the book and film A Beautiful Mind wrote a two-page paper that transformed the theory of economics. His crucial, yet utterly simple, idea was that any competitive game has a notion of equilibrium: a collection of strategies, one for each player, such that no player can win more by unilaterally switching to a different strategy. Nash s equilibrium concept, which earned him a Nobel Prize in economics in 1994, offers a unified framework for understanding strategic behavior not only in economics but also in psychology,

2 evolutionary biology and a host of other fields. Its influence on economic theory is comparable to that of the discovery of the DNA double helix in the biological sciences, wrote Roger Myerson of the University of Chicago, another economics Nobelist. When players are at equilibrium, no one has a reason to stray. But how do players get to equilibrium in the first place? In contrast with, say, a ball rolling downhill and coming to rest in a valley, there is no obvious force guiding game players toward a Nash equilibrium.

3 Peter Badge John Nash s work in game theory transformed economics.

4 It has always been a thorn in the side of microeconomists, said Tim Roughgarden, a theoretical computer scientist at Stanford University. They use these equilibrium concepts, and they re analyzing them as if people will be at equilibrium, but there isn t always a satisfying explanation of why people will be at Nash equilibrium as opposed to just groping around for one. If people play a game only once, it is often unreasonable to expect them to find an equilibrium. This is especially the case if as is typical in the real world each player knows only how much she herself values the game s different outcomes, and not how much her fellow players do. But if people can play repeatedly, perhaps they could learn from the early rounds and rapidly steer themselves toward an equilibrium. Yet attempts to find such efficient learning methods have always come up dry. Economists have proposed mechanisms for how you can converge [quickly] to equilibrium, said Aviad Rubinstein, who is finishing a doctorate in theoretical computer science at the University of California, Berkeley. But for each such mechanism, he said, there are simple games you can construct where it doesn t work. Now, Rubinstein and Yakov Babichenko, a mathematician at the Technion-Israel Institute of Technology in Haifa, have explained why. In a paper posted online last September, they proved that no method of adapting strategies in response to previous games no matter how commonsensical, creative or clever will converge efficiently to even an approximate Nash equilibrium for every possible game. It s a very sweeping negative result, Roughgarden said. Economists often use Nash equilibrium analyses to justify proposed economic reforms, Myerson said. But the new result says that economists can t assume that game players will get to a Nash equilibrium, unless they can justify what is special about the particular game in question. If you re trying to figure out if your game will easily find an equilibrium, said Noam Nisan, a computer scientist at the Hebrew University, it s on you to provide the argument why it would be. Multiplayer Games In some simple games, it is easy to spot Nash equilibria. For example, if I prefer Chinese food and you prefer Italian, but our strongest preference is to dine together, two obvious equilibria are for both of us to go to the Chinese restaurant or both of us to go to the Italian restaurant. Even if we start out knowing only our own preferences and we can t communicate our strategies before the game, it won t take too many rounds of missed connections and solitary dinners before we thoroughly understand each other s preferences and, hopefully, find our way to one or the other equilibrium. But imagine if the dinner plans involved 100 people, each of whom has decided preferences about which others he would like to dine with, and none of whom knows anyone else s preferences. Nash proved in 1950 that even large, complicated games like this one do always have an equilibrium (at least, if the concept of a strategy is broadened to allow random choices, such as you choosing the Chinese restaurant with 60 percent probability). But Nash who died in a car crash in 2015 gave no recipe for how to calculate such an equilibrium.

5 Tselil Schramm Aviad Rubinstein helped to show that game players won t necessarily find a Nash equilibrium. By diving into the nitty-gritty of Nash s proof, Babichenko and Rubinstein were able to show that in general, there s no guaranteed method for players to find even an approximate Nash equilibrium unless they tell each other virtually everything about their respective preferences. And as the number of players in a game grows, the amount of time required for all this communication quickly becomes prohibitive. For example, in the 100-player restaurant game, there are 2100 ways the game could play out, and hence 2100 preferences each player has to share. By comparison, the number of seconds that have elapsed since the Big Bang is only about 259. This communication bottleneck means that every possible method for adapting strategies from round to round is going to fail to guide players efficiently to a Nash equilibrium for at least some complex games (such as a 100-player restaurant game with complicated preferences). After all, in each round, the players learn only a bit of new information about each other: how happy they are with the single dinner arrangement that got played. So it will take on the order of 2100 rounds before they know everything about one another s values (by which time, presumably, the Chinese and Italian restaurants will have gone out of business). If this is going to take longer than the age of the universe, said Sergiu Hart, a game theorist at the Hebrew University of Jerusalem, it s completely useless, of course.

6 It might seem natural, almost obvious, that players will sometimes need to know everything about each other s values to find a Nash equilibrium. The new paper shows, however, that this same limitation holds even if the players are willing to make do with an approximate Nash equilibrium an important finding when it comes to real-world applications, in which an outcome that s close to a Nash equilibrium is often good enough. Courtesy of Yakov Babichenko Yakov Babichenko helped to show that reaching a Nash equilibrium might take longer than the age of the universe. Babichenko and Rubinstein s result does not imply that all, or even most, games will be subject to this limitation only that some games will. Many of the games economists use to model the real world have additional structure that greatly reduces the amount of information each player must communicate. For example, if 100 of us are each choosing one of two routes for our morning commute, you probably don t care which players go on each route you only care how many go. That means your collection of preferences will have a high degree of symmetry, and you can potentially convey its entirety in a couple of well-chosen sentences instead of 2100 of them. Economists could use such arguments to justify why Nash equilibrium might be attainable for particular games. But the new result implies that such justifications must be made on a case-by-case basis; there s no killer argument that will cover all games all the time. What s more, even though many games that have evolved along with civilization may be amenable to such simplifications, the Internet era is giving rise to all kinds of new many-player games, from dating sites to online stock trading. At this point, we don t have the slow evolution of humanity that

7 only steers us toward games where it is easy to find an equilibrium, Nisan said. We design new games, and if we suppose we re going to get an equilibrium, we re very often going to be wrong. In real life, people often don t play games at equilibrium, something that economists are keenly aware of, said Andrew McLennan, an economist at the University of Queensland in Brisbane, Australia. But, he said, economics doesn t have any theoretical structure for asking how precise economics can be. Theoretical computer science results like the new one from Babichenko and Rubinstein should be an inspiration to address the issue in a formal way, he said. But the two fields have very different mindsets, which can hamper interdisciplinary communication: Economists tend to look for simple models that capture the essence of a complex interaction, while theoretical computer scientists are often more interested in understanding what happens as the models grow increasingly complex. I wish my colleagues in economics were more aware, more interested in what computer science is doing, McLennan said. A Trusted Adviser The new work draws a bright dividing line between Nash equilibrium and another, more general equilibrium concept that came to prominence 24 years after Nash s paper. Correlated equilibrium proposed in 1974 by Robert Aumann, another economics Nobelist posits a scenario in which game players each receive advice from a trusted mediator (or correlating device ) about what strategy to play. The mediator s advice forms a correlated equilibrium if no individual player has an incentive to deviate from the advice he has received, if he believes the other players are each following their own advice. This might at first sound like an arcane construct, but in fact we use correlated equilibria all the time whenever, for example, we let a coin toss decide whether we ll go out for Chinese or Italian, or allow a traffic light to dictate which of us will go through an intersection first.

8 Courtesy Dr. Robert J. Aumann Robert Aumann invented the concept of correlated equilibrium.

9 In these two examples, each player knows exactly what advice the mediator is giving to the other player, and the mediator s advice essentially helps the players coordinate which Nash equilibrium they will play. But when the players don t know exactly what advice the others are getting only how the different kinds of advice are correlated with each other Aumann showed that the set of correlated equilibria can contain more than just combinations of Nash equilibria: it can include forms of play that aren t Nash equilibria at all, but that sometimes result in a more positive societal outcome than any of the Nash equilibria. For example, in some games in which cooperating would yield a higher total payoff for the players than acting selfishly, the mediator can sometimes beguile players into cooperating by withholding just what advice she s giving the other players. This finding, Myerson said, was a bolt from the blue. And even though a mediator can give many different kinds of advice, the set of correlated equilibria of a game, which is represented by a collection of linear equations and inequalities, is more mathematically tractable than the set of Nash equilibria. This other way of thinking about it, the mathematics is so much more beautiful, Myerson said. While Myerson has called Nash s vision of game theory one of the outstanding intellectual advances of the 20th century, he sees correlated equilibrium as perhaps an even more natural concept than Nash equilibrium. He has opined on numerous occasions that if there is intelligent life on other planets, in a majority of them they would have discovered correlated equilibrium before Nash equilibrium. When it comes to repeated rounds of play, many of the most natural ways that players could choose to adapt their strategies converge, in a particular sense, to correlated equilibria. Take, for example, regret minimization approaches, in which before each round, players increase the probability of using a given strategy if they regret not having played it more in the past. Regret minimization is a method which does bear some resemblance to real life paying attention to what s worked well in the past, combined with occasionally experimenting a bit, Roughgarden said. For many regret-minimizing approaches, researchers have shown that play will rapidly converge to a correlated equilibrium in the following surprising sense: after maybe 100 rounds have been played, the game history will look essentially the same as if a mediator had been advising the players all along. It s as if the [correlating] device was somehow implicitly found, through the interaction, said Constantinos Daskalakis, a theoretical computer scientist at the Massachusetts Institute of Technology. As play continues, the players won t necessarily stay at the same correlated equilibrium after 1,000 rounds, for instance, they may have drifted to a new equilibrium, so that now their 1,000-game history looks as if it had been guided by a different mediator than before. The process is reminiscent of what happens in real life, Roughgarden said, as societal norms about which equilibrium should be played gradually evolve. In the kinds of complex games for which Nash equilibrium is hard to reach, correlated equilibrium is the natural leading contender for a replacement solution concept, Nisan said. The fact that humanity came up with the idea of Nash equilibrium before correlated equilibrium may be just an accident of history, Myerson said. People think that the ideas that evolved earlier are the more fundamental ones, he said, but in this case, who s to say what s a more fundamental idea? Yet the results about fast convergence don t imply that any individual round of the game is being played at a correlated equilibrium only that the long-term history of the game is. This means, Rubinstein pointed out, that regret minimization approaches are not always an ideal choice for

10 rational players in any given round. That leaves the question What will rational players do? with no definitive answer. This question has been explored since before I was born, said the 30-year-old Rubinstein. But it s still the beginning.

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Algorithms and Game Theory Date: 12/4/14

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Algorithms and Game Theory Date: 12/4/14 600.363 Introduction to Algorithms / 600.463 Algorithms I Lecturer: Michael Dinitz Topic: Algorithms and Game Theory Date: 12/4/14 25.1 Introduction Today we re going to spend some time discussing game

More information

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Algorithmic Game Theory Date: 12/6/18

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Algorithmic Game Theory Date: 12/6/18 601.433/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Algorithmic Game Theory Date: 12/6/18 24.1 Introduction Today we re going to spend some time discussing game theory and algorithms.

More information

Introduction to (Networked) Game Theory. Networked Life NETS 112 Fall 2016 Prof. Michael Kearns

Introduction to (Networked) Game Theory. Networked Life NETS 112 Fall 2016 Prof. Michael Kearns Introduction to (Networked) Game Theory Networked Life NETS 112 Fall 2016 Prof. Michael Kearns Game Theory for Fun and Profit The Beauty Contest Game Write your name and an integer between 0 and 100 Let

More information

Introduction to (Networked) Game Theory. Networked Life NETS 112 Fall 2014 Prof. Michael Kearns

Introduction to (Networked) Game Theory. Networked Life NETS 112 Fall 2014 Prof. Michael Kearns Introduction to (Networked) Game Theory Networked Life NETS 112 Fall 2014 Prof. Michael Kearns percent who will actually attend 100% Attendance Dynamics: Concave equilibrium: 100% percent expected to attend

More information

Chapter 30: Game Theory

Chapter 30: Game Theory Chapter 30: Game Theory 30.1: Introduction We have now covered the two extremes perfect competition and monopoly/monopsony. In the first of these all agents are so small (or think that they are so small)

More information

THEORY: NASH EQUILIBRIUM

THEORY: NASH EQUILIBRIUM THEORY: NASH EQUILIBRIUM 1 The Story Prisoner s Dilemma Two prisoners held in separate rooms. Authorities offer a reduced sentence to each prisoner if he rats out his friend. If a prisoner is ratted out

More information

Introduction to Game Theory

Introduction to Game Theory Introduction to Game Theory Managing with Game Theory Hongying FEI Feihy@i.shu.edu.cn Poker Game ( 2 players) Each player is dealt randomly 3 cards Both of them order their cards as they want Cards at

More information

Asynchronous Best-Reply Dynamics

Asynchronous Best-Reply Dynamics Asynchronous Best-Reply Dynamics Noam Nisan 1, Michael Schapira 2, and Aviv Zohar 2 1 Google Tel-Aviv and The School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel. 2 The

More information

Belief-based rational decisions. Sergei Artemov

Belief-based rational decisions. Sergei Artemov Belief-based rational decisions Sergei Artemov September 22, 2009 1 Game Theory John von Neumann was an Hungarian American mathematician who made major contributions to mathematics, quantum mechanics,

More information

Econ 302: Microeconomics II - Strategic Behavior. Problem Set #5 June13, 2016

Econ 302: Microeconomics II - Strategic Behavior. Problem Set #5 June13, 2016 Econ 302: Microeconomics II - Strategic Behavior Problem Set #5 June13, 2016 1. T/F/U? Explain and give an example of a game to illustrate your answer. A Nash equilibrium requires that all players are

More information

Strategic Bargaining. This is page 1 Printer: Opaq

Strategic Bargaining. This is page 1 Printer: Opaq 16 This is page 1 Printer: Opaq Strategic Bargaining The strength of the framework we have developed so far, be it normal form or extensive form games, is that almost any well structured game can be presented

More information

ECO 5341 Strategic Behavior Lecture Notes 3

ECO 5341 Strategic Behavior Lecture Notes 3 ECO 5341 Strategic Behavior Lecture Notes 3 Saltuk Ozerturk SMU Spring 2016 (SMU) Lecture Notes 3 Spring 2016 1 / 20 Lecture Outline Review: Dominance and Iterated Elimination of Strictly Dominated Strategies

More information

Zolt-Gilburne Imagination Seminar. Knowledge and Games. Sergei Artemov

Zolt-Gilburne Imagination Seminar. Knowledge and Games. Sergei Artemov Zolt-Gilburne Imagination Seminar Knowledge and Games Sergei Artemov October 1, 2009 1 Plato (5-4 Century B.C.) One of the world's best known and most widely read and studied philosophers, a student of

More information

Game Theory. Lecture Notes By Y. Narahari. Department of Computer Science and Automation Indian Institute of Science Bangalore, India August 2012

Game Theory. Lecture Notes By Y. Narahari. Department of Computer Science and Automation Indian Institute of Science Bangalore, India August 2012 Game Theory Lecture Notes By Y. Narahari Department of Computer Science and Automation Indian Institute of Science Bangalore, India August 01 Rationalizable Strategies Note: This is a only a draft version,

More information

1. The chance of getting a flush in a 5-card poker hand is about 2 in 1000.

1. The chance of getting a flush in a 5-card poker hand is about 2 in 1000. CS 70 Discrete Mathematics for CS Spring 2008 David Wagner Note 15 Introduction to Discrete Probability Probability theory has its origins in gambling analyzing card games, dice, roulette wheels. Today

More information

U strictly dominates D for player A, and L strictly dominates R for player B. This leaves (U, L) as a Strict Dominant Strategy Equilibrium.

U strictly dominates D for player A, and L strictly dominates R for player B. This leaves (U, L) as a Strict Dominant Strategy Equilibrium. Problem Set 3 (Game Theory) Do five of nine. 1. Games in Strategic Form Underline all best responses, then perform iterated deletion of strictly dominated strategies. In each case, do you get a unique

More information

February 11, 2015 :1 +0 (1 ) = :2 + 1 (1 ) =3 1. is preferred to R iff

February 11, 2015 :1 +0 (1 ) = :2 + 1 (1 ) =3 1. is preferred to R iff February 11, 2015 Example 60 Here s a problem that was on the 2014 midterm: Determine all weak perfect Bayesian-Nash equilibria of the following game. Let denote the probability that I assigns to being

More information

Game Theory Refresher. Muriel Niederle. February 3, A set of players (here for simplicity only 2 players, all generalized to N players).

Game Theory Refresher. Muriel Niederle. February 3, A set of players (here for simplicity only 2 players, all generalized to N players). Game Theory Refresher Muriel Niederle February 3, 2009 1. Definition of a Game We start by rst de ning what a game is. A game consists of: A set of players (here for simplicity only 2 players, all generalized

More information

Robert Aumann s Game and Economic Theory

Robert Aumann s Game and Economic Theory Robert Aumann s Game and Economic Theory Sergiu Hart December 9, 2005 Stockholm School of Economics July 2006 - Short Version SERGIU HART c 2006 p. 1 Robert Aumann s Game and Economic Theory Sergiu Hart

More information

Student Name. Student ID

Student Name. Student ID Final Exam CMPT 882: Computational Game Theory Simon Fraser University Spring 2010 Instructor: Oliver Schulte Student Name Student ID Instructions. This exam is worth 30% of your final mark in this course.

More information

PARALLEL NASH EQUILIBRIA IN BIMATRIX GAMES ISAAC ELBAZ CSE633 FALL 2012 INSTRUCTOR: DR. RUSS MILLER

PARALLEL NASH EQUILIBRIA IN BIMATRIX GAMES ISAAC ELBAZ CSE633 FALL 2012 INSTRUCTOR: DR. RUSS MILLER PARALLEL NASH EQUILIBRIA IN BIMATRIX GAMES ISAAC ELBAZ CSE633 FALL 2012 INSTRUCTOR: DR. RUSS MILLER WHAT IS GAME THEORY? Branch of mathematics that deals with the analysis of situations involving parties

More information

Microeconomics II Lecture 2: Backward induction and subgame perfection Karl Wärneryd Stockholm School of Economics November 2016

Microeconomics II Lecture 2: Backward induction and subgame perfection Karl Wärneryd Stockholm School of Economics November 2016 Microeconomics II Lecture 2: Backward induction and subgame perfection Karl Wärneryd Stockholm School of Economics November 2016 1 Games in extensive form So far, we have only considered games where players

More information

Alternation in the repeated Battle of the Sexes

Alternation in the repeated Battle of the Sexes Alternation in the repeated Battle of the Sexes Aaron Andalman & Charles Kemp 9.29, Spring 2004 MIT Abstract Traditional game-theoretic models consider only stage-game strategies. Alternation in the repeated

More information

EconS Game Theory - Part 1

EconS Game Theory - Part 1 EconS 305 - Game Theory - Part 1 Eric Dunaway Washington State University eric.dunaway@wsu.edu November 8, 2015 Eric Dunaway (WSU) EconS 305 - Lecture 28 November 8, 2015 1 / 60 Introduction Today, we

More information

Phase 1: Ideation Getting Started with Concept Testing

Phase 1: Ideation Getting Started with Concept Testing Phase 1: Ideation Getting Started with Concept Testing The Social Venture Academy follows a lean-startup model. This means we guide you through figuring out as much as you can about your venture before

More information

Rationality and Common Knowledge

Rationality and Common Knowledge 4 Rationality and Common Knowledge In this chapter we study the implications of imposing the assumptions of rationality as well as common knowledge of rationality We derive and explore some solution concepts

More information

Game Theory. Department of Electronics EL-766 Spring Hasan Mahmood

Game Theory. Department of Electronics EL-766 Spring Hasan Mahmood Game Theory Department of Electronics EL-766 Spring 2011 Hasan Mahmood Email: hasannj@yahoo.com Course Information Part I: Introduction to Game Theory Introduction to game theory, games with perfect information,

More information

Game Theory. Lecture Notes By Y. Narahari. Department of Computer Science and Automation Indian Institute of Science Bangalore, India July 2012

Game Theory. Lecture Notes By Y. Narahari. Department of Computer Science and Automation Indian Institute of Science Bangalore, India July 2012 Game Theory Lecture Notes By Y. Narahari Department of Computer Science and Automation Indian Institute of Science Bangalore, India July 2012 The Mechanism Design Environment Note: This is a only a draft

More information

Game Theory: introduction and applications to computer networks

Game Theory: introduction and applications to computer networks Game Theory: introduction and applications to computer networks Lecture 1: introduction Giovanni Neglia INRIA EPI Maestro 30 January 2012 Part of the slides are based on a previous course with D. Figueiredo

More information

Appendix A A Primer in Game Theory

Appendix A A Primer in Game Theory Appendix A A Primer in Game Theory This presentation of the main ideas and concepts of game theory required to understand the discussion in this book is intended for readers without previous exposure to

More information

No Cost Online Marketing

No Cost Online Marketing No Cost Online Marketing No matter what type of Internet business you have, you need to be promoting it at all times. If you don t make the effort to tell the right people about it (i.e. those people who

More information

LECTURE 26: GAME THEORY 1

LECTURE 26: GAME THEORY 1 15-382 COLLECTIVE INTELLIGENCE S18 LECTURE 26: GAME THEORY 1 INSTRUCTOR: GIANNI A. DI CARO ICE-CREAM WARS http://youtu.be/jilgxenbk_8 2 GAME THEORY Game theory is the formal study of conflict and cooperation

More information

final examination on May 31 Topics from the latter part of the course (covered in homework assignments 4-7) include:

final examination on May 31 Topics from the latter part of the course (covered in homework assignments 4-7) include: The final examination on May 31 may test topics from any part of the course, but the emphasis will be on topic after the first three homework assignments, which were covered in the midterm. Topics from

More information

Summary Overview of Topics in Econ 30200b: Decision theory: strong and weak domination by randomized strategies, domination theorem, expected utility

Summary Overview of Topics in Econ 30200b: Decision theory: strong and weak domination by randomized strategies, domination theorem, expected utility Summary Overview of Topics in Econ 30200b: Decision theory: strong and weak domination by randomized strategies, domination theorem, expected utility theorem (consistent decisions under uncertainty should

More information

CS510 \ Lecture Ariel Stolerman

CS510 \ Lecture Ariel Stolerman CS510 \ Lecture04 2012-10-15 1 Ariel Stolerman Administration Assignment 2: just a programming assignment. Midterm: posted by next week (5), will cover: o Lectures o Readings A midterm review sheet will

More information

Game theory Computational Models of Cognition

Game theory Computational Models of Cognition Game theory Taxonomy Rational behavior Definitions Common games Nash equilibria Mixed strategies Properties of Nash equilibria What do NE mean? Mutually Assured Destruction 6 rik@cogsci.ucsd.edu Taxonomy

More information

ECON 282 Final Practice Problems

ECON 282 Final Practice Problems ECON 282 Final Practice Problems S. Lu Multiple Choice Questions Note: The presence of these practice questions does not imply that there will be any multiple choice questions on the final exam. 1. How

More information

1. Introduction to Game Theory

1. Introduction to Game Theory 1. Introduction to Game Theory What is game theory? Important branch of applied mathematics / economics Eight game theorists have won the Nobel prize, most notably John Nash (subject of Beautiful mind

More information

EC3224 Autumn Lecture #02 Nash Equilibrium

EC3224 Autumn Lecture #02 Nash Equilibrium Reading EC3224 Autumn Lecture #02 Nash Equilibrium Osborne Chapters 2.6-2.10, (12) By the end of this week you should be able to: define Nash equilibrium and explain several different motivations for it.

More information

Dice Games and Stochastic Dynamic Programming

Dice Games and Stochastic Dynamic Programming Dice Games and Stochastic Dynamic Programming Henk Tijms Dept. of Econometrics and Operations Research Vrije University, Amsterdam, The Netherlands Revised December 5, 2007 (to appear in the jubilee issue

More information

Wright-Fisher Process. (as applied to costly signaling)

Wright-Fisher Process. (as applied to costly signaling) Wright-Fisher Process (as applied to costly signaling) 1 Today: 1) new model of evolution/learning (Wright-Fisher) 2) evolution/learning costly signaling (We will come back to evidence for costly signaling

More information

The topic for the third and final major portion of the course is Probability. We will aim to make sense of statements such as the following:

The topic for the third and final major portion of the course is Probability. We will aim to make sense of statements such as the following: CS 70 Discrete Mathematics for CS Spring 2006 Vazirani Lecture 17 Introduction to Probability The topic for the third and final major portion of the course is Probability. We will aim to make sense of

More information

Game Theory: The Basics. Theory of Games and Economics Behavior John Von Neumann and Oskar Morgenstern (1943)

Game Theory: The Basics. Theory of Games and Economics Behavior John Von Neumann and Oskar Morgenstern (1943) Game Theory: The Basics The following is based on Games of Strategy, Dixit and Skeath, 1999. Topic 8 Game Theory Page 1 Theory of Games and Economics Behavior John Von Neumann and Oskar Morgenstern (1943)

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 13

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 13 CS 70 Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 13 Introduction to Discrete Probability In the last note we considered the probabilistic experiment where we flipped a

More information

Lecture #3: Networks. Kyumars Sheykh Esmaili

Lecture #3: Networks. Kyumars Sheykh Esmaili Lecture #3: Game Theory and Social Networks Kyumars Sheykh Esmaili Outline Games Modeling Network Traffic Using Game Theory Games Exam or Presentation Game You need to choose between exam or presentation:

More information

Behavioral Strategies in Zero-Sum Games in Extensive Form

Behavioral Strategies in Zero-Sum Games in Extensive Form Behavioral Strategies in Zero-Sum Games in Extensive Form Ponssard, J.-P. IIASA Working Paper WP-74-007 974 Ponssard, J.-P. (974) Behavioral Strategies in Zero-Sum Games in Extensive Form. IIASA Working

More information

UC Berkeley Haas School of Business Economic Analysis for Business Decisions (EWMBA 201A) Game Theory I (PR 5) The main ideas

UC Berkeley Haas School of Business Economic Analysis for Business Decisions (EWMBA 201A) Game Theory I (PR 5) The main ideas UC Berkeley Haas School of Business Economic Analysis for Business Decisions (EWMBA 201A) Game Theory I (PR 5) The main ideas Lectures 5-6 Aug. 29, 2009 Prologue Game theory is about what happens when

More information

ECON 312: Games and Strategy 1. Industrial Organization Games and Strategy

ECON 312: Games and Strategy 1. Industrial Organization Games and Strategy ECON 312: Games and Strategy 1 Industrial Organization Games and Strategy A Game is a stylized model that depicts situation of strategic behavior, where the payoff for one agent depends on its own actions

More information

INTRODUCTION TO GAME THEORY

INTRODUCTION TO GAME THEORY 1 / 45 INTRODUCTION TO GAME THEORY Heinrich H. Nax hnax@ethz.ch & Bary S. R. Pradelski bpradelski@ethz.ch February 20, 2017: Lecture 1 2 / 45 A game Rules: 1 Players: All of you: https://scienceexperiment.online/beautygame/vote

More information

CSCI 699: Topics in Learning and Game Theory Fall 2017 Lecture 3: Intro to Game Theory. Instructor: Shaddin Dughmi

CSCI 699: Topics in Learning and Game Theory Fall 2017 Lecture 3: Intro to Game Theory. Instructor: Shaddin Dughmi CSCI 699: Topics in Learning and Game Theory Fall 217 Lecture 3: Intro to Game Theory Instructor: Shaddin Dughmi Outline 1 Introduction 2 Games of Complete Information 3 Games of Incomplete Information

More information

Lecture Notes on Game Theory (QTM)

Lecture Notes on Game Theory (QTM) Theory of games: Introduction and basic terminology, pure strategy games (including identification of saddle point and value of the game), Principle of dominance, mixed strategy games (only arithmetic

More information

Dominant and Dominated Strategies

Dominant and Dominated Strategies Dominant and Dominated Strategies Carlos Hurtado Department of Economics University of Illinois at Urbana-Champaign hrtdmrt2@illinois.edu Junel 8th, 2016 C. Hurtado (UIUC - Economics) Game Theory On the

More information

Advanced Microeconomics: Game Theory

Advanced Microeconomics: Game Theory Advanced Microeconomics: Game Theory P. v. Mouche Wageningen University 2018 Outline 1 Motivation 2 Games in strategic form 3 Games in extensive form What is game theory? Traditional game theory deals

More information

GOLDEN AND SILVER RATIOS IN BARGAINING

GOLDEN AND SILVER RATIOS IN BARGAINING GOLDEN AND SILVER RATIOS IN BARGAINING KIMMO BERG, JÁNOS FLESCH, AND FRANK THUIJSMAN Abstract. We examine a specific class of bargaining problems where the golden and silver ratios appear in a natural

More information

Guess the Mean. Joshua Hill. January 2, 2010

Guess the Mean. Joshua Hill. January 2, 2010 Guess the Mean Joshua Hill January, 010 Challenge: Provide a rational number in the interval [1, 100]. The winner will be the person whose guess is closest to /3rds of the mean of all the guesses. Answer:

More information

Dominance and Best Response. player 2

Dominance and Best Response. player 2 Dominance and Best Response Consider the following game, Figure 6.1(a) from the text. player 2 L R player 1 U 2, 3 5, 0 D 1, 0 4, 3 Suppose you are player 1. The strategy U yields higher payoff than any

More information

8.F The Possibility of Mistakes: Trembling Hand Perfection

8.F The Possibility of Mistakes: Trembling Hand Perfection February 4, 2015 8.F The Possibility of Mistakes: Trembling Hand Perfection back to games of complete information, for the moment refinement: a set of principles that allow one to select among equilibria.

More information

Microeconomics of Banking: Lecture 4

Microeconomics of Banking: Lecture 4 Microeconomics of Banking: Lecture 4 Prof. Ronaldo CARPIO Oct. 16, 2015 Administrative Stuff Homework 1 is due today at the end of class. I will upload the solutions and Homework 2 (due in two weeks) later

More information

Introduction: What is Game Theory?

Introduction: What is Game Theory? Microeconomics I: Game Theory Introduction: What is Game Theory? (see Osborne, 2009, Sect 1.1) Dr. Michael Trost Department of Applied Microeconomics October 25, 2013 Dr. Michael Trost Microeconomics I:

More information

Auctions as Games: Equilibria and Efficiency Near-Optimal Mechanisms. Éva Tardos, Cornell

Auctions as Games: Equilibria and Efficiency Near-Optimal Mechanisms. Éva Tardos, Cornell Auctions as Games: Equilibria and Efficiency Near-Optimal Mechanisms Éva Tardos, Cornell Yesterday: Simple Auction Games item bidding games: second price simultaneous item auction Very simple valuations:

More information

Lecture 6: Basics of Game Theory

Lecture 6: Basics of Game Theory 0368.4170: Cryptography and Game Theory Ran Canetti and Alon Rosen Lecture 6: Basics of Game Theory 25 November 2009 Fall 2009 Scribes: D. Teshler Lecture Overview 1. What is a Game? 2. Solution Concepts:

More information

6. Bargaining. Ryan Oprea. Economics 176. University of California, Santa Barbara. 6. Bargaining. Economics 176. Extensive Form Games

6. Bargaining. Ryan Oprea. Economics 176. University of California, Santa Barbara. 6. Bargaining. Economics 176. Extensive Form Games 6. 6. Ryan Oprea University of California, Santa Barbara 6. Individual choice experiments Test assumptions about Homo Economicus Strategic interaction experiments Test game theory Market experiments Test

More information

CS269I: Incentives in Computer Science Lecture #20: Fair Division

CS269I: Incentives in Computer Science Lecture #20: Fair Division CS69I: Incentives in Computer Science Lecture #0: Fair Division Tim Roughgarden December 7, 016 1 Cake Cutting 1.1 Properties of the Cut and Choose Protocol For our last lecture we embark on a nostalgia

More information

ESSENTIALS OF GAME THEORY

ESSENTIALS OF GAME THEORY ESSENTIALS OF GAME THEORY 1 CHAPTER 1 Games in Normal Form Game theory studies what happens when self-interested agents interact. What does it mean to say that agents are self-interested? It does not necessarily

More information

AI in Business Enterprises

AI in Business Enterprises AI in Business Enterprises Are Humans Rational? Rini Palitmittam 10 th October 2017 Image Courtesy: Google Images Founders of Modern Artificial Intelligence Image Courtesy: Google Images Founders of Modern

More information

WITH CONFIDENCE. The COOK Guide to Growing Your Confidence

WITH CONFIDENCE. The COOK Guide to Growing Your Confidence WITH CONFIDENCE The COOK Guide to Growing Your Confidence Welcome to the COOK Guide to Growing Your Confidence. At COOK, we believe people are amazing. One of the skills that will help each of us to achieve

More information

Topic 1: defining games and strategies. SF2972: Game theory. Not allowed: Extensive form game: formal definition

Topic 1: defining games and strategies. SF2972: Game theory. Not allowed: Extensive form game: formal definition SF2972: Game theory Mark Voorneveld, mark.voorneveld@hhs.se Topic 1: defining games and strategies Drawing a game tree is usually the most informative way to represent an extensive form game. Here is one

More information

ANoteonthe Game - Bounded Rationality and Induction

ANoteonthe Game - Bounded Rationality and Induction ANoteontheE-mailGame - Bounded Rationality and Induction Uwe Dulleck y Comments welcome Abstract In Rubinstein s (1989) E-mail game there exists no Nash equilibrium where players use strategies that condition

More information

Part I. First Notions

Part I. First Notions Part I First Notions 1 Introduction In their great variety, from contests of global significance such as a championship match or the election of a president down to a coin flip or a show of hands, games

More information

The extensive form representation of a game

The extensive form representation of a game The extensive form representation of a game Nodes, information sets Perfect and imperfect information Addition of random moves of nature (to model uncertainty not related with decisions of other players).

More information

Basic Solution Concepts and Computational Issues

Basic Solution Concepts and Computational Issues CHAPTER asic Solution Concepts and Computational Issues Éva Tardos and Vijay V. Vazirani Abstract We consider some classical games and show how they can arise in the context of the Internet. We also introduce

More information

Domination Rationalizability Correlated Equilibrium Computing CE Computational problems in domination. Game Theory Week 3. Kevin Leyton-Brown

Domination Rationalizability Correlated Equilibrium Computing CE Computational problems in domination. Game Theory Week 3. Kevin Leyton-Brown Game Theory Week 3 Kevin Leyton-Brown Game Theory Week 3 Kevin Leyton-Brown, Slide 1 Lecture Overview 1 Domination 2 Rationalizability 3 Correlated Equilibrium 4 Computing CE 5 Computational problems in

More information

Part 2. Cooperative Game Theory

Part 2. Cooperative Game Theory Part 2 Cooperative Game Theory CHAPTER 3 Coalitional games A coalitional game is a model of interacting decision makers that focuses on the behaviour of groups of players. Each group of players is called

More information

The next several lectures will be concerned with probability theory. We will aim to make sense of statements such as the following:

The next several lectures will be concerned with probability theory. We will aim to make sense of statements such as the following: CS 70 Discrete Mathematics for CS Fall 2004 Rao Lecture 14 Introduction to Probability The next several lectures will be concerned with probability theory. We will aim to make sense of statements such

More information

Is everything stochastic?

Is everything stochastic? Is everything stochastic? Glenn Shafer Rutgers University Games and Decisions Centro di Ricerca Matematica Ennio De Giorgi 8 July 2013 1. Game theoretic probability 2. Game theoretic upper and lower probability

More information

Webinar Module Eight: Companion Guide Putting Referrals Into Action

Webinar Module Eight: Companion Guide Putting Referrals Into Action Webinar Putting Referrals Into Action Welcome back to No More Cold Calling OnDemand TM. Thank you for investing in yourself and building a referral business. This is the companion guide to Module #8. Take

More information

Game Theory two-person, zero-sum games

Game Theory two-person, zero-sum games GAME THEORY Game Theory Mathematical theory that deals with the general features of competitive situations. Examples: parlor games, military battles, political campaigns, advertising and marketing campaigns,

More information

Bonus Maths 5: GTO, Multiplayer Games and the Three Player [0,1] Game

Bonus Maths 5: GTO, Multiplayer Games and the Three Player [0,1] Game Bonus Maths 5: GTO, Multiplayer Games and the Three Player [0,1] Game In this article, I m going to be exploring some multiplayer games. I ll start by explaining the really rather large differences between

More information

Intelligent Systems. Lecture 1 - Introduction

Intelligent Systems. Lecture 1 - Introduction Intelligent Systems Lecture 1 - Introduction In which we try to explain why we consider artificial intelligence to be a subject most worthy of study, and in which we try to decide what exactly it is Dr.

More information

Game Theory and Economics Prof. Dr. Debarshi Das Humanities and Social Sciences Indian Institute of Technology, Guwahati

Game Theory and Economics Prof. Dr. Debarshi Das Humanities and Social Sciences Indian Institute of Technology, Guwahati Game Theory and Economics Prof. Dr. Debarshi Das Humanities and Social Sciences Indian Institute of Technology, Guwahati Module No. # 05 Extensive Games and Nash Equilibrium Lecture No. # 03 Nash Equilibrium

More information

Software Maintenance Cycles with the RUP

Software Maintenance Cycles with the RUP Software Maintenance Cycles with the RUP by Philippe Kruchten Rational Fellow Rational Software Canada The Rational Unified Process (RUP ) has no concept of a "maintenance phase." Some people claim that

More information

Strategies and Game Theory

Strategies and Game Theory Strategies and Game Theory Prof. Hongbin Cai Department of Applied Economics Guanghua School of Management Peking University March 31, 2009 Lecture 7: Repeated Game 1 Introduction 2 Finite Repeated Game

More information

UPenn NETS 412: Algorithmic Game Theory Game Theory Practice. Clyde Silent Confess Silent 1, 1 10, 0 Confess 0, 10 5, 5

UPenn NETS 412: Algorithmic Game Theory Game Theory Practice. Clyde Silent Confess Silent 1, 1 10, 0 Confess 0, 10 5, 5 Problem 1 UPenn NETS 412: Algorithmic Game Theory Game Theory Practice Bonnie Clyde Silent Confess Silent 1, 1 10, 0 Confess 0, 10 5, 5 This game is called Prisoner s Dilemma. Bonnie and Clyde have been

More information

Chapter 3 Learning in Two-Player Matrix Games

Chapter 3 Learning in Two-Player Matrix Games Chapter 3 Learning in Two-Player Matrix Games 3.1 Matrix Games In this chapter, we will examine the two-player stage game or the matrix game problem. Now, we have two players each learning how to play

More information

Arpita Biswas. Speaker. PhD Student (Google Fellow) Game Theory Lab, Dept. of CSA, Indian Institute of Science, Bangalore

Arpita Biswas. Speaker. PhD Student (Google Fellow) Game Theory Lab, Dept. of CSA, Indian Institute of Science, Bangalore Speaker Arpita Biswas PhD Student (Google Fellow) Game Theory Lab, Dept. of CSA, Indian Institute of Science, Bangalore Email address: arpita.biswas@live.in OUTLINE Game Theory Basic Concepts and Results

More information

EconS Sequential Move Games

EconS Sequential Move Games EconS 425 - Sequential Move Games Eric Dunaway Washington State University eric.dunaway@wsu.edu Industrial Organization Eric Dunaway (WSU) EconS 425 Industrial Organization 1 / 57 Introduction Today, we

More information

Lecture 23. Offense vs. Defense & Dynamic Games

Lecture 23. Offense vs. Defense & Dynamic Games Lecture 3. Offense vs. Defense & Dynamic Games EC DD & EE / Manove Offense vs Defense p EC DD & EE / Manove Clicker Question p Using Game Theory to Analyze Offense versus Defense In many competitive situations

More information

DECISION MAKING GAME THEORY

DECISION MAKING GAME THEORY DECISION MAKING GAME THEORY THE PROBLEM Two suspected felons are caught by the police and interrogated in separate rooms. Three cases were presented to them. THE PROBLEM CASE A: If only one of you confesses,

More information

Thinking and Autonomy

Thinking and Autonomy Thinking and Autonomy Prasad Tadepalli School of Electrical Engineering and Computer Science Oregon State University Turing Test (1950) The interrogator C needs to decide if he is talking to a computer

More information

Distributed Optimization and Games

Distributed Optimization and Games Distributed Optimization and Games Introduction to Game Theory Giovanni Neglia INRIA EPI Maestro 18 January 2017 What is Game Theory About? Mathematical/Logical analysis of situations of conflict and cooperation

More information

CS364A: Algorithmic Game Theory Lecture #1: Introduction and Examples

CS364A: Algorithmic Game Theory Lecture #1: Introduction and Examples CS364A: Algorithmic Game Theory Lecture #1: Introduction and Examples Tim Roughgarden September 23, 2013 1 Mechanism Design: The Science of Rule-Making This course is roughly organized into three parts,

More information

ECON 301: Game Theory 1. Intermediate Microeconomics II, ECON 301. Game Theory: An Introduction & Some Applications

ECON 301: Game Theory 1. Intermediate Microeconomics II, ECON 301. Game Theory: An Introduction & Some Applications ECON 301: Game Theory 1 Intermediate Microeconomics II, ECON 301 Game Theory: An Introduction & Some Applications You have been introduced briefly regarding how firms within an Oligopoly interacts strategically

More information

Optimal Rhode Island Hold em Poker

Optimal Rhode Island Hold em Poker Optimal Rhode Island Hold em Poker Andrew Gilpin and Tuomas Sandholm Computer Science Department Carnegie Mellon University Pittsburgh, PA 15213 {gilpin,sandholm}@cs.cmu.edu Abstract Rhode Island Hold

More information

Chapter 13. Game Theory

Chapter 13. Game Theory Chapter 13 Game Theory A camper awakens to the growl of a hungry bear and sees his friend putting on a pair of running shoes. You can t outrun a bear, scoffs the camper. His friend coolly replies, I don

More information

Dominant and Dominated Strategies

Dominant and Dominated Strategies Dominant and Dominated Strategies Carlos Hurtado Department of Economics University of Illinois at Urbana-Champaign hrtdmrt2@illinois.edu May 29th, 2015 C. Hurtado (UIUC - Economics) Game Theory On the

More information

Game Theory and Randomized Algorithms

Game Theory and Randomized Algorithms Game Theory and Randomized Algorithms Guy Aridor Game theory is a set of tools that allow us to understand how decisionmakers interact with each other. It has practical applications in economics, international

More information

GAME THEORY: STRATEGY AND EQUILIBRIUM

GAME THEORY: STRATEGY AND EQUILIBRIUM Prerequisites Almost essential Game Theory: Basics GAME THEORY: STRATEGY AND EQUILIBRIUM MICROECONOMICS Principles and Analysis Frank Cowell Note: the detail in slides marked * can only be seen if you

More information

CRAFTING A RESEARCH PROPOSAL

CRAFTING A RESEARCH PROPOSAL CRAFTING A RESEARCH PROPOSAL Research proposals follow a set format. Proposal writing is its own genre, and just like you wouldn t write a short story and wait to introduce the main character until the

More information

Game Theory and Algorithms Lecture 3: Weak Dominance and Truthfulness

Game Theory and Algorithms Lecture 3: Weak Dominance and Truthfulness Game Theory and Algorithms Lecture 3: Weak Dominance and Truthfulness March 1, 2011 Summary: We introduce the notion of a (weakly) dominant strategy: one which is always a best response, no matter what

More information

FIRST PART: (Nash) Equilibria

FIRST PART: (Nash) Equilibria FIRST PART: (Nash) Equilibria (Some) Types of games Cooperative/Non-cooperative Symmetric/Asymmetric (for 2-player games) Zero sum/non-zero sum Simultaneous/Sequential Perfect information/imperfect information

More information