Integrating Learning in a Multi-Scale Agent

Size: px
Start display at page:

Download "Integrating Learning in a Multi-Scale Agent"

Transcription

1 Integrating Learning in a Multi-Scale Agent Ben Weber Dissertation Defense May 18, 2012

2 Introduction AI has a long history of using games to advance the state of the field [Shannon 1950]

3 Real-Time Strategy Games Building human-level AI for RTS games remains an open research challenge StarCraft II, Blizzard Entertainment

4 Task Environment Properties Chess StarCraft Taxi Driving Fully vs. partially observable Deterministic vs. stochastic Episodic vs. sequential Fully Partially Partially Deterministic Deterministic* Stochastic Sequential Sequential Sequential Static vs. dynamic Static Dynamic Dynamic Discrete vs. continuous Discrete Continuous Continuous Single vs. multiagent Multi Multi Multi [Russell & Norvig 2009]

5 Motivation RTS games present complex environments and complex tasks Professional players demonstrate a broad range of reasoning capabilities Human behavior can be observed, emulated, and evaluated [Langley 2011, Mateas 2002]

6 Hypothesis Reproducing expert-level StarCraft gameplay involves integrating heterogeneous reasoning capabilities

7 Research Questions What competencies are necessary for expert StarCraft gameplay? Which competencies can be learned from demonstrations? How can these competencies be integrated in a real-time agent?

8 Overview StarCraft Multi-Scale AI Learning from Demonstration Integrating Learning Evaluation

9 StarCraft Expert gameplay 300+ APM Evolving meta-game Exhibited capabilities Estimation Anticipation Adaptation [Flash, Pro-gamer]

10 StarCraft Gameplay Expand Tech Tree Attack Opponent Manage Economy Produce Units

11 Gameplay Scales in StarCraft Individual Worker harassment Squad Global Aggressive mine placement Support siege line

12 State Space The following number of states are possible, considering only unit type and location: (Type * X * Y) Units States on a 256x256 tile map: (100*256*256) 1700 > 10 11,500

13 Decision Complexity The set of possible actions that can be executed at a particular moment: O(2 W (A * P) + 2 T (D + S) + B(R + C)) W number of workers A number of the type of worker assignments P average number of workspaces T number of troops D number of movement directions [Aha et al. 2005]

14 Decision Complexity The set of possible actions that can be executed at a particular moment: Assumption O(W * A * P + T * D * S + B(R + C)) Unit actions can be selected independently Resulting complexity: Assuming 50 worker units on a 256x256 tile map results in more than 1,000,000 possible actions

15 StarCraft Complex gameplay Real-world properties Highly-competitive Sources of expert gameplay

16 Research Question #1 What competencies are necessary for expert StarCraft gameplay?

17 Multi-Scale AI Multiple scales Actions are performed across multiple levels of coordination Interrelated tasks Performance in each tasks impacts other tasks Real-time Actions are performed in real time

18 Reactive Planning Provides useful mechanisms for building multi-scale agents Advantages Efficient behavior selection Interleaved plan expansion and execution Disadvantages Lacks deliberative capabilities [Loyall 1997, Mateas 2002]

19 Agent Design Implemented in the ABL reactive planning language Architecture Extension of McCoy & Mateas integrated agent framework Partitions gameplay into distinct competencies Uses a blackboard for coordination [McCoy & Mateas 2008]

20 EISBot Managers Strategy Manager Income Manager Production Manager Tactics Manager Recon Manager Gather Resources Construct Buildings Attack Opponent Scout Opponent

21 Multi-Scale Idioms Design patterns for authoring multi-scale AI Idioms Message passing Daemon behaviors Managers Unit subtasks Behavior locking

22 Idioms in EISBot Initial_tree Tactics Manager Strategy Manager Income Manager Form Squad Attack Enemy Pump Probes Timing Attack WME Probe Stop WME Squad Monitor Legend Subgoal Daemon behavior Squad Attack Squad Retreat Dragoon Dance Message passing

23 Multi-Scale AI StarCraft gameplay is multi-scale Reactive planning provides mechanisms for multi-scale reasoning Idioms are applied in EISBot to support StarCraft gameplay

24 Research Question #2 Which competencies can be learned from demonstrations?

25 Learning from Demonstration Objective Emulate capabilities exhibited by expert players by harnessing gameplay demonstrations Methods Classification and regression model training Case-based goal formulation Parameter selection for model optimization

26 Strategy Prediction Tasks Identify opponent build orders Predict when buildings will be constructed 400 Spawning Pool Timing Game Time (minutes) [Hsieh & Sun 2008]

27 Approach Feature encoding Each player s actions are encoded in a single vector Vectors are labeled using a build-order rule set Features describe the game cycle when a unit or building type is first produced by a player t, time when x is first produced by P f(x) = { 0, x was not (yet) produced by P

28 Recall Precision Strategy Prediction Results 1 NNge Boosting Rule Set State Lattice Game Time (minutes)

29 Strategy Learning Task Learn build-orders from demonstration Trace Algorithm Converts replays to a trace representation Formulates goals based on most similar situation q = argmin c ϵ L distance(s, c) g = s + (q - q) [Ontañón et al. 2010]

30 Trace Retrieval: Example Consider a planning window of size 2 S =< 3, 0, 1, 1 > T 1 =< 2, 0, 0.5, 1 > T 2 =< 3, 0, 0.7, 1 > T 3 =< 4, 1, 0.9, 1 > T 4 =< 4, 1, 1.1, 2 >

31 Trace Retrieval: Step 1 The system retrieves the most similar case, q S =< 3, 0, 1, 1 > T 1 =< 2, 0, 0.5, 1 > T 2 =< 3, 0, 0.7, 1 > T 3 =< 4, 1, 0.9, 1 > T 4 =< 4, 1, 1.1, 2 >

32 Trace Retrieval : Step 2 q is retrieved S =< 3, 0, 1, 1 > T 1 =< 2, 0, 0.5, 1 > T 2 =< 3, 0, 0.7, 1 > T 3 =< 4, 1, 0.9, 1 > T 4 =< 4, 1, 1.1, 2 >

33 Trace Retrieval : Step 3 The difference is computed: T 4 T 2 = <1,1,0.4,1> S =< 3, 0, 1, 1 > T 1 =< 2, 0, 0.5, 1 > T 2 =< 3, 0, 0.7, 1 > T 3 =< 4, 1, 0.9, 1 > T 4 =< 4, 1, 1.1, 2 >

34 Trace Retrieval : Step 4 g is computed: S =< 3, 0, 1, 1 > T 1 =< 2, 0, 0.5, 1 > T 2 =< 3, 0, 0.7, 1 > T 3 =< 4, 1, 0.9, 1 > T 4 =< 4, 1, 1.1, 2 > g = s + (T 4 T 2 ) = <4, 1, 1.4, 2>

35 Prediction Error (RMSE) Strategy Learning Results 14 Opponent modeling with a window size of Null IB1 Trace MultiTrace Actions performed by player

36 State Estimation Task Estimate enemy positions given prior observations Particle Model Apply movement model Remove visible particles Reweight particles [Thrun 2002, Bererton 2004]

37 Parameter Selection Free parameters Trajectory weights Decay rates State estimation is represented as an optimization problem Input: parameter weights Output: particle model error Replays are used to implement a particle model error function

38 Threat Prediction Error State Estimation Results Game Time (Minutes) Null Model Perfect Tracker Default Model Optimized Model

39 Learning from Demonstration Anticipation Classification and regression models Adaptation Case-based goal formulation Estimation Model optimization

40 Research Question #3 How can these competencies be integrated in a real-time agent?

41 Agent Architecture

42 Integration Approaches Augmenting working memory External Components External plan generation External goal formulation Working Memory

43 Augmenting Working Memory Supplementing working memory with additional beliefs

44 External Plan Generation Generating plans outside the scope of ABL

45 External Goal Formulation Formulating goals outside the scope of ABL

46 Goal-Driven Autonomy A framework for building self introspective agents GDA agents monitor plan execution, detect discrepancies, and explain failures Implementations Hand-authored rules Case-based reasoning [Molineaux et al. 2010, Muñoz-Avila et al. 2010]

47 GDA Subtasks Expectation generation Discrepancy detection Explanation generation Goal formulation

48 Implementation

49 Integrating Learning ABL agents can be interfaced with external learning components Applying the GDA model enabled tighter coordination across capabilities EISBot incorporates ABL behaviors, a particle model, and a GDA implementation

50 Evaluation Claim Reproducing expert-level StarCraft gameplay involves integrating heterogeneous reasoning capabilities Experiments Ablation studies User study

51 GDA Ablation Study Agent configurations Base Formulator Predictor GDA Free parameters Planning window size Look-ahead window size Discrepancy period Discrepancies Explanations Goals Discrepancy Detector Explanation Generator Goal Formulator Goal Manager

52 GDA Results Overall results from the GDA experiments Agent Win Ratio Base 0.73 Formulator 0.77 Predictor 0.81 GDA 0.92

53 User Study Experiment setup Matches hosted on ICCup 3 trials Testing script 1. Launch StarCraft 2. Connect to server 3. Host match 4. Announce experiment [Dennis Fong, Pro-gamer]

54 ICCup Score Performance on Tau Cross Base Formulator Predictor GDA Number of Games Played

55 ICCup Results Agent Longinus Python Tau Cross Overall Base Formulator Predictor GDA

56 EISBot Ranking Rankings achieved by the complete GDA agent Trial Longinus Python Tau Cross Average Percentile Ranking 32 nd 8 th 66 th 48 th

57 Evaluation Ablation Studies Optimized particle model Complete GDA model Integrating additional capabilities into EISBot improved performance EISBot performed at the level of a competitive amateur StarCraft player

58 Conclusion Objective Identify and realize capabilities necessary for expert-level StarCraft gameplay in an agent Approach Decompose gameplay Learn capabilities from demonstrations Integrate learned gameplay models Evaluate versus humans and agents

59 Contributions Idioms for authoring multi-scale agents Methods for learning from demonstration Integration approaches for ABL agents

60 Integrating Learning in a Multi-Scale Agent Ben G. Weber Ph.D. Candidate Expressive Intelligence Studio bweber@soe.ucsc.edu Funding NSF Grant IIS

61 References Aha, Molineaux, & Ponsen Learning to Win: Case-Based Plan Selection in a Real-Time Strategy Game, Proceedings of ICCBR. Bererton State Estimation for Game AI using Particle Filters, Proceedings of AAI Workshop on Challenges in Game AI. Hsieh & Sun Building a Player Strategy Model by Analyzing Replays of Real-Time Strategy Games, Proceedings of IJCNN. Langley Artificial Intelligence and Cognitive Systems, AISB Quarterly. Loyall Believable Agents: Building Interactive Personalities, Ph.D. thesis, CMU. Mateas Believable Agents: Building Interactive Personalities, Ph.D. thesis, CMU.

62 References McCoy & Mateas An Integrated Agent for Playing Real-Time Strategy Games, Proceedings of AAAI. Molineaux, Klenk, Aha Goal-Driven Autonomy in a Navy Strategy Simulation, Proceedings of AAAI. Muñoz-Avila, Aha, Jaidee, Klenk, Molineaux Applying Goal Driven Autonomy to a Team Shooter Game, Proceedings of FLAIRS. Ontañón, Mishra, Sugandh, Ram On-line Case-Based Planning, Computational Intelligence. Russell & Norvig Artificial Intelligence: A Modern Approach. Shannon Programming a Computer for Playing Chess, Philosophical magazine. Thrun Particle Filters in Robotics, Proceedings of UAI.

Case-Based Goal Formulation

Case-Based Goal Formulation Case-Based Goal Formulation Ben G. Weber and Michael Mateas and Arnav Jhala Expressive Intelligence Studio University of California, Santa Cruz {bweber, michaelm, jhala}@soe.ucsc.edu Abstract Robust AI

More information

Case-Based Goal Formulation

Case-Based Goal Formulation Case-Based Goal Formulation Ben G. Weber and Michael Mateas and Arnav Jhala Expressive Intelligence Studio University of California, Santa Cruz {bweber, michaelm, jhala}@soe.ucsc.edu Abstract Robust AI

More information

Applying Goal-Driven Autonomy to StarCraft

Applying Goal-Driven Autonomy to StarCraft Applying Goal-Driven Autonomy to StarCraft Ben G. Weber, Michael Mateas, and Arnav Jhala Expressive Intelligence Studio UC Santa Cruz bweber,michaelm,jhala@soe.ucsc.edu Abstract One of the main challenges

More information

A Particle Model for State Estimation in Real-Time Strategy Games

A Particle Model for State Estimation in Real-Time Strategy Games Proceedings of the Seventh AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment A Particle Model for State Estimation in Real-Time Strategy Games Ben G. Weber Expressive Intelligence

More information

Using Automated Replay Annotation for Case-Based Planning in Games

Using Automated Replay Annotation for Case-Based Planning in Games Using Automated Replay Annotation for Case-Based Planning in Games Ben G. Weber 1 and Santiago Ontañón 2 1 Expressive Intelligence Studio University of California, Santa Cruz bweber@soe.ucsc.edu 2 IIIA,

More information

Capturing and Adapting Traces for Character Control in Computer Role Playing Games

Capturing and Adapting Traces for Character Control in Computer Role Playing Games Capturing and Adapting Traces for Character Control in Computer Role Playing Games Jonathan Rubin and Ashwin Ram Palo Alto Research Center 3333 Coyote Hill Road, Palo Alto, CA 94304 USA Jonathan.Rubin@parc.com,

More information

Towards Cognition-level Goal Reasoning for Playing Real-Time Strategy Games

Towards Cognition-level Goal Reasoning for Playing Real-Time Strategy Games 2015 Annual Conference on Advances in Cognitive Systems: Workshop on Goal Reasoning Towards Cognition-level Goal Reasoning for Playing Real-Time Strategy Games Héctor Muñoz-Avila Dustin Dannenhauer Computer

More information

Reactive Planning Idioms for Multi-Scale Game AI

Reactive Planning Idioms for Multi-Scale Game AI Reactive Planning Idioms for Multi-Scale Game AI Ben G. Weber, Peter Mawhorter, Michael Mateas, and Arnav Jhala Abstract Many modern games provide environments in which agents perform decision making at

More information

Reactive Planning for Micromanagement in RTS Games

Reactive Planning for Micromanagement in RTS Games Reactive Planning for Micromanagement in RTS Games Ben Weber University of California, Santa Cruz Department of Computer Science Santa Cruz, CA 95064 bweber@soe.ucsc.edu Abstract This paper presents an

More information

Case-based Action Planning in a First Person Scenario Game

Case-based Action Planning in a First Person Scenario Game Case-based Action Planning in a First Person Scenario Game Pascal Reuss 1,2 and Jannis Hillmann 1 and Sebastian Viefhaus 1 and Klaus-Dieter Althoff 1,2 reusspa@uni-hildesheim.de basti.viefhaus@gmail.com

More information

Goal-Driven Autonomy with Semantically-annotated Hierarchical Cases

Goal-Driven Autonomy with Semantically-annotated Hierarchical Cases Goal-Driven Autonomy with Semantically-annotated Hierarchical Cases Dustin Dannenhauer and Héctor Muñoz-Avila Department of Computer Science and Engineering, Lehigh University, Bethlehem PA 18015, USA

More information

CPS331 Lecture: Intelligent Agents last revised July 25, 2018

CPS331 Lecture: Intelligent Agents last revised July 25, 2018 CPS331 Lecture: Intelligent Agents last revised July 25, 2018 Objectives: 1. To introduce the basic notion of an agent 2. To discuss various types of agents Materials: 1. Projectable of Russell and Norvig

More information

Outline. Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types Agent types

Outline. Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types Agent types Intelligent Agents Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types Agent types Agents An agent is anything that can be viewed as

More information

Sequential Pattern Mining in StarCraft:Brood War for Short and Long-term Goals

Sequential Pattern Mining in StarCraft:Brood War for Short and Long-term Goals Sequential Pattern Mining in StarCraft:Brood War for Short and Long-term Goals Anonymous Submitted for blind review Workshop on Artificial Intelligence in Adversarial Real-Time Games AIIDE 2014 Abstract

More information

Sequential Pattern Mining in StarCraft: Brood War for Short and Long-Term Goals

Sequential Pattern Mining in StarCraft: Brood War for Short and Long-Term Goals Artificial Intelligence in Adversarial Real-Time Games: Papers from the AIIDE Workshop Sequential Pattern Mining in StarCraft: Brood War for Short and Long-Term Goals Michael Leece and Arnav Jhala Computational

More information

A Bayesian Model for Plan Recognition in RTS Games applied to StarCraft

A Bayesian Model for Plan Recognition in RTS Games applied to StarCraft 1/38 A Bayesian for Plan Recognition in RTS Games applied to StarCraft Gabriel Synnaeve and Pierre Bessière LPPA @ Collège de France (Paris) University of Grenoble E-Motion team @ INRIA (Grenoble) October

More information

CPS331 Lecture: Agents and Robots last revised November 18, 2016

CPS331 Lecture: Agents and Robots last revised November 18, 2016 CPS331 Lecture: Agents and Robots last revised November 18, 2016 Objectives: 1. To introduce the basic notion of an agent 2. To discuss various types of agents 3. To introduce the subsumption architecture

More information

An Improved Dataset and Extraction Process for Starcraft AI

An Improved Dataset and Extraction Process for Starcraft AI Proceedings of the Twenty-Seventh International Florida Artificial Intelligence Research Society Conference An Improved Dataset and Extraction Process for Starcraft AI Glen Robertson and Ian Watson Department

More information

Outline. Introduction to AI. Artificial Intelligence. What is an AI? What is an AI? Agents Environments

Outline. Introduction to AI. Artificial Intelligence. What is an AI? What is an AI? Agents Environments Outline Introduction to AI ECE457 Applied Artificial Intelligence Fall 2007 Lecture #1 What is an AI? Russell & Norvig, chapter 1 Agents s Russell & Norvig, chapter 2 ECE457 Applied Artificial Intelligence

More information

CPS331 Lecture: Agents and Robots last revised April 27, 2012

CPS331 Lecture: Agents and Robots last revised April 27, 2012 CPS331 Lecture: Agents and Robots last revised April 27, 2012 Objectives: 1. To introduce the basic notion of an agent 2. To discuss various types of agents 3. To introduce the subsumption architecture

More information

Modeling Player Retention in Madden NFL 11

Modeling Player Retention in Madden NFL 11 Proceedings of the Twenty-Third Innovative Applications of Artificial Intelligence Conference Modeling Player Retention in Madden NFL 11 Ben G. Weber UC Santa Cruz Santa Cruz, CA bweber@soe.ucsc.edu Michael

More information

Overview Agents, environments, typical components

Overview Agents, environments, typical components Overview Agents, environments, typical components CSC752 Autonomous Robotic Systems Ubbo Visser Department of Computer Science University of Miami January 23, 2017 Outline 1 Autonomous robots 2 Agents

More information

Extending the STRADA Framework to Design an AI for ORTS

Extending the STRADA Framework to Design an AI for ORTS Extending the STRADA Framework to Design an AI for ORTS Laurent Navarro and Vincent Corruble Laboratoire d Informatique de Paris 6 Université Pierre et Marie Curie (Paris 6) CNRS 4, Place Jussieu 75252

More information

High-Level Representations for Game-Tree Search in RTS Games

High-Level Representations for Game-Tree Search in RTS Games Artificial Intelligence in Adversarial Real-Time Games: Papers from the AIIDE Workshop High-Level Representations for Game-Tree Search in RTS Games Alberto Uriarte and Santiago Ontañón Computer Science

More information

STRATEGO EXPERT SYSTEM SHELL

STRATEGO EXPERT SYSTEM SHELL STRATEGO EXPERT SYSTEM SHELL Casper Treijtel and Leon Rothkrantz Faculty of Information Technology and Systems Delft University of Technology Mekelweg 4 2628 CD Delft University of Technology E-mail: L.J.M.Rothkrantz@cs.tudelft.nl

More information

CS 380: ARTIFICIAL INTELLIGENCE RATIONAL AGENTS. Santiago Ontañón

CS 380: ARTIFICIAL INTELLIGENCE RATIONAL AGENTS. Santiago Ontañón CS 380: ARTIFICIAL INTELLIGENCE RATIONAL AGENTS Santiago Ontañón so367@drexel.edu Outline What is an Agent? Rationality Agents and Environments Agent Types (these slides are adapted from Russel & Norvig

More information

Testing real-time artificial intelligence: an experience with Starcraft c

Testing real-time artificial intelligence: an experience with Starcraft c Testing real-time artificial intelligence: an experience with Starcraft c game Cristian Conde, Mariano Moreno, and Diego C. Martínez Laboratorio de Investigación y Desarrollo en Inteligencia Artificial

More information

Cooperative Learning by Replay Files in Real-Time Strategy Game

Cooperative Learning by Replay Files in Real-Time Strategy Game Cooperative Learning by Replay Files in Real-Time Strategy Game Jaekwang Kim, Kwang Ho Yoon, Taebok Yoon, and Jee-Hyong Lee 300 Cheoncheon-dong, Jangan-gu, Suwon, Gyeonggi-do 440-746, Department of Electrical

More information

Learning Artificial Intelligence in Large-Scale Video Games

Learning Artificial Intelligence in Large-Scale Video Games Learning Artificial Intelligence in Large-Scale Video Games A First Case Study with Hearthstone: Heroes of WarCraft Master Thesis Submitted for the Degree of MSc in Computer Science & Engineering Author

More information

Artificial Intelligence for Games

Artificial Intelligence for Games Artificial Intelligence for Games CSC404: Video Game Design Elias Adum Let s talk about AI Artificial Intelligence AI is the field of creating intelligent behaviour in machines. Intelligence understood

More information

Bayesian Networks for Micromanagement Decision Imitation in the RTS Game Starcraft

Bayesian Networks for Micromanagement Decision Imitation in the RTS Game Starcraft Bayesian Networks for Micromanagement Decision Imitation in the RTS Game Starcraft Ricardo Parra and Leonardo Garrido Tecnológico de Monterrey, Campus Monterrey Ave. Eugenio Garza Sada 2501. Monterrey,

More information

Elements of Artificial Intelligence and Expert Systems

Elements of Artificial Intelligence and Expert Systems Elements of Artificial Intelligence and Expert Systems Master in Data Science for Economics, Business & Finance Nicola Basilico Dipartimento di Informatica Via Comelico 39/41-20135 Milano (MI) Ufficio

More information

Plan for the 2nd hour. What is AI. Acting humanly: The Turing test. EDAF70: Applied Artificial Intelligence Agents (Chapter 2 of AIMA)

Plan for the 2nd hour. What is AI. Acting humanly: The Turing test. EDAF70: Applied Artificial Intelligence Agents (Chapter 2 of AIMA) Plan for the 2nd hour EDAF70: Applied Artificial Intelligence (Chapter 2 of AIMA) Jacek Malec Dept. of Computer Science, Lund University, Sweden January 17th, 2018 What is an agent? PEAS (Performance measure,

More information

Efficient Resource Management in StarCraft: Brood War

Efficient Resource Management in StarCraft: Brood War Efficient Resource Management in StarCraft: Brood War DAT5, Fall 2010 Group d517a 7th semester Department of Computer Science Aalborg University December 20th 2010 Student Report Title: Efficient Resource

More information

Reactive Strategy Choice in StarCraft by Means of Fuzzy Control

Reactive Strategy Choice in StarCraft by Means of Fuzzy Control Mike Preuss Comp. Intelligence Group TU Dortmund mike.preuss@tu-dortmund.de Reactive Strategy Choice in StarCraft by Means of Fuzzy Control Daniel Kozakowski Piranha Bytes, Essen daniel.kozakowski@ tu-dortmund.de

More information

Administrivia. CS 188: Artificial Intelligence Spring Agents and Environments. Today. Vacuum-Cleaner World. A Reflex Vacuum-Cleaner

Administrivia. CS 188: Artificial Intelligence Spring Agents and Environments. Today. Vacuum-Cleaner World. A Reflex Vacuum-Cleaner CS 188: Artificial Intelligence Spring 2006 Lecture 2: Agents 1/19/2006 Administrivia Reminder: Drop-in Python/Unix lab Friday 1-4pm, 275 Soda Hall Optional, but recommended Accommodation issues Project

More information

CS 380: ARTIFICIAL INTELLIGENCE

CS 380: ARTIFICIAL INTELLIGENCE CS 380: ARTIFICIAL INTELLIGENCE RATIONAL AGENTS 9/25/2013 Santiago Ontañón santi@cs.drexel.edu https://www.cs.drexel.edu/~santi/teaching/2013/cs380/intro.html Do you think a machine can be made that replicates

More information

Potential-Field Based navigation in StarCraft

Potential-Field Based navigation in StarCraft Potential-Field Based navigation in StarCraft Johan Hagelbäck, Member, IEEE Abstract Real-Time Strategy (RTS) games are a sub-genre of strategy games typically taking place in a war setting. RTS games

More information

Asymmetric potential fields

Asymmetric potential fields Master s Thesis Computer Science Thesis no: MCS-2011-05 January 2011 Asymmetric potential fields Implementation of Asymmetric Potential Fields in Real Time Strategy Game Muhammad Sajjad Muhammad Mansur-ul-Islam

More information

Replay-based Strategy Prediction and Build Order Adaptation for StarCraft AI Bots

Replay-based Strategy Prediction and Build Order Adaptation for StarCraft AI Bots Replay-based Strategy Prediction and Build Order Adaptation for StarCraft AI Bots Ho-Chul Cho Dept. of Computer Science and Engineering, Sejong University, Seoul, South Korea chc2212@naver.com Kyung-Joong

More information

Agent. Pengju Ren. Institute of Artificial Intelligence and Robotics

Agent. Pengju Ren. Institute of Artificial Intelligence and Robotics Agent Pengju Ren Institute of Artificial Intelligence and Robotics pengjuren@xjtu.edu.cn 1 Review: What is AI? Artificial intelligence (AI) is intelligence exhibited by machines. In computer science, the

More information

Google DeepMind s AlphaGo vs. world Go champion Lee Sedol

Google DeepMind s AlphaGo vs. world Go champion Lee Sedol Google DeepMind s AlphaGo vs. world Go champion Lee Sedol Review of Nature paper: Mastering the game of Go with Deep Neural Networks & Tree Search Tapani Raiko Thanks to Antti Tarvainen for some slides

More information

A Learning Infrastructure for Improving Agent Performance and Game Balance

A Learning Infrastructure for Improving Agent Performance and Game Balance A Learning Infrastructure for Improving Agent Performance and Game Balance Jeremy Ludwig and Art Farley Computer Science Department, University of Oregon 120 Deschutes Hall, 1202 University of Oregon Eugene,

More information

Artificial Intelligence ( CS 365 ) IMPLEMENTATION OF AI SCRIPT GENERATOR USING DYNAMIC SCRIPTING FOR AOE2 GAME

Artificial Intelligence ( CS 365 ) IMPLEMENTATION OF AI SCRIPT GENERATOR USING DYNAMIC SCRIPTING FOR AOE2 GAME Artificial Intelligence ( CS 365 ) IMPLEMENTATION OF AI SCRIPT GENERATOR USING DYNAMIC SCRIPTING FOR AOE2 GAME Author: Saurabh Chatterjee Guided by: Dr. Amitabha Mukherjee Abstract: I have implemented

More information

The Combinatorial Multi-Armed Bandit Problem and Its Application to Real-Time Strategy Games

The Combinatorial Multi-Armed Bandit Problem and Its Application to Real-Time Strategy Games Proceedings of the Ninth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment The Combinatorial Multi-Armed Bandit Problem and Its Application to Real-Time Strategy Games Santiago

More information

POKER AGENTS LD Miller & Adam Eck April 14 & 19, 2011

POKER AGENTS LD Miller & Adam Eck April 14 & 19, 2011 POKER AGENTS LD Miller & Adam Eck April 14 & 19, 2011 Motivation Classic environment properties of MAS Stochastic behavior (agents and environment) Incomplete information Uncertainty Application Examples

More information

Combining Scripted Behavior with Game Tree Search for Stronger, More Robust Game AI

Combining Scripted Behavior with Game Tree Search for Stronger, More Robust Game AI 1 Combining Scripted Behavior with Game Tree Search for Stronger, More Robust Game AI Nicolas A. Barriga, Marius Stanescu, and Michael Buro [1 leave this spacer to make page count accurate] [2 leave this

More information

Hierarchical Controller for Robotic Soccer

Hierarchical Controller for Robotic Soccer Hierarchical Controller for Robotic Soccer Byron Knoll Cognitive Systems 402 April 13, 2008 ABSTRACT RoboCup is an initiative aimed at advancing Artificial Intelligence (AI) and robotics research. This

More information

Charles University in Prague. Faculty of Mathematics and Physics BACHELOR THESIS. Pavel Šmejkal

Charles University in Prague. Faculty of Mathematics and Physics BACHELOR THESIS. Pavel Šmejkal Charles University in Prague Faculty of Mathematics and Physics BACHELOR THESIS Pavel Šmejkal Integrating Probabilistic Model for Detecting Opponent Strategies Into a Starcraft Bot Department of Software

More information

Combining Case-Based Reasoning and Reinforcement Learning for Tactical Unit Selection in Real-Time Strategy Game AI

Combining Case-Based Reasoning and Reinforcement Learning for Tactical Unit Selection in Real-Time Strategy Game AI Combining Case-Based Reasoning and Reinforcement Learning for Tactical Unit Selection in Real-Time Strategy Game AI Stefan Wender and Ian Watson The University of Auckland, Auckland, New Zealand s.wender@cs.auckland.ac.nz,

More information

USING A FUZZY LOGIC CONTROL SYSTEM FOR AN XPILOT COMBAT AGENT ANDREW HUBLEY AND GARY PARKER

USING A FUZZY LOGIC CONTROL SYSTEM FOR AN XPILOT COMBAT AGENT ANDREW HUBLEY AND GARY PARKER World Automation Congress 21 TSI Press. USING A FUZZY LOGIC CONTROL SYSTEM FOR AN XPILOT COMBAT AGENT ANDREW HUBLEY AND GARY PARKER Department of Computer Science Connecticut College New London, CT {ahubley,

More information

Automatically Generating Game Tactics via Evolutionary Learning

Automatically Generating Game Tactics via Evolutionary Learning Automatically Generating Game Tactics via Evolutionary Learning Marc Ponsen Héctor Muñoz-Avila Pieter Spronck David W. Aha August 15, 2006 Abstract The decision-making process of computer-controlled opponents

More information

Combining Expert Knowledge and Learning from Demonstration in Real-Time Strategy Games

Combining Expert Knowledge and Learning from Demonstration in Real-Time Strategy Games Combining Expert Knowledge and Learning from Demonstration in Real-Time Strategy Games Ricardo Palma, Antonio A. Sánchez-Ruiz, Marco A. Gómez-Martín, Pedro P. Gómez-Martín and Pedro A. González-Calero

More information

IMPROVING TOWER DEFENSE GAME AI (DIFFERENTIAL EVOLUTION VS EVOLUTIONARY PROGRAMMING) CHEAH KEEI YUAN

IMPROVING TOWER DEFENSE GAME AI (DIFFERENTIAL EVOLUTION VS EVOLUTIONARY PROGRAMMING) CHEAH KEEI YUAN IMPROVING TOWER DEFENSE GAME AI (DIFFERENTIAL EVOLUTION VS EVOLUTIONARY PROGRAMMING) CHEAH KEEI YUAN FACULTY OF COMPUTING AND INFORMATICS UNIVERSITY MALAYSIA SABAH 2014 ABSTRACT The use of Artificial Intelligence

More information

Inference of Opponent s Uncertain States in Ghosts Game using Machine Learning

Inference of Opponent s Uncertain States in Ghosts Game using Machine Learning Inference of Opponent s Uncertain States in Ghosts Game using Machine Learning Sehar Shahzad Farooq, HyunSoo Park, and Kyung-Joong Kim* sehar146@gmail.com, hspark8312@gmail.com,kimkj@sejong.ac.kr* Department

More information

Learning Unit Values in Wargus Using Temporal Differences

Learning Unit Values in Wargus Using Temporal Differences Learning Unit Values in Wargus Using Temporal Differences P.J.M. Kerbusch 16th June 2005 Abstract In order to use a learning method in a computer game to improve the perfomance of computer controlled entities,

More information

The Second Annual Real-Time Strategy Game AI Competition

The Second Annual Real-Time Strategy Game AI Competition The Second Annual Real-Time Strategy Game AI Competition Michael Buro, Marc Lanctot, and Sterling Orsten Department of Computing Science University of Alberta, Edmonton, Alberta, Canada {mburo lanctot

More information

Towards Adaptive Online RTS AI with NEAT

Towards Adaptive Online RTS AI with NEAT Towards Adaptive Online RTS AI with NEAT Jason M. Traish and James R. Tulip, Member, IEEE Abstract Real Time Strategy (RTS) games are interesting from an Artificial Intelligence (AI) point of view because

More information

Annals of the University of North Carolina Wilmington Master of Science in Computer Science and Information Systems

Annals of the University of North Carolina Wilmington Master of Science in Computer Science and Information Systems Annals of the University of North Carolina Wilmington Master of Science in Computer Science and Information Systems DEVELOPMENT OF A NOVEL GAME WITH ADAPTIVE LEARNING AGENTS Rebecca Brown A Thesis Submitted

More information

HyperNEAT-GGP: A HyperNEAT-based Atari General Game Player. Matthew Hausknecht, Piyush Khandelwal, Risto Miikkulainen, Peter Stone

HyperNEAT-GGP: A HyperNEAT-based Atari General Game Player. Matthew Hausknecht, Piyush Khandelwal, Risto Miikkulainen, Peter Stone -GGP: A -based Atari General Game Player Matthew Hausknecht, Piyush Khandelwal, Risto Miikkulainen, Peter Stone Motivation Create a General Video Game Playing agent which learns from visual representations

More information

Intelligent Agents & Search Problem Formulation. AIMA, Chapters 2,

Intelligent Agents & Search Problem Formulation. AIMA, Chapters 2, Intelligent Agents & Search Problem Formulation AIMA, Chapters 2, 3.1-3.2 Outline for today s lecture Intelligent Agents (AIMA 2.1-2) Task Environments Formulating Search Problems CIS 421/521 - Intro to

More information

Learning and Using Models of Kicking Motions for Legged Robots

Learning and Using Models of Kicking Motions for Legged Robots Learning and Using Models of Kicking Motions for Legged Robots Sonia Chernova and Manuela Veloso Computer Science Department Carnegie Mellon University Pittsburgh, PA 15213 {soniac, mmv}@cs.cmu.edu Abstract

More information

CS343 Artificial Intelligence

CS343 Artificial Intelligence CS343 Artificial Intelligence Prof: Department of Computer Science The University of Texas at Austin Good Morning, Colleagues Good Morning, Colleagues Are there any questions? Logistics Questions about

More information

Server-side Early Detection Method for Detecting Abnormal Players of StarCraft

Server-side Early Detection Method for Detecting Abnormal Players of StarCraft KSII The 3 rd International Conference on Internet (ICONI) 2011, December 2011 489 Copyright c 2011 KSII Server-side Early Detection Method for Detecting bnormal Players of StarCraft Kyung-Joong Kim 1

More information

Game-Tree Search over High-Level Game States in RTS Games

Game-Tree Search over High-Level Game States in RTS Games Proceedings of the Tenth Annual AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE 2014) Game-Tree Search over High-Level Game States in RTS Games Alberto Uriarte and

More information

CS 680: GAME AI WEEK 4: DECISION MAKING IN RTS GAMES

CS 680: GAME AI WEEK 4: DECISION MAKING IN RTS GAMES CS 680: GAME AI WEEK 4: DECISION MAKING IN RTS GAMES 2/6/2012 Santiago Ontañón santi@cs.drexel.edu https://www.cs.drexel.edu/~santi/teaching/2012/cs680/intro.html Reminders Projects: Project 1 is simpler

More information

StarCraft Winner Prediction Norouzzadeh Ravari, Yaser; Bakkes, Sander; Spronck, Pieter

StarCraft Winner Prediction Norouzzadeh Ravari, Yaser; Bakkes, Sander; Spronck, Pieter Tilburg University StarCraft Winner Prediction Norouzzadeh Ravari, Yaser; Bakkes, Sander; Spronck, Pieter Published in: AIIDE-16, the Twelfth AAAI Conference on Artificial Intelligence and Interactive

More information

A CBR-Inspired Approach to Rapid and Reliable Adaption of Video Game AI

A CBR-Inspired Approach to Rapid and Reliable Adaption of Video Game AI A CBR-Inspired Approach to Rapid and Reliable Adaption of Video Game AI Sander Bakkes, Pieter Spronck, and Jaap van den Herik Amsterdam University of Applied Sciences (HvA), CREATE-IT Applied Research

More information

Outline. Game Playing. Game Problems. Game Problems. Types of games Playing a perfect game. Playing an imperfect game

Outline. Game Playing. Game Problems. Game Problems. Types of games Playing a perfect game. Playing an imperfect game Outline Game Playing ECE457 Applied Artificial Intelligence Fall 2007 Lecture #5 Types of games Playing a perfect game Minimax search Alpha-beta pruning Playing an imperfect game Real-time Imperfect information

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence CS482, CS682, MW 1 2:15, SEM 201, MS 227 Prerequisites: 302, 365 Instructor: Sushil Louis, sushil@cse.unr.edu, http://www.cse.unr.edu/~sushil Non-classical search - Path does not

More information

Using Reinforcement Learning for City Site Selection in the Turn-Based Strategy Game Civilization IV

Using Reinforcement Learning for City Site Selection in the Turn-Based Strategy Game Civilization IV Using Reinforcement Learning for City Site Selection in the Turn-Based Strategy Game Civilization IV Stefan Wender, Ian Watson Abstract This paper describes the design and implementation of a reinforcement

More information

ARTIFICIAL INTELLIGENCE (CS 370D)

ARTIFICIAL INTELLIGENCE (CS 370D) Princess Nora University Faculty of Computer & Information Systems ARTIFICIAL INTELLIGENCE (CS 370D) (CHAPTER-5) ADVERSARIAL SEARCH ADVERSARIAL SEARCH Optimal decisions Min algorithm α-β pruning Imperfect,

More information

ConvNets and Forward Modeling for StarCraft AI

ConvNets and Forward Modeling for StarCraft AI ConvNets and Forward Modeling for StarCraft AI Alex Auvolat September 15, 2016 ConvNets and Forward Modeling for StarCraft AI 1 / 20 Overview ConvNets and Forward Modeling for StarCraft AI 2 / 20 Section

More information

Learning Character Behaviors using Agent Modeling in Games

Learning Character Behaviors using Agent Modeling in Games Proceedings of the Fifth Artificial Intelligence for Interactive Digital Entertainment Conference Learning Character Behaviors using Agent Modeling in Games Richard Zhao, Duane Szafron Department of Computing

More information

Agents in the Real World Agents and Knowledge Representation and Reasoning

Agents in the Real World Agents and Knowledge Representation and Reasoning Agents in the Real World Agents and Knowledge Representation and Reasoning An Introduction Mitsubishi Concordia, Java-based mobile agent system. http://www.merl.com/projects/concordia Copernic Agents for

More information

COMP219: COMP219: Artificial Intelligence Artificial Intelligence Dr. Annabel Latham Lecture 12: Game Playing Overview Games and Search

COMP219: COMP219: Artificial Intelligence Artificial Intelligence Dr. Annabel Latham Lecture 12: Game Playing Overview Games and Search COMP19: Artificial Intelligence COMP19: Artificial Intelligence Dr. Annabel Latham Room.05 Ashton Building Department of Computer Science University of Liverpool Lecture 1: Game Playing 1 Overview Last

More information

Game Artificial Intelligence ( CS 4731/7632 )

Game Artificial Intelligence ( CS 4731/7632 ) Game Artificial Intelligence ( CS 4731/7632 ) Instructor: Stephen Lee-Urban http://www.cc.gatech.edu/~surban6/2018-gameai/ (soon) Piazza T-square What s this all about? Industry standard approaches to

More information

Opponent Modelling In World Of Warcraft

Opponent Modelling In World Of Warcraft Opponent Modelling In World Of Warcraft A.J.J. Valkenberg 19th June 2007 Abstract In tactical commercial games, knowledge of an opponent s location is advantageous when designing a tactic. This paper proposes

More information

MFF UK Prague

MFF UK Prague MFF UK Prague 25.10.2018 Source: https://wall.alphacoders.com/big.php?i=324425 Adapted from: https://wall.alphacoders.com/big.php?i=324425 1996, Deep Blue, IBM AlphaGo, Google, 2015 Source: istan HONDA/AFP/GETTY

More information

TEMPORAL DIFFERENCE LEARNING IN CHINESE CHESS

TEMPORAL DIFFERENCE LEARNING IN CHINESE CHESS TEMPORAL DIFFERENCE LEARNING IN CHINESE CHESS Thong B. Trinh, Anwer S. Bashi, Nikhil Deshpande Department of Electrical Engineering University of New Orleans New Orleans, LA 70148 Tel: (504) 280-7383 Fax:

More information

Analysis of Vanilla Rolling Horizon Evolution Parameters in General Video Game Playing

Analysis of Vanilla Rolling Horizon Evolution Parameters in General Video Game Playing Analysis of Vanilla Rolling Horizon Evolution Parameters in General Video Game Playing Raluca D. Gaina, Jialin Liu, Simon M. Lucas, Diego Perez-Liebana Introduction One of the most promising techniques

More information

On the Effectiveness of Automatic Case Elicitation in a More Complex Domain

On the Effectiveness of Automatic Case Elicitation in a More Complex Domain On the Effectiveness of Automatic Case Elicitation in a More Complex Domain Siva N. Kommuri, Jay H. Powell and John D. Hastings University of Nebraska at Kearney Dept. of Computer Science & Information

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence CS482, CS682, MW 1 2:15, SEM 201, MS 227 Prerequisites: 302, 365 Instructor: Sushil Louis, sushil@cse.unr.edu, http://www.cse.unr.edu/~sushil Games and game trees Multi-agent systems

More information

A Multi-Agent Potential Field-Based Bot for a Full RTS Game Scenario

A Multi-Agent Potential Field-Based Bot for a Full RTS Game Scenario Proceedings of the Fifth Artificial Intelligence for Interactive Digital Entertainment Conference A Multi-Agent Potential Field-Based Bot for a Full RTS Game Scenario Johan Hagelbäck and Stefan J. Johansson

More information

A Benchmark for StarCraft Intelligent Agents

A Benchmark for StarCraft Intelligent Agents Artificial Intelligence in Adversarial Real-Time Games: Papers from the AIIDE 2015 Workshop A Benchmark for StarCraft Intelligent Agents Alberto Uriarte and Santiago Ontañón Computer Science Department

More information

Artificial Intelligence for Adaptive Computer Games

Artificial Intelligence for Adaptive Computer Games Artificial Intelligence for Adaptive Computer Games Ashwin Ram, Santiago Ontañón, and Manish Mehta Cognitive Computing Lab (CCL) College of Computing, Georgia Institute of Technology Atlanta, Georgia,

More information

A Bayesian Model for Plan Recognition in RTS Games applied to StarCraft

A Bayesian Model for Plan Recognition in RTS Games applied to StarCraft Author manuscript, published in "Artificial Intelligence and Interactive Digital Entertainment Conference (AIIDE 2011), Palo Alto : United States (2011)" A Bayesian Model for Plan Recognition in RTS Games

More information

Agent-Based Systems. Agent-Based Systems. Agent-Based Systems. Five pervasive trends in computing history. Agent-Based Systems. Agent-Based Systems

Agent-Based Systems. Agent-Based Systems. Agent-Based Systems. Five pervasive trends in computing history. Agent-Based Systems. Agent-Based Systems Five pervasive trends in computing history Michael Rovatsos mrovatso@inf.ed.ac.uk Lecture 1 Introduction Ubiquity Cost of processing power decreases dramatically (e.g. Moore s Law), computers used everywhere

More information

Adjustable Group Behavior of Agents in Action-based Games

Adjustable Group Behavior of Agents in Action-based Games Adjustable Group Behavior of Agents in Action-d Games Westphal, Keith and Mclaughlan, Brian Kwestp2@uafortsmith.edu, brian.mclaughlan@uafs.edu Department of Computer and Information Sciences University

More information

CS 354R: Computer Game Technology

CS 354R: Computer Game Technology CS 354R: Computer Game Technology Introduction to Game AI Fall 2018 What does the A stand for? 2 What is AI? AI is the control of every non-human entity in a game The other cars in a car game The opponents

More information

A Survey of Real-Time Strategy Game AI Research and Competition in StarCraft

A Survey of Real-Time Strategy Game AI Research and Competition in StarCraft A Survey of Real-Time Strategy Game AI Research and Competition in StarCraft Santiago Ontañon, Gabriel Synnaeve, Alberto Uriarte, Florian Richoux, David Churchill, Mike Preuss To cite this version: Santiago

More information

CS 680: GAME AI INTRODUCTION TO GAME AI. 1/9/2012 Santiago Ontañón

CS 680: GAME AI INTRODUCTION TO GAME AI. 1/9/2012 Santiago Ontañón CS 680: GAME AI INTRODUCTION TO GAME AI 1/9/2012 Santiago Ontañón santi@cs.drexel.edu https://www.cs.drexel.edu/~santi/teaching/2012/cs680/intro.html CS 680 Focus: advanced artificial intelligence techniques

More information

Adjutant Bot: An Evaluation of Unit Micromanagement Tactics

Adjutant Bot: An Evaluation of Unit Micromanagement Tactics Adjutant Bot: An Evaluation of Unit Micromanagement Tactics Nicholas Bowen Department of EECS University of Central Florida Orlando, Florida USA Email: nicholas.bowen@knights.ucf.edu Jonathan Todd Department

More information

Project Number: SCH-1102

Project Number: SCH-1102 Project Number: SCH-1102 LEARNING FROM DEMONSTRATION IN A GAME ENVIRONMENT A Major Qualifying Project Report submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements

More information

CS 480: GAME AI INTRODUCTION TO GAME AI. 4/3/2012 Santiago Ontañón https://www.cs.drexel.edu/~santi/teaching/2012/cs480/intro.

CS 480: GAME AI INTRODUCTION TO GAME AI. 4/3/2012 Santiago Ontañón https://www.cs.drexel.edu/~santi/teaching/2012/cs480/intro. CS 480: GAME AI INTRODUCTION TO GAME AI 4/3/2012 Santiago Ontañón santi@cs.drexel.edu https://www.cs.drexel.edu/~santi/teaching/2012/cs480/intro.html CS 480 Focus: artificial intelligence techniques for

More information

SORTS: A Human-Level Approach to Real-Time Strategy AI

SORTS: A Human-Level Approach to Real-Time Strategy AI SORTS: A Human-Level Approach to Real-Time Strategy AI Sam Wintermute, Joseph Xu, and John E. Laird University of Michigan 2260 Hayward St. Ann Arbor, MI 48109-2121 {swinterm, jzxu, laird}@umich.edu Abstract

More information

Reflections on the First Man vs. Machine No-Limit Texas Hold 'em Competition

Reflections on the First Man vs. Machine No-Limit Texas Hold 'em Competition Reflections on the First Man vs. Machine No-Limit Texas Hold 'em Competition Sam Ganzfried Assistant Professor, Computer Science, Florida International University, Miami FL PhD, Computer Science Department,

More information

COMP9414/ 9814/ 3411: Artificial Intelligence. Week 2. Classifying AI Tasks

COMP9414/ 9814/ 3411: Artificial Intelligence. Week 2. Classifying AI Tasks COMP9414/ 9814/ 3411: Artificial Intelligence Week 2. Classifying AI Tasks Russell & Norvig, Chapter 2. COMP9414/9814/3411 18s1 Tasks & Agent Types 1 Examples of AI Tasks Week 2: Wumpus World, Robocup

More information

LEARNABLE BUDDY: LEARNABLE SUPPORTIVE AI IN COMMERCIAL MMORPG

LEARNABLE BUDDY: LEARNABLE SUPPORTIVE AI IN COMMERCIAL MMORPG LEARNABLE BUDDY: LEARNABLE SUPPORTIVE AI IN COMMERCIAL MMORPG Theppatorn Rhujittawiwat and Vishnu Kotrajaras Department of Computer Engineering Chulalongkorn University, Bangkok, Thailand E-mail: g49trh@cp.eng.chula.ac.th,

More information

Automatic Learning of Combat Models for RTS Games

Automatic Learning of Combat Models for RTS Games Automatic Learning of Combat Models for RTS Games Alberto Uriarte and Santiago Ontañón Computer Science Department Drexel University {albertouri,santi}@cs.drexel.edu Abstract Game tree search algorithms,

More information