CS221 Project: Final Report Raiden AI Agent

Size: px
Start display at page:

Download "CS221 Project: Final Report Raiden AI Agent"

Transcription

1 CS221 Project: Final Report Raiden AI Agent Lu Bian Yiran Deng Xuandong Lei 1 Introduction Raiden is a classic shooting game where the player control a flight to avoid collisions between enemy flights and enemy projectiles. Meanwhile, the player flight can shoot missiles to hit enemy flight to gain points. In a normal game configuration, the player will die as long as it get hit by any enemy objects. Therefore, the player needs to ensure staying alive first and then shoot as many enemies as possible. The difficult part of this game is that the game speed could be so fast such that the player can t make the best movement. In this project, we implemented an AI agent player to play the game automatically to achieve a higher score than a human player. We used AlphaBeta and ExpectiMax Agents to control the agent s movement and feed the agents game state information. We will elaborate our game state features in the following sections. We hard-coded the weights for the feature vector and trained it using TD-learning. 2 Task Definition We built an AI agent that will automatically make the best decision based on the current state of the game. Also, we added the difficulty of this game by introducing intelligent enemy flights play against the player. We implemented 4 different game modes: Human player v.s. normal enemy. AI agent v.s. normal enemy. AI agent v.s. AI enemy. Human player v.s. AI enemy. Our jobs is to implement an AI controlled agent player and an AI enemy. We will introduce the AI enemy in the game description section. 1

2 3 Game Description 3.1 Player Actions The player can move up, down, left and right to avoid collisions with enemy flights and enemy projectiles. The player can shoot a missile to destroy an enemy flight (enemy projectiles are not destructible). Figure 1: Game Layout Figure 2: Player Shoot 2

3 3.2 Enemy Actions Enemy flights are always generated at the top of the screen with a random horizontal and vertical speed. Also, the enemy will fire 3 spread projectiles every 0.5 seconds to hit the player. The vertical speed of projectiles is fixed. The horizontal speed of projectiles depends on the horizontal speed of enemy flight. The horizontal position of the middle projectile is always the same as the enemy. The speed of classic enemy flights is fixed whereas the AI enemy will track the player s position and flying directly toward the player. However, the enemy flight can only move downward but not upward. This means when the enemy flight is below the player, the enemy cannot go upward to hit the player. 3.3 Scoring The score is showed on the up-left corner of the game board. The game never ends, so the goal is to get as many points as possible. The player will be dead as long as it hits an enemy flight or enemy projectile. The detailed scoring is as below. +1 points: For staying alive for points: For hitting an enemy flight by missile points: For firing a missile. seconds (60 points for staying alive for one second). We added a penalty for firing a missile. By enforcing this penalty, firing missiles will cripple the total score if the accuracy is under 50%. The reason for deducting points by firing missile is to prevent abuse of missiles. A human player can get a very high score by keeping shooting missiles. 4 Approach 4.1 Game State Implementation State member The contents of GameState includes: enemy list: the list of enemy jets. missile list: the list of missiles that player has shot. projectile list: the list of projectiles that enemy shot. currentagent: the agent index that is taking action now. 3

4 score: the current game state score. Each enemy, missile, projectile in the list includes those fields: speed: the current speed of this object on x-axis and y-axis. position: position are simply recorded as (x,y) pairs. dimension: height and width of the object. Each object has the following functionality: checkcollision: a function that takes another flight as input and return whether they are collided based on their position and dimension. updateflight: a function that update the position of the flight to the successor GameState State function The Agent needs the successor state given a agent index and its action, and it also needs the legal actions that an agent can take. So these are the API we implemented in our GameState, getlegalactions: This function takes the agent index as input, and return the legal actions of this agent simply according to its position. More specifically, the legal actions are those will not take the flight out of the board (except for the enemy). generatesuccessor: This function takes the agent index and the action this agent are about to take, and return the successor state of this action. When the index is 0, player moves using the updatef light function, also all the projectiles takes a move. And if the index if for enemy, only the enemy update it s position. islose: Loop over the list of enemy and projectiles, using the checkcollision function in Flight, find if there is a collision between the them and player agent. If there is a collision, return True. iswin: This function always return False, because there s not an end point of the game, the player simply wants more score. The game state cannot be easily copied by deepcopy() in python because of pygame mask issues. So we implemented our own copy of all the objects (including speed, position, etc.) and added the above functionality. 4

5 4.2 Agent Search At first, we used a Reflex agent for adjusting game parameters and comparison with advanced agents. The agent simply loops through all the legal actions for the current game state and chooses the action that would lead to the highest score in the successor state. Then we used a simple MiniMax agent to control the player s behavior. The MiniMax agent is basically what we ve used for our Pacman assignment, and we transplant it to fit our game interface. However, when the depth of our agent increaes to 3, the game becomes very slow because our game board is very large ( ) compared to Pacman s layout, besides we have a lot of computation to do in a single frame. This fact motivates us to use an AlphaBeta agent to speed up the computation, which is also a variant of the Pacman s AlphaBeta pruning algorithm. Since Minimax agent sets a lower bound performance against all adversaries, we thought Expectimax would outstrip Minimax in the easy level of our game, where the enemies move randomly. But it may not get a decent score against our AI enemies. Observing the behavior of our agent, we found that sometimes the agent would fire a missile anyway after detecting its certain death (the game would end whatever action the agent takes). This fact stops the agent from achieving a higher score since the game would soon end after the missile is fired. Thus 500 score is wasted most of the time. Furthermore, the agent must stay still to shoot a missile which sometimes leads to its doom, since it is avoidable by choosing to move. In our later implementation, we modified our agent to make up for these features. In the result section, we compared the performance of Reflex agent, AlphaBeta agent, and Expectimax agent in all game modes Search depth After getting the AlphaBeta and Expectimax agent working, We tried different search depths for our agent. Knowing that there is a trade-off between search depth and search speed, we observed a drastically deteriorated game speed as we increased the search depth. The reason is that when we are evaluating the game state we have a lot of computation to do, such as calculating the distances to enemies and projectiles. Therefore, we chose a search depth that would not hurt the game speed and still guarantee a decent accuracy Evaluation function The evaluation function is largely based on what a human player will behave under certain circumstances. The first thing we do is to force our agent to stay in the center of the screen. Since staying in the border will eliminate at least one legal action, (for example the agent cannot move left or down if staying in the left corner). Moreover, lingering in the corners will increase the probability of being trapped by enemies and their projectiles. Next we evaluate the number of threats within a certain range, since our agent needs to respond 5

6 to all enemies and projectiles timely. The strategy is similar to Pacman s strategy, we simply calculate the Euclidean distances between the agent and other enemies and projectiles, and punish the total score if some threats get close. Then we let our agent to react to enemies as early as possible. This is realized by calculating the horizontal distance to enemies and keep a large horizontal distance from them. Moreover, The screen is divided into four pieces. We then count the total number of enemies and projectiles in each piece, and make the agent to fly to the safest zone with the least number of threats. Adding this feature enables the agent to behave more like human player instead of just staying in the bottom dodging enemies and projectiles. The last problem for the agent is evaluate when to shoot missiles. Our strategy is to consider the state at current time step, then calculate whether firing a missile will possibly hit an enemy. Denote the agent s position (x 0, y 0 ), an enemy s position and speed (x 1, y 1 ), (v x1, v y1 ), and the missile s speed (v x, v y ). If the agent fires a missile, the missile will move to (x 0 + v x t, y 0 + v y t) after some time step t, and the enemy will (possibly) move to (x 1 + v x1 t, y 1 + v y1 t) accordingly. The missile and the enemy will collide if: x 0 + v x t (x 1 + v x1 t) < W m + W e 2 y 0 + v y t (y 1 + v y1 t) < H m + H e 2 where W m and H m are missile width and height, W e and H e are enemy width and height. If these two conditions are satisfied, the agent will shoot, otherwise it will never shoot due the cost of shooting missiles. This is a very strong estimation and we observed the agent s shooting accuracy is above 85% in average. 4.3 TD-Learning We tried to use TD-learning to train our weight vector automatically. If we use normal TDlearning formula, the weight vector w gets to infinity really quickly. So we added a regularization item and normalize w to avoid this problem. The formula is like below: w w η {[ ˆVπ (s; w) ( r + γ ˆV )] } π (s ; w) w ˆVπ (s; w) + λw ˆV π (s; w) = w φ(s) w ˆVπ (s; w) = φ(s) w 2 = 1 Here, the feature vector φ(s) is the game state we have described above. The evaluation function will return w φ(s) as the current game state evaluation result. 6

7 5 Results and Analysis 5.1 General results For each agent, we let it to play 200 times separately against random enemy and AI enemy. We also played the game ourselves for 50 times against each enemy. The results are shown below. Agent # of Games Avg. Score Highest Score STD. Reflex vs. normal enemy Reflex vs. AI enemy AlphaBeta vs. normal enemy AlphaBeta vs. AI enemy Expectimax vs. normal enemy Expectimax vs. AI enemy Player vs. normal enemy Player vs. AI enemy Figure 3: Performance Comparison The results indicate that human players perform significantly worse than our AlphaBeta and Expectimax agent, but also have the lowest standard deviation. Which means that human players have a more consistent performance playing the game, probably because we have our own routines for playing such games. Expectimax agent comes on top for both average score and highest score against normal enemy with a large lead. This is what we expected, since it would definitely outperform AlphaBeta. For AI enemy, AlphaBeta and Expectimax agent have very close performances. 7

8 The standard deviations of AlphaBeta are less, which is consistent with what we have observed: AlphaBeta agent will barely have close contact with enemies, since it assumes them are always Min enemies; on the other hand, Expectimax agent will sometimes sneak up behind enemies. Furthermore, we expected Expectimax agent would get a much lower score against AI enemy, and our result verifies our expectation. 5.2 TD-learning We have trained the weight vector for thousand rounds of games. But the performance of the trained agent is not as good as our hard-coded agent. Here, we only list the trained ExpectiMax agent performance. Agent # of Games Avg. Score Highest Score STD. Trained ExpectiMax vs. normal enemy Trained ExpectiMax vs. AI enemy Figure 4: Player Stuck at Corner We can see that the overall performance of our trained agent is worse than human and our hand-coded agent. The is because the trained agent will keep staying at the one of the two of the top corners of the game board and barely move. 6 Conclusion and Future Work Our agent can outperform human players using our hand-coded evaluation function. The agent can score as high as 49,000 points whereas a human can only score nor more than 10,000 points. When faced with the AI enemy, our agent can achieve an average score of 5,500 points whereas human player can only achieve 2,500 points. 8

9 Our TD-learning trained weight is not performing very well and makes the agent stuck at a local minimum. One improvement we can use is to change the feature vector to get the TD-learning out of the local minimum. We think it would be better to use a trained weight vector rather than a hard-coded weight vector. Our agent performance is not very stable for now. One improvement we can make is to add more generalizing features to the feature vector to get a more stable performance. References [1] Open source Sky-Fighter: 9

Game Playing for a Variant of Mancala Board Game (Pallanguzhi)

Game Playing for a Variant of Mancala Board Game (Pallanguzhi) Game Playing for a Variant of Mancala Board Game (Pallanguzhi) Varsha Sankar (SUNet ID: svarsha) 1. INTRODUCTION Game playing is a very interesting area in the field of Artificial Intelligence presently.

More information

CS221 Project Final Report Automatic Flappy Bird Player

CS221 Project Final Report Automatic Flappy Bird Player 1 CS221 Project Final Report Automatic Flappy Bird Player Minh-An Quinn, Guilherme Reis Introduction Flappy Bird is a notoriously difficult and addicting game - so much so that its creator even removed

More information

Mutliplayer Snake AI

Mutliplayer Snake AI Mutliplayer Snake AI CS221 Project Final Report Felix CREVIER, Sebastien DUBOIS, Sebastien LEVY 12/16/2016 Abstract This project is focused on the implementation of AI strategies for a tailor-made game

More information

Reinforcement Learning Agent for Scrolling Shooter Game

Reinforcement Learning Agent for Scrolling Shooter Game Reinforcement Learning Agent for Scrolling Shooter Game Peng Yuan (pengy@stanford.edu) Yangxin Zhong (yangxin@stanford.edu) Zibo Gong (zibo@stanford.edu) 1 Introduction and Task Definition 1.1 Game Agent

More information

Using Artificial intelligent to solve the game of 2048

Using Artificial intelligent to solve the game of 2048 Using Artificial intelligent to solve the game of 2048 Ho Shing Hin (20343288) WONG, Ngo Yin (20355097) Lam Ka Wing (20280151) Abstract The report presents the solver of the game 2048 base on artificial

More information

CS188: Artificial Intelligence, Fall 2011 Written 2: Games and MDP s

CS188: Artificial Intelligence, Fall 2011 Written 2: Games and MDP s CS88: Artificial Intelligence, Fall 20 Written 2: Games and MDP s Due: 0/5 submitted electronically by :59pm (no slip days) Policy: Can be solved in groups (acknowledge collaborators) but must be written

More information

Five-In-Row with Local Evaluation and Beam Search

Five-In-Row with Local Evaluation and Beam Search Five-In-Row with Local Evaluation and Beam Search Jiun-Hung Chen and Adrienne X. Wang jhchen@cs axwang@cs Abstract This report provides a brief overview of the game of five-in-row, also known as Go-Moku,

More information

Monte Carlo based battleship agent

Monte Carlo based battleship agent Monte Carlo based battleship agent Written by: Omer Haber, 313302010; Dror Sharf, 315357319 Introduction The game of battleship is a guessing game for two players which has been around for almost a century.

More information

COMP3211 Project. Artificial Intelligence for Tron game. Group 7. Chiu Ka Wa ( ) Chun Wai Wong ( ) Ku Chun Kit ( )

COMP3211 Project. Artificial Intelligence for Tron game. Group 7. Chiu Ka Wa ( ) Chun Wai Wong ( ) Ku Chun Kit ( ) COMP3211 Project Artificial Intelligence for Tron game Group 7 Chiu Ka Wa (20369737) Chun Wai Wong (20265022) Ku Chun Kit (20123470) Abstract Tron is an old and popular game based on a movie of the same

More information

Announcements. Homework 1. Project 1. Due tonight at 11:59pm. Due Friday 2/8 at 4:00pm. Electronic HW1 Written HW1

Announcements. Homework 1. Project 1. Due tonight at 11:59pm. Due Friday 2/8 at 4:00pm. Electronic HW1 Written HW1 Announcements Homework 1 Due tonight at 11:59pm Project 1 Electronic HW1 Written HW1 Due Friday 2/8 at 4:00pm CS 188: Artificial Intelligence Adversarial Search and Game Trees Instructors: Sergey Levine

More information

Artificial Intelligence. Minimax and alpha-beta pruning

Artificial Intelligence. Minimax and alpha-beta pruning Artificial Intelligence Minimax and alpha-beta pruning In which we examine the problems that arise when we try to plan ahead to get the best result in a world that includes a hostile agent (other agent

More information

Project 1. Out of 20 points. Only 30% of final grade 5-6 projects in total. Extra day: 10%

Project 1. Out of 20 points. Only 30% of final grade 5-6 projects in total. Extra day: 10% Project 1 Out of 20 points Only 30% of final grade 5-6 projects in total Extra day: 10% 1. DFS (2) 2. BFS (1) 3. UCS (2) 4. A* (3) 5. Corners (2) 6. Corners Heuristic (3) 7. foodheuristic (5) 8. Suboptimal

More information

AI Agent for Ants vs. SomeBees: Final Report

AI Agent for Ants vs. SomeBees: Final Report CS 221: ARTIFICIAL INTELLIGENCE: PRINCIPLES AND TECHNIQUES 1 AI Agent for Ants vs. SomeBees: Final Report Wanyi Qian, Yundong Zhang, Xiaotong Duan Abstract This project aims to build a real-time game playing

More information

2048: An Autonomous Solver

2048: An Autonomous Solver 2048: An Autonomous Solver Final Project in Introduction to Artificial Intelligence ABSTRACT. Our goal in this project was to create an automatic solver for the wellknown game 2048 and to analyze how different

More information

CandyCrush.ai: An AI Agent for Candy Crush

CandyCrush.ai: An AI Agent for Candy Crush CandyCrush.ai: An AI Agent for Candy Crush Jiwoo Lee, Niranjan Balachandar, Karan Singhal December 16, 2016 1 Introduction Candy Crush, a mobile puzzle game, has become very popular in the past few years.

More information

CS188 Spring 2014 Section 3: Games

CS188 Spring 2014 Section 3: Games CS188 Spring 2014 Section 3: Games 1 Nearly Zero Sum Games The standard Minimax algorithm calculates worst-case values in a zero-sum two player game, i.e. a game in which for all terminal states s, the

More information

Documentation and Discussion

Documentation and Discussion 1 of 9 11/7/2007 1:21 AM ASSIGNMENT 2 SUBJECT CODE: CS 6300 SUBJECT: ARTIFICIAL INTELLIGENCE LEENA KORA EMAIL:leenak@cs.utah.edu Unid: u0527667 TEEKO GAME IMPLEMENTATION Documentation and Discussion 1.

More information

AI Plays Yun Nie (yunn), Wenqi Hou (wenqihou), Yicheng An (yicheng)

AI Plays Yun Nie (yunn), Wenqi Hou (wenqihou), Yicheng An (yicheng) AI Plays 2048 Yun Nie (yunn), Wenqi Hou (wenqihou), Yicheng An (yicheng) Abstract The strategy game 2048 gained great popularity quickly. Although it is easy to play, people cannot win the game easily,

More information

Programming an Othello AI Michael An (man4), Evan Liang (liange)

Programming an Othello AI Michael An (man4), Evan Liang (liange) Programming an Othello AI Michael An (man4), Evan Liang (liange) 1 Introduction Othello is a two player board game played on an 8 8 grid. Players take turns placing stones with their assigned color (black

More information

CS510 \ Lecture Ariel Stolerman

CS510 \ Lecture Ariel Stolerman CS510 \ Lecture04 2012-10-15 1 Ariel Stolerman Administration Assignment 2: just a programming assignment. Midterm: posted by next week (5), will cover: o Lectures o Readings A midterm review sheet will

More information

CS 229 Final Project: Using Reinforcement Learning to Play Othello

CS 229 Final Project: Using Reinforcement Learning to Play Othello CS 229 Final Project: Using Reinforcement Learning to Play Othello Kevin Fry Frank Zheng Xianming Li ID: kfry ID: fzheng ID: xmli 16 December 2016 Abstract We built an AI that learned to play Othello.

More information

AI Learning Agent for the Game of Battleship

AI Learning Agent for the Game of Battleship CS 221 Fall 2016 AI Learning Agent for the Game of Battleship Jordan Ebel (jebel) Kai Yee Wan (kaiw) Abstract This project implements a Battleship-playing agent that uses reinforcement learning to become

More information

CS221 Project Final Report Gomoku Game Agent

CS221 Project Final Report Gomoku Game Agent CS221 Project Final Report Gomoku Game Agent Qiao Tan qtan@stanford.edu Xiaoti Hu xiaotihu@stanford.edu 1 Introduction Gomoku, also know as five-in-a-row, is a strategy board game which is traditionally

More information

CS 188 Fall Introduction to Artificial Intelligence Midterm 1

CS 188 Fall Introduction to Artificial Intelligence Midterm 1 CS 188 Fall 2018 Introduction to Artificial Intelligence Midterm 1 You have 120 minutes. The time will be projected at the front of the room. You may not leave during the last 10 minutes of the exam. Do

More information

A retro space combat game by Chad Fillion. Chad Fillion Scripting for Interactivity ITGM 719: 5/13/13 Space Attack - Retro space shooter game

A retro space combat game by Chad Fillion. Chad Fillion Scripting for Interactivity ITGM 719: 5/13/13 Space Attack - Retro space shooter game A retro space combat game by Designed and developed as a throwback to the classic 80 s arcade games, Space Attack launches players into a galaxy of Alien enemies in an endurance race to attain the highest

More information

Adversarial Search. CS 486/686: Introduction to Artificial Intelligence

Adversarial Search. CS 486/686: Introduction to Artificial Intelligence Adversarial Search CS 486/686: Introduction to Artificial Intelligence 1 Introduction So far we have only been concerned with a single agent Today, we introduce an adversary! 2 Outline Games Minimax search

More information

Adversarial Search Lecture 7

Adversarial Search Lecture 7 Lecture 7 How can we use search to plan ahead when other agents are planning against us? 1 Agenda Games: context, history Searching via Minimax Scaling α β pruning Depth-limiting Evaluation functions Handling

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2011 Lecture 7: Minimax and Alpha-Beta Search 2/9/2011 Pieter Abbeel UC Berkeley Many slides adapted from Dan Klein 1 Announcements W1 out and due Monday 4:59pm P2

More information

AI Approaches to Ultimate Tic-Tac-Toe

AI Approaches to Ultimate Tic-Tac-Toe AI Approaches to Ultimate Tic-Tac-Toe Eytan Lifshitz CS Department Hebrew University of Jerusalem, Israel David Tsurel CS Department Hebrew University of Jerusalem, Israel I. INTRODUCTION This report is

More information

Adversarial Search 1

Adversarial Search 1 Adversarial Search 1 Adversarial Search The ghosts trying to make pacman loose Can not come up with a giant program that plans to the end, because of the ghosts and their actions Goal: Eat lots of dots

More information

Intuition Mini-Max 2

Intuition Mini-Max 2 Games Today Saying Deep Blue doesn t really think about chess is like saying an airplane doesn t really fly because it doesn t flap its wings. Drew McDermott I could feel I could smell a new kind of intelligence

More information

Learning to Play like an Othello Master CS 229 Project Report. Shir Aharon, Amanda Chang, Kent Koyanagi

Learning to Play like an Othello Master CS 229 Project Report. Shir Aharon, Amanda Chang, Kent Koyanagi Learning to Play like an Othello Master CS 229 Project Report December 13, 213 1 Abstract This project aims to train a machine to strategically play the game of Othello using machine learning. Prior to

More information

CS 5522: Artificial Intelligence II

CS 5522: Artificial Intelligence II CS 5522: Artificial Intelligence II Adversarial Search Instructor: Alan Ritter Ohio State University [These slides were adapted from CS188 Intro to AI at UC Berkeley. All materials available at http://ai.berkeley.edu.]

More information

Game-playing AIs: Games and Adversarial Search FINAL SET (w/ pruning study examples) AIMA

Game-playing AIs: Games and Adversarial Search FINAL SET (w/ pruning study examples) AIMA Game-playing AIs: Games and Adversarial Search FINAL SET (w/ pruning study examples) AIMA 5.1-5.2 Games: Outline of Unit Part I: Games as Search Motivation Game-playing AI successes Game Trees Evaluation

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Adversarial Search Instructors: David Suter and Qince Li Course Delivered @ Harbin Institute of Technology [Many slides adapted from those created by Dan Klein and Pieter Abbeel

More information

CS 188: Artificial Intelligence. Overview

CS 188: Artificial Intelligence. Overview CS 188: Artificial Intelligence Lecture 6 and 7: Search for Games Pieter Abbeel UC Berkeley Many slides adapted from Dan Klein 1 Overview Deterministic zero-sum games Minimax Limited depth and evaluation

More information

Adversarial Search. CS 486/686: Introduction to Artificial Intelligence

Adversarial Search. CS 486/686: Introduction to Artificial Intelligence Adversarial Search CS 486/686: Introduction to Artificial Intelligence 1 AccessAbility Services Volunteer Notetaker Required Interested? Complete an online application using your WATIAM: https://york.accessiblelearning.com/uwaterloo/

More information

AI Agents for Playing Tetris

AI Agents for Playing Tetris AI Agents for Playing Tetris Sang Goo Kang and Viet Vo Stanford University sanggookang@stanford.edu vtvo@stanford.edu Abstract Game playing has played a crucial role in the development and research of

More information

VACUUM MARAUDERS V1.0

VACUUM MARAUDERS V1.0 VACUUM MARAUDERS V1.0 2008 PAUL KNICKERBOCKER FOR LANE COMMUNITY COLLEGE In this game we will learn the basics of the Game Maker Interface and implement a very basic action game similar to Space Invaders.

More information

Storyboard for Playing the Game (in detail) Hoang Huynh, Jeremy West, Ioan Ihnatesn

Storyboard for Playing the Game (in detail) Hoang Huynh, Jeremy West, Ioan Ihnatesn Storyboard for Playing the Game (in detail) Hoang Huynh, Jeremy West, Ioan Ihnatesn Playing the Game (in detail) Rules Playing with collision rules Playing with boundary rules Collecting power-ups Game

More information

Game Playing State-of-the-Art

Game Playing State-of-the-Art Adversarial Search [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.] Game Playing State-of-the-Art

More information

Programming Project 1: Pacman (Due )

Programming Project 1: Pacman (Due ) Programming Project 1: Pacman (Due 8.2.18) Registration to the exams 521495A: Artificial Intelligence Adversarial Search (Min-Max) Lectured by Abdenour Hadid Adjunct Professor, CMVS, University of Oulu

More information

C# Tutorial Fighter Jet Shooting Game

C# Tutorial Fighter Jet Shooting Game C# Tutorial Fighter Jet Shooting Game Welcome to this exciting game tutorial. In this tutorial we will be using Microsoft Visual Studio with C# to create a simple fighter jet shooting game. We have the

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificial Intelligence Adversarial Search Instructor: Stuart Russell University of California, Berkeley Game Playing State-of-the-Art Checkers: 1950: First computer player. 1959: Samuel s self-taught

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificial Intelligence Adversarial Search Prof. Scott Niekum The University of Texas at Austin [These slides are based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.

More information

CS180 Project 5: Centipede

CS180 Project 5: Centipede CS180 Project 5: Centipede Chapters from the textbook relevant for this project: All chapters covered in class. Project assigned on: November 11, 2011 Project due date: December 6, 2011 Project created

More information

SPACEYARD SCRAPPERS 2-D GAME DESIGN DOCUMENT

SPACEYARD SCRAPPERS 2-D GAME DESIGN DOCUMENT SPACEYARD SCRAPPERS 2-D GAME DESIGN DOCUMENT Abstract This game design document describes the details for a Vertical Scrolling Shoot em up (AKA shump or STG) video game that will be based around concepts

More information

CS188 Spring 2011 Written 2: Minimax, Expectimax, MDPs

CS188 Spring 2011 Written 2: Minimax, Expectimax, MDPs Last name: First name: SID: Class account login: Collaborators: CS188 Spring 2011 Written 2: Minimax, Expectimax, MDPs Due: Monday 2/28 at 5:29pm either in lecture or in 283 Soda Drop Box (no slip days).

More information

SPACESHIP (up to 100 points based on ranking)

SPACESHIP (up to 100 points based on ranking) SPACESHIP (up to 100 points based on ranking) This question is based loosely around the classic arcade game Asteroids. The player controls a spaceship which can shoot bullets at rocks. When hit enough

More information

ARTIFICIAL INTELLIGENCE (CS 370D)

ARTIFICIAL INTELLIGENCE (CS 370D) Princess Nora University Faculty of Computer & Information Systems ARTIFICIAL INTELLIGENCE (CS 370D) (CHAPTER-5) ADVERSARIAL SEARCH ADVERSARIAL SEARCH Optimal decisions Min algorithm α-β pruning Imperfect,

More information

CMSC 372: Artificial Intelligence Lab#1: Designing Pac-Man Agents

CMSC 372: Artificial Intelligence Lab#1: Designing Pac-Man Agents CMSC 372: Artificial Intelligence Lab#1: Designing Pac-Man Agents Figure 1: The Pac-Man World Introduction In this project, you will familiarize yourself with the Pac-Man World. Over the next few assignments

More information

Unit 12: Artificial Intelligence CS 101, Fall 2018

Unit 12: Artificial Intelligence CS 101, Fall 2018 Unit 12: Artificial Intelligence CS 101, Fall 2018 Learning Objectives After completing this unit, you should be able to: Explain the difference between procedural and declarative knowledge. Describe the

More information

Introduction to Artificial Intelligence CS 151 Programming Assignment 2 Mancala!! Due (in dropbox) Tuesday, September 23, 9:34am

Introduction to Artificial Intelligence CS 151 Programming Assignment 2 Mancala!! Due (in dropbox) Tuesday, September 23, 9:34am Introduction to Artificial Intelligence CS 151 Programming Assignment 2 Mancala!! Due (in dropbox) Tuesday, September 23, 9:34am The purpose of this assignment is to program some of the search algorithms

More information

Your First Game: Devilishly Easy

Your First Game: Devilishly Easy C H A P T E R 2 Your First Game: Devilishly Easy Learning something new is always a little daunting at first, but things will start to become familiar in no time. In fact, by the end of this chapter, you

More information

Games CSE 473. Kasparov Vs. Deep Junior August 2, 2003 Match ends in a 3 / 3 tie!

Games CSE 473. Kasparov Vs. Deep Junior August 2, 2003 Match ends in a 3 / 3 tie! Games CSE 473 Kasparov Vs. Deep Junior August 2, 2003 Match ends in a 3 / 3 tie! Games in AI In AI, games usually refers to deteristic, turntaking, two-player, zero-sum games of perfect information Deteristic:

More information

Artificial Intelligence Adversarial Search

Artificial Intelligence Adversarial Search Artificial Intelligence Adversarial Search Adversarial Search Adversarial search problems games They occur in multiagent competitive environments There is an opponent we can t control planning again us!

More information

Adversarial Search. Robert Platt Northeastern University. Some images and slides are used from: 1. CS188 UC Berkeley 2. RN, AIMA

Adversarial Search. Robert Platt Northeastern University. Some images and slides are used from: 1. CS188 UC Berkeley 2. RN, AIMA Adversarial Search Robert Platt Northeastern University Some images and slides are used from: 1. CS188 UC Berkeley 2. RN, AIMA What is adversarial search? Adversarial search: planning used to play a game

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Adversarial Search Vibhav Gogate The University of Texas at Dallas Some material courtesy of Rina Dechter, Alex Ihler and Stuart Russell, Luke Zettlemoyer, Dan Weld Adversarial

More information

Tutorial: A scrolling shooter

Tutorial: A scrolling shooter Tutorial: A scrolling shooter Copyright 2003-2004, Mark Overmars Last changed: September 2, 2004 Uses: version 6.0, advanced mode Level: Beginner Scrolling shooters are a very popular type of arcade action

More information

Adversarial Search: Game Playing. Reading: Chapter

Adversarial Search: Game Playing. Reading: Chapter Adversarial Search: Game Playing Reading: Chapter 6.5-6.8 1 Games and AI Easy to represent, abstract, precise rules One of the first tasks undertaken by AI (since 1950) Better than humans in Othello and

More information

CSE548, AMS542: Analysis of Algorithms, Fall 2016 Date: Sep 25. Homework #1. ( Due: Oct 10 ) Figure 1: The laser game.

CSE548, AMS542: Analysis of Algorithms, Fall 2016 Date: Sep 25. Homework #1. ( Due: Oct 10 ) Figure 1: The laser game. CSE548, AMS542: Analysis of Algorithms, Fall 2016 Date: Sep 25 Homework #1 ( Due: Oct 10 ) Figure 1: The laser game. Task 1. [ 60 Points ] Laser Game Consider the following game played on an n n board,

More information

Reinforcement Learning in Games Autonomous Learning Systems Seminar

Reinforcement Learning in Games Autonomous Learning Systems Seminar Reinforcement Learning in Games Autonomous Learning Systems Seminar Matthias Zöllner Intelligent Autonomous Systems TU-Darmstadt zoellner@rbg.informatik.tu-darmstadt.de Betreuer: Gerhard Neumann Abstract

More information

Tutorial: Creating maze games

Tutorial: Creating maze games Tutorial: Creating maze games Copyright 2003, Mark Overmars Last changed: March 22, 2003 (finished) Uses: version 5.0, advanced mode Level: Beginner Even though Game Maker is really simple to use and creating

More information

Adversarial Search. Read AIMA Chapter CIS 421/521 - Intro to AI 1

Adversarial Search. Read AIMA Chapter CIS 421/521 - Intro to AI 1 Adversarial Search Read AIMA Chapter 5.2-5.5 CIS 421/521 - Intro to AI 1 Adversarial Search Instructors: Dan Klein and Pieter Abbeel University of California, Berkeley [These slides were created by Dan

More information

Ar#ficial)Intelligence!!

Ar#ficial)Intelligence!! Introduc*on! Ar#ficial)Intelligence!! Roman Barták Department of Theoretical Computer Science and Mathematical Logic So far we assumed a single-agent environment, but what if there are more agents and

More information

Set 4: Game-Playing. ICS 271 Fall 2017 Kalev Kask

Set 4: Game-Playing. ICS 271 Fall 2017 Kalev Kask Set 4: Game-Playing ICS 271 Fall 2017 Kalev Kask Overview Computer programs that play 2-player games game-playing as search with the complication of an opponent General principles of game-playing and search

More information

2 person perfect information

2 person perfect information Why Study Games? Games offer: Intellectual Engagement Abstraction Representability Performance Measure Not all games are suitable for AI research. We will restrict ourselves to 2 person perfect information

More information

CS 188: Artificial Intelligence Fall AI Applications

CS 188: Artificial Intelligence Fall AI Applications CS 188: Artificial Intelligence Fall 2009 Lecture 27: Conclusion 12/3/2009 Dan Klein UC Berkeley AI Applications 2 1 Pacman Contest Challenges: Long term strategy Multiple agents Adversarial utilities

More information

Game-playing: DeepBlue and AlphaGo

Game-playing: DeepBlue and AlphaGo Game-playing: DeepBlue and AlphaGo Brief history of gameplaying frontiers 1990s: Othello world champions refuse to play computers 1994: Chinook defeats Checkers world champion 1997: DeepBlue defeats world

More information

For slightly more detailed instructions on how to play, visit:

For slightly more detailed instructions on how to play, visit: Introduction to Artificial Intelligence CS 151 Programming Assignment 2 Mancala!! The purpose of this assignment is to program some of the search algorithms and game playing strategies that we have learned

More information

Comp th February Due: 11:59pm, 25th February 2014

Comp th February Due: 11:59pm, 25th February 2014 HomeWork Assignment 2 Comp 590.133 4th February 2014 Due: 11:59pm, 25th February 2014 Getting Started What to submit: Written parts of assignment and descriptions of the programming part of the assignment

More information

Cannon Ball User Manual

Cannon Ball User Manual Cannon Ball User Manual Darrell Westerinen Jae Kim Youngwouk Youn December 9, 2008 CSS 450 Kelvin Sung Cannon Ball: User Manual Page 2 of 8 Table of Contents GAMEPLAY:... 3 HERO - TANK... 3 CANNON BALL:...

More information

mywbut.com Two agent games : alpha beta pruning

mywbut.com Two agent games : alpha beta pruning Two agent games : alpha beta pruning 1 3.5 Alpha-Beta Pruning ALPHA-BETA pruning is a method that reduces the number of nodes explored in Minimax strategy. It reduces the time required for the search and

More information

Creating an Agent of Doom: A Visual Reinforcement Learning Approach

Creating an Agent of Doom: A Visual Reinforcement Learning Approach Creating an Agent of Doom: A Visual Reinforcement Learning Approach Michael Lowney Department of Electrical Engineering Stanford University mlowney@stanford.edu Robert Mahieu Department of Electrical Engineering

More information

Games and Adversarial Search II

Games and Adversarial Search II Games and Adversarial Search II Alpha-Beta Pruning (AIMA 5.3) Some slides adapted from Richard Lathrop, USC/ISI, CS 271 Review: The Minimax Rule Idea: Make the best move for MAX assuming that MIN always

More information

IMPROVING TOWER DEFENSE GAME AI (DIFFERENTIAL EVOLUTION VS EVOLUTIONARY PROGRAMMING) CHEAH KEEI YUAN

IMPROVING TOWER DEFENSE GAME AI (DIFFERENTIAL EVOLUTION VS EVOLUTIONARY PROGRAMMING) CHEAH KEEI YUAN IMPROVING TOWER DEFENSE GAME AI (DIFFERENTIAL EVOLUTION VS EVOLUTIONARY PROGRAMMING) CHEAH KEEI YUAN FACULTY OF COMPUTING AND INFORMATICS UNIVERSITY MALAYSIA SABAH 2014 ABSTRACT The use of Artificial Intelligence

More information

Lecture 14. Questions? Friday, February 10 CS 430 Artificial Intelligence - Lecture 14 1

Lecture 14. Questions? Friday, February 10 CS 430 Artificial Intelligence - Lecture 14 1 Lecture 14 Questions? Friday, February 10 CS 430 Artificial Intelligence - Lecture 14 1 Outline Chapter 5 - Adversarial Search Alpha-Beta Pruning Imperfect Real-Time Decisions Stochastic Games Friday,

More information

CRYPTOSHOOTER MULTI AGENT BASED SECRET COMMUNICATION IN AUGMENTED VIRTUALITY

CRYPTOSHOOTER MULTI AGENT BASED SECRET COMMUNICATION IN AUGMENTED VIRTUALITY CRYPTOSHOOTER MULTI AGENT BASED SECRET COMMUNICATION IN AUGMENTED VIRTUALITY Submitted By: Sahil Narang, Sarah J Andrabi PROJECT IDEA The main idea for the project is to create a pursuit and evade crowd

More information

CSE 473: Artificial Intelligence Fall Outline. Types of Games. Deterministic Games. Previously: Single-Agent Trees. Previously: Value of a State

CSE 473: Artificial Intelligence Fall Outline. Types of Games. Deterministic Games. Previously: Single-Agent Trees. Previously: Value of a State CSE 473: Artificial Intelligence Fall 2014 Adversarial Search Dan Weld Outline Adversarial Search Minimax search α-β search Evaluation functions Expectimax Reminder: Project 1 due Today Based on slides

More information

Unit-III Chap-II Adversarial Search. Created by: Ashish Shah 1

Unit-III Chap-II Adversarial Search. Created by: Ashish Shah 1 Unit-III Chap-II Adversarial Search Created by: Ashish Shah 1 Alpha beta Pruning In case of standard ALPHA BETA PRUNING minimax tree, it returns the same move as minimax would, but prunes away branches

More information

Playing Atari Games with Deep Reinforcement Learning

Playing Atari Games with Deep Reinforcement Learning Playing Atari Games with Deep Reinforcement Learning 1 Playing Atari Games with Deep Reinforcement Learning Varsha Lalwani (varshajn@iitk.ac.in) Masare Akshay Sunil (amasare@iitk.ac.in) IIT Kanpur CS365A

More information

Game Playing State-of-the-Art. CS 188: Artificial Intelligence. Behavior from Computation. Video of Demo Mystery Pacman. Adversarial Search

Game Playing State-of-the-Art. CS 188: Artificial Intelligence. Behavior from Computation. Video of Demo Mystery Pacman. Adversarial Search CS 188: Artificial Intelligence Adversarial Search Instructor: Marco Alvarez University of Rhode Island (These slides were created/modified by Dan Klein, Pieter Abbeel, Anca Dragan for CS188 at UC Berkeley)

More information

G54GAM Lab Session 1

G54GAM Lab Session 1 G54GAM Lab Session 1 The aim of this session is to introduce the basic functionality of Game Maker and to create a very simple platform game (think Mario / Donkey Kong etc). This document will walk you

More information

Game Maker Tutorial Creating Maze Games Written by Mark Overmars

Game Maker Tutorial Creating Maze Games Written by Mark Overmars Game Maker Tutorial Creating Maze Games Written by Mark Overmars Copyright 2007 YoYo Games Ltd Last changed: February 21, 2007 Uses: Game Maker7.0, Lite or Pro Edition, Advanced Mode Level: Beginner Maze

More information

CS188 Spring 2010 Section 3: Game Trees

CS188 Spring 2010 Section 3: Game Trees CS188 Spring 2010 Section 3: Game Trees 1 Warm-Up: Column-Row You have a 3x3 matrix of values like the one below. In a somewhat boring game, player A first selects a row, and then player B selects a column.

More information

CSE 473 Midterm Exam Feb 8, 2018

CSE 473 Midterm Exam Feb 8, 2018 CSE 473 Midterm Exam Feb 8, 2018 Name: This exam is take home and is due on Wed Feb 14 at 1:30 pm. You can submit it online (see the message board for instructions) or hand it in at the beginning of class.

More information

Introduction to Spring 2009 Artificial Intelligence Final Exam

Introduction to Spring 2009 Artificial Intelligence Final Exam CS 188 Introduction to Spring 2009 Artificial Intelligence Final Exam INSTRUCTIONS You have 3 hours. The exam is closed book, closed notes except a two-page crib sheet, double-sided. Please use non-programmable

More information

Adversarial Search. Human-aware Robotics. 2018/01/25 Chapter 5 in R&N 3rd Ø Announcement: Slides for this lecture are here:

Adversarial Search. Human-aware Robotics. 2018/01/25 Chapter 5 in R&N 3rd Ø Announcement: Slides for this lecture are here: Adversarial Search 2018/01/25 Chapter 5 in R&N 3rd Ø Announcement: q Slides for this lecture are here: http://www.public.asu.edu/~yzhan442/teaching/cse471/lectures/adversarial.pdf Slides are largely based

More information

CS 354R: Computer Game Technology

CS 354R: Computer Game Technology CS 354R: Computer Game Technology Introduction to Game AI Fall 2018 What does the A stand for? 2 What is AI? AI is the control of every non-human entity in a game The other cars in a car game The opponents

More information

Game-playing AIs: Games and Adversarial Search I AIMA

Game-playing AIs: Games and Adversarial Search I AIMA Game-playing AIs: Games and Adversarial Search I AIMA 5.1-5.2 Games: Outline of Unit Part I: Games as Search Motivation Game-playing AI successes Game Trees Evaluation Functions Part II: Adversarial Search

More information

Game Playing Beyond Minimax. Game Playing Summary So Far. Game Playing Improving Efficiency. Game Playing Minimax using DFS.

Game Playing Beyond Minimax. Game Playing Summary So Far. Game Playing Improving Efficiency. Game Playing Minimax using DFS. Game Playing Summary So Far Game tree describes the possible sequences of play is a graph if we merge together identical states Minimax: utility values assigned to the leaves Values backed up the tree

More information

CSC 380 Final Presentation. Connect 4 David Alligood, Scott Swiger, Jo Van Voorhis

CSC 380 Final Presentation. Connect 4 David Alligood, Scott Swiger, Jo Van Voorhis CSC 380 Final Presentation Connect 4 David Alligood, Scott Swiger, Jo Van Voorhis Intro Connect 4 is a zero-sum game, which means one party wins everything or both parties win nothing; there is no mutual

More information

CS 171, Intro to A.I. Midterm Exam Fall Quarter, 2016

CS 171, Intro to A.I. Midterm Exam Fall Quarter, 2016 CS 171, Intro to A.I. Midterm Exam all Quarter, 2016 YOUR NAME: YOUR ID: ROW: SEAT: The exam will begin on the next page. Please, do not turn the page until told. When you are told to begin the exam, please

More information

In this project we ll make our own version of the highly popular mobile game Flappy Bird. This project requires Scratch 2.0.

In this project we ll make our own version of the highly popular mobile game Flappy Bird. This project requires Scratch 2.0. Flappy Parrot Introduction In this project we ll make our own version of the highly popular mobile game Flappy Bird. This project requires Scratch 2.0. Press the space bar to flap and try to navigate through

More information

Tac Due: Sep. 26, 2012

Tac Due: Sep. 26, 2012 CS 195N 2D Game Engines Andy van Dam Tac Due: Sep. 26, 2012 Introduction This assignment involves a much more complex game than Tic-Tac-Toe, and in order to create it you ll need to add several features

More information

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN. Galaxian. CSEE 4840 Embedded System Design

GALAXIAN: CSEE 4840 EMBEDDED SYSTEM DESIGN. Galaxian. CSEE 4840 Embedded System Design Galaxian CSEE 4840 Embedded System Design *Department of Computer Science Department of Electrical Engineering Department of Computer Engineering School of Engineering and Applied Science, Columbia University

More information

CS 771 Artificial Intelligence. Adversarial Search

CS 771 Artificial Intelligence. Adversarial Search CS 771 Artificial Intelligence Adversarial Search Typical assumptions Two agents whose actions alternate Utility values for each agent are the opposite of the other This creates the adversarial situation

More information

5.4 Imperfect, Real-Time Decisions

5.4 Imperfect, Real-Time Decisions 5.4 Imperfect, Real-Time Decisions Searching through the whole (pruned) game tree is too inefficient for any realistic game Moves must be made in a reasonable amount of time One has to cut off the generation

More information

CS 1571 Introduction to AI Lecture 12. Adversarial search. CS 1571 Intro to AI. Announcements

CS 1571 Introduction to AI Lecture 12. Adversarial search. CS 1571 Intro to AI. Announcements CS 171 Introduction to AI Lecture 1 Adversarial search Milos Hauskrecht milos@cs.pitt.edu 39 Sennott Square Announcements Homework assignment is out Programming and experiments Simulated annealing + Genetic

More information

CS188 Spring 2010 Section 3: Game Trees

CS188 Spring 2010 Section 3: Game Trees CS188 Spring 2010 Section 3: Game Trees 1 Warm-Up: Column-Row You have a 3x3 matrix of values like the one below. In a somewhat boring game, player A first selects a row, and then player B selects a column.

More information