Autonomous Robotic (Cyber) Weapons?

Size: px
Start display at page:

Download "Autonomous Robotic (Cyber) Weapons?"

Transcription

1 Autonomous Robotic (Cyber) Weapons? Giovanni Sartor EUI - European University Institute of Florence CIRSFID - Faculty of law, University of Bologna Rome, November 24, 2013 G. Sartor (EUI-CIRSFID) Autonomous Weapons 1 / 21

2 From automatic weapons to autonomous weapons Automatic weapons Merely automatic weapons Autonomous weapons merely teleonomic weapons, teleologic weapons Their cognitive states do they perform cognitive activities? do they have cognitive states? are such states relevant to the law? Cognitive delegation why do we delegate them cognitive activities? should we do that? G. Sartor (EUI-CIRSFID) Autonomous Weapons 2 / 21

3 What are automatic systems? Automatic systems (Castelfranchi and Falcone). Systems delegated to perform an action such that they perform the action by themselves the action is a task delegated to them the action substitutes an action of the delegator (but not always) they are artificial and their work is their delegated function they are teleonomic, having certain features since such features (are supposed to) produce certain results An automated door. Automated weapons: A land mine, a computer virus, a physical robot, a robot, etc. G. Sartor (EUI-CIRSFID) Autonomous Weapons 3 / 21

4 What are autonomous systems? Autonomous agents their behaviour is auto-teleonomic: they adapt their behaviour to their purposes (purposes being self-selected, inputted by their designer-creator, or implemented in their architecture), they interact with the environment getting inputs and providing outputs, they adopt internal states and their behaviour also depends on such internal states Are there automatic systems that qualify as autonomous agents: Yes, an evolving computer virus, a drone guided partially or fully by its software, etc. G. Sartor (EUI-CIRSFID) Autonomous Weapons 4 / 21

5 Autonomy and automaticity Kinds of autonomous systems Automatic non autonomous systems. They execute, given certain inputs sent to them, the pre-defined combination of elementary actions that their algorithms or mechanism connects to such inputs, according to their design, Automatic-autonomous systems. They have designed purposes, but have autonomy along some dimensions: choosing subgoals (means to achieve goals), interpreting environmental inputs, adaptation to external circumstances. Non-automatic autonomous systems. They have their own purposes, which were not inputted by their designer, engage in planning or evolve finding ways to achieve such purposes (e.g. biological systems). Problem: what about artificial systems that have evolved their own ultimate goals or priorities between such goals? Non automatic autonomous artificial systems? (the Terminator scenario) G. Sartor (EUI-CIRSFID) Autonomous Weapons 5 / 21

6 Kinds of autonomous systems Autonomous systems: auto-teleolomic teleologic system Merely auto-teleonomic agents: they get inputs from the environment and provide outputs into it a mechanisms alines their behaviour to their purpose, on the basis of environmental responses Examples: a biological virus capable to evolve, a computer virus having the same capacity, an evolutionary algorithm for making choices G. Sartor (EUI-CIRSFID) Autonomous Weapons 6 / 21

7 Teleologic agents They have: goals (representational structures that are meant to determine the environment - mind to world orientation) beliefs (representational structure meant to track aspects of the environment - world to mind orientation) self-constructed plans (representational structure that specify how to reach the goals given the beliefs) Proposal: autonomous = Auto-teleonomic, i.e., a system that finds, according to its experience, ways to achieve the goals it has (not just teleologic systems). G. Sartor (EUI-CIRSFID) Autonomous Weapons 7 / 21

8 Auto-teleonomic non teleologic systems Merely auto-teleonomic systems a system s variant or a system s behavioural patterns are selected on the basis of the fact that they achieve the purpose of the system cognition is only implicitly represented in the system s internal state (the internal state has been selected on the basis of environmental responses and the system s purpose, but does not model either) Examples: Neural networks, evolutionary algorithms, evolving viruses G. Sartor (EUI-CIRSFID) Autonomous Weapons 8 / 21

9 Teleologic systems They have internal systems including (BDI architecture) beliefs (information about the environment, tracking it, world-to-mind direction of fit) goals (goal states, representations having mind-to-world direction of fit) self-selected plans/intentions (combinations of subgoals/action, selected to achieve higher goals, on the basis of goals and beliefs) values (abstract goals, criteria for selecting goals)? norms? A teleologic system should perform epistemic cognition (form new beliefs on relevant aspects of the environment, given preexisting inputs and beliefs) and practical cognition (form new subgoals and plans, given preexisting goals and beliefs). Eg: A drone which has the goal of eliminating a target, which requires identifying the target, and then selecting and implementing a way to eliminate it, an intelligent program having the purpose of disabling an information system G. Sartor (EUI-CIRSFID) Autonomous Weapons 9 / 21

10 When has an automatic entity a mental state? A functional perspective The internal state of an entity is a belief concerning the existence of certain external situations when there is a world-to-mind covariance between the internal state and these situations, and this covariance enables the entity to react appropriately to the presence of these situations. The internal state of an entity is a goal concerning the existence of certain external situations when there is a mind-to-world covariance between the internal state and these situations, and this covariance enable the agent to implement its purposes G. Sartor (EUI-CIRSFID) Autonomous Weapons 10 / 21

11 Kinds of automata Automated Merely-automated (non-autonomous) Autoteleonomic (autonomous) Merely-automated (non-autonomous) Merely-autoteleonomic Teleologic e.g.: Landmine e.g.: learning sensor in target recognition system e.g.: BDA Agent for military planning G. Sartor (EUI-CIRSFID) Autonomous Weapons 11 / 21

12 Can we attribute cognitive states to autonomous systems? Dennett: The behaviour of complex being, whose internal structure is non-knowable, can only be explained and anticipated : by assuming that the being has a purpose, and that its behaviour as a way to achieve that purpose (the design stance) by attributing to the being intentional states, and that its behaviour results from choices through which the agent aim at reaching its goals according to its beliefs (the intentional stance). Are mental states real? I think so, especially in artificial teleologic systems, where we can identify the representational structures providing the mental states at issue. G. Sartor (EUI-CIRSFID) Autonomous Weapons 12 / 21

13 Cognitive delegation When delegating an operation to an autonomous (auto-teleonomic system) we do not delegate only behaviour, but we delegate the choice of actions, their implementation and controls over them, i.e., we delegate practical cognition. Implications the delegator does not know and thus does not want, what the agent will choose to do in future situations (no mere automaticity) the delegator has chosen to delegate the choice to the autonomous delegates since he prefers not to do that choice (user of autonomous drone keeping its route) he is unable to do that choice in the given framework (user of autonomous drone cut out from connection or having to respond to an attack with a speed exceeding human reaction time, e.g., high speed trading) G. Sartor (EUI-CIRSFID) Autonomous Weapons 13 / 21

14 Cognitive requirements in delegation What capacities are involved in a delegated tasks? knowledge acquisition means-end determination: selection of actions needed to achieve goal, implementation, control take into account side-effects (collateral damage, proportionality) identify and follow norms of behaviour, which involves assessing the circumstances for their application (distinction) G. Sartor (EUI-CIRSFID) Autonomous Weapons 14 / 21

15 Dimensions of automation/autonomy Automated domain information acquisition (is it correct, complete?) information analysis (is it correct, complete?) decision and action selection (is it effective, moral, legal?) action implementation (is it adequate) control over action (is it accurate,, have feedbacks been taken into account?) Level of automation Support to human information processing Integration with human information processing Substitution of human information processing Need to precisely locate the task affected by automation/autonomy and to ask whether the deployed automata possesses the required epistemic and moral skills. G. Sartor (EUI-CIRSFID) Autonomous Weapons 15 / 21

16 A table Information Action Acquire Analyse Select Implement Control Support Integration Substitution G. Sartor (EUI-CIRSFID) Autonomous Weapons 16 / 21

17 Regimentation vs norm compliance How should the deliberative process of a norm-governed autonomous hardware or software robot: it should be impossible for the robot to act against a norm (an overriding exception in its software system, robots cannot act with the intention of violating a norm) it should be possible for the robot to act against a norm, depending on the outcome of its deliberative process. Should different decisional processes be integrated into the same agent (a robot attacking an information infrastructure)? G. Sartor (EUI-CIRSFID) Autonomous Weapons 17 / 21

18 Responsibility for damage caused by autonomous automata What is a responsibility? mere causality, or intentional causality (this applies also to robots) the ought pertaining to the accomplishment of an allocated task (this applies also to robots) the ought pertaining to answering questions about the task, why has this gone wrong? (may apply also to robots) the blameworthiness for failing to act appropriately (this applies only to humans) a subjection to punishment or obligation to compensate, for violating a norm (this applies only to humans) The last two responsibilities may apply to artificial agents only to the extent to which their behaviour may be influenced by moral emotions or the expectation or implementation of sanctions. Robots, having the appropriate motivational structure may be the subject of such responsibilities, but this cannot apply to all robots, and so cannot be made into a meaningful legal rule. G. Sartor (EUI-CIRSFID) Autonomous Weapons 18 / 21

19 What responsibility for humans Blameworthiness/sanctions for assigning a tasks failing to control its execution (as possible) design defects production defects choosing to delegate to an automaton a task that cannot be automated (taking into account side effects and norms governing it), at the state of the art. mere causation of certain kinds of damages (strict liability, but do we want to stop the deployment of automata when comparatively preferable?) Issue: does the fact that the automaton intended to accomplish the damaging action (rather that being negligent) have an impact on human liabilities? G. Sartor (EUI-CIRSFID) Autonomous Weapons 19 / 21

20 Autonomy in cyberwar Requirements for autonomy agents with long arms may be insufficient; agents with long legs may be needed merely auto-teleonomic agent may be often efficient (evolving viruses) speed often makes human remote control impossible Conclusion: autonomous cyberweapons are here and will proliferate! Should we allow for them? G. Sartor (EUI-CIRSFID) Autonomous Weapons 20 / 21

21 Thanks for your attention!! G. Sartor (EUI-CIRSFID) Autonomous Weapons 21 / 21

Convention on Certain Conventional Weapons (CCW) Meeting of Experts on Lethal Autonomous Weapons Systems (LAWS) April 2016, Geneva

Convention on Certain Conventional Weapons (CCW) Meeting of Experts on Lethal Autonomous Weapons Systems (LAWS) April 2016, Geneva Introduction Convention on Certain Conventional Weapons (CCW) Meeting of Experts on Lethal Autonomous Weapons Systems (LAWS) 11-15 April 2016, Geneva Views of the International Committee of the Red Cross

More information

ENHANCED HUMAN-AGENT INTERACTION: AUGMENTING INTERACTION MODELS WITH EMBODIED AGENTS BY SERAFIN BENTO. MASTER OF SCIENCE in INFORMATION SYSTEMS

ENHANCED HUMAN-AGENT INTERACTION: AUGMENTING INTERACTION MODELS WITH EMBODIED AGENTS BY SERAFIN BENTO. MASTER OF SCIENCE in INFORMATION SYSTEMS BY SERAFIN BENTO MASTER OF SCIENCE in INFORMATION SYSTEMS Edmonton, Alberta September, 2015 ABSTRACT The popularity of software agents demands for more comprehensive HAI design processes. The outcome of

More information

Artificial intelligence & autonomous decisions. From judgelike Robot to soldier Robot

Artificial intelligence & autonomous decisions. From judgelike Robot to soldier Robot Artificial intelligence & autonomous decisions From judgelike Robot to soldier Robot Danièle Bourcier Director of research CNRS Paris 2 University CC-ND-NC Issues Up to now, it has been assumed that machines

More information

International Humanitarian Law and New Weapon Technologies

International Humanitarian Law and New Weapon Technologies International Humanitarian Law and New Weapon Technologies Statement GENEVA, 08 SEPTEMBER 2011. 34th Round Table on Current Issues of International Humanitarian Law, San Remo, 8-10 September 2011. Keynote

More information

Outline. Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types Agent types

Outline. Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types Agent types Intelligent Agents Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types Agent types Agents An agent is anything that can be viewed as

More information

Agent-Based Systems. Agent-Based Systems. Agent-Based Systems. Five pervasive trends in computing history. Agent-Based Systems. Agent-Based Systems

Agent-Based Systems. Agent-Based Systems. Agent-Based Systems. Five pervasive trends in computing history. Agent-Based Systems. Agent-Based Systems Five pervasive trends in computing history Michael Rovatsos mrovatso@inf.ed.ac.uk Lecture 1 Introduction Ubiquity Cost of processing power decreases dramatically (e.g. Moore s Law), computers used everywhere

More information

Expectation-based Learning in Design

Expectation-based Learning in Design Expectation-based Learning in Design Dan L. Grecu, David C. Brown Artificial Intelligence in Design Group Worcester Polytechnic Institute Worcester, MA CHARACTERISTICS OF DESIGN PROBLEMS 1) Problem spaces

More information

How do you teach AI the value of trust?

How do you teach AI the value of trust? How do you teach AI the value of trust? AI is different from traditional IT systems and brings with it a new set of opportunities and risks. To build trust in AI organizations will need to go beyond monitoring

More information

Unmanned Ground Military and Construction Systems Technology Gaps Exploration

Unmanned Ground Military and Construction Systems Technology Gaps Exploration Unmanned Ground Military and Construction Systems Technology Gaps Exploration Eugeniusz Budny a, Piotr Szynkarczyk a and Józef Wrona b a Industrial Research Institute for Automation and Measurements Al.

More information

Essay on A Survey of Socially Interactive Robots Authors: Terrence Fong, Illah Nourbakhsh, Kerstin Dautenhahn Summarized by: Mehwish Alam

Essay on A Survey of Socially Interactive Robots Authors: Terrence Fong, Illah Nourbakhsh, Kerstin Dautenhahn Summarized by: Mehwish Alam 1 Introduction Essay on A Survey of Socially Interactive Robots Authors: Terrence Fong, Illah Nourbakhsh, Kerstin Dautenhahn Summarized by: Mehwish Alam 1.1 Social Robots: Definition: Social robots are

More information

CS494/594: Software for Intelligent Robotics

CS494/594: Software for Intelligent Robotics CS494/594: Software for Intelligent Robotics Spring 2007 Tuesday/Thursday 11:10 12:25 Instructor: Dr. Lynne E. Parker TA: Rasko Pjesivac Outline Overview syllabus and class policies Introduction to class:

More information

Catholijn M. Jonker and Jan Treur Vrije Universiteit Amsterdam, Department of Artificial Intelligence, Amsterdam, The Netherlands

Catholijn M. Jonker and Jan Treur Vrije Universiteit Amsterdam, Department of Artificial Intelligence, Amsterdam, The Netherlands INTELLIGENT AGENTS Catholijn M. Jonker and Jan Treur Vrije Universiteit Amsterdam, Department of Artificial Intelligence, Amsterdam, The Netherlands Keywords: Intelligent agent, Website, Electronic Commerce

More information

Industry 4.0: the new challenge for the Italian textile machinery industry

Industry 4.0: the new challenge for the Italian textile machinery industry Industry 4.0: the new challenge for the Italian textile machinery industry Executive Summary June 2017 by Contacts: Economics & Press Office Ph: +39 02 4693611 email: economics-press@acimit.it ACIMIT has

More information

Overview Agents, environments, typical components

Overview Agents, environments, typical components Overview Agents, environments, typical components CSC752 Autonomous Robotic Systems Ubbo Visser Department of Computer Science University of Miami January 23, 2017 Outline 1 Autonomous robots 2 Agents

More information

Introduction to Artificial Intelligence. Department of Electronic Engineering 2k10 Session - Artificial Intelligence

Introduction to Artificial Intelligence. Department of Electronic Engineering 2k10 Session - Artificial Intelligence Introduction to Artificial Intelligence What is Intelligence??? Intelligence is the ability to learn about, to learn from, to understand about, and interact with one s environment. Intelligence is the

More information

Development and Integration of Artificial Intelligence Technologies for Innovation Acceleration

Development and Integration of Artificial Intelligence Technologies for Innovation Acceleration Development and Integration of Artificial Intelligence Technologies for Innovation Acceleration Research Supervisor: Minoru Etoh (Professor, Open and Transdisciplinary Research Initiatives, Osaka University)

More information

A MARINE FAULTS TOLERANT CONTROL SYSTEM BASED ON INTELLIGENT MULTI-AGENTS

A MARINE FAULTS TOLERANT CONTROL SYSTEM BASED ON INTELLIGENT MULTI-AGENTS A MARINE FAULTS TOLERANT CONTROL SYSTEM BASED ON INTELLIGENT MULTI-AGENTS Tianhao Tang and Gang Yao Department of Electrical & Control Engineering, Shanghai Maritime University 1550 Pudong Road, Shanghai,

More information

Glossary of terms. Short explanation

Glossary of terms. Short explanation Glossary Concept Module. Video Short explanation Abstraction 2.4 Capturing the essence of the behavior of interest (getting a model or representation) Action in the control Derivative 4.2 The control signal

More information

Artificial Intelligence: Implications for Autonomous Weapons. Stuart Russell University of California, Berkeley

Artificial Intelligence: Implications for Autonomous Weapons. Stuart Russell University of California, Berkeley Artificial Intelligence: Implications for Autonomous Weapons Stuart Russell University of California, Berkeley Outline Remit [etc] AI in the context of autonomous weapons State of the Art Likely future

More information

Challenges to human dignity from developments in AI

Challenges to human dignity from developments in AI Challenges to human dignity from developments in AI Thomas G. Dietterich Distinguished Professor (Emeritus) Oregon State University Corvallis, OR USA Outline What is Artificial Intelligence? Near-Term

More information

Appendices master s degree programme Artificial Intelligence

Appendices master s degree programme Artificial Intelligence Appendices master s degree programme Artificial Intelligence 2015-2016 Appendix I Teaching outcomes of the degree programme (art. 1.3) 1. The master demonstrates knowledge, understanding and the ability

More information

Planning in autonomous mobile robotics

Planning in autonomous mobile robotics Sistemi Intelligenti Corso di Laurea in Informatica, A.A. 2017-2018 Università degli Studi di Milano Planning in autonomous mobile robotics Nicola Basilico Dipartimento di Informatica Via Comelico 39/41-20135

More information

Introduction: What are the agents?

Introduction: What are the agents? Introduction: What are the agents? Roope Raisamo (rr@cs.uta.fi) Department of Computer Sciences University of Tampere http://www.cs.uta.fi/sat/ Definitions of agents The concept of agent has been used

More information

Knowledge Enhanced Electronic Logic for Embedded Intelligence

Knowledge Enhanced Electronic Logic for Embedded Intelligence The Problem Knowledge Enhanced Electronic Logic for Embedded Intelligence Systems (military, network, security, medical, transportation ) are getting more and more complex. In future systems, assets will

More information

On the use of the Goal-Oriented Paradigm for System Design and Law Compliance Reasoning

On the use of the Goal-Oriented Paradigm for System Design and Law Compliance Reasoning On the use of the Goal-Oriented Paradigm for System Design and Law Compliance Reasoning Mirko Morandini 1, Luca Sabatucci 1, Alberto Siena 1, John Mylopoulos 2, Loris Penserini 1, Anna Perini 1, and Angelo

More information

Master Artificial Intelligence

Master Artificial Intelligence Master Artificial Intelligence Appendix I Teaching outcomes of the degree programme (art. 1.3) 1. The master demonstrates knowledge, understanding and the ability to evaluate, analyze and interpret relevant

More information

Cognitive robots and emotional intelligence Cloud robotics Ethical, legal and social issues of robotic Construction robots Human activities in many

Cognitive robots and emotional intelligence Cloud robotics Ethical, legal and social issues of robotic Construction robots Human activities in many Preface The jubilee 25th International Conference on Robotics in Alpe-Adria-Danube Region, RAAD 2016 was held in the conference centre of the Best Western Hotel M, Belgrade, Serbia, from 30 June to 2 July

More information

Assessing the Welfare of Farm Animals

Assessing the Welfare of Farm Animals Assessing the Welfare of Farm Animals Part 1. Part 2. Review Development and Implementation of a Unified field Index (UFI) February 2013 Drewe Ferguson 1, Ian Colditz 1, Teresa Collins 2, Lindsay Matthews

More information

Engineering Scenarios for the Reinforcement of Global Business Intelligence:

Engineering Scenarios for the Reinforcement of Global Business Intelligence: BIAS FAST ANIPLA INTERNATIONAL CONFERENCE - AUTOMATION WITHIN GLOBAL SCENARIOS, Milan Fair Quarters, 19-20-21 November 2002 Socio-Cognitive Engineering Scenarios for the Reinforcement of Global Business

More information

COMP5121 Mobile Robots

COMP5121 Mobile Robots COMP5121 Mobile Robots Foundations Dr. Mario Gongora mgongora@dmu.ac.uk Overview Basics agents, simulation and intelligence Robots components tasks general purpose robots? Environments structured unstructured

More information

CS 730/830: Intro AI. Prof. Wheeler Ruml. TA Bence Cserna. Thinking inside the box. 5 handouts: course info, project info, schedule, slides, asst 1

CS 730/830: Intro AI. Prof. Wheeler Ruml. TA Bence Cserna. Thinking inside the box. 5 handouts: course info, project info, schedule, slides, asst 1 CS 730/830: Intro AI Prof. Wheeler Ruml TA Bence Cserna Thinking inside the box. 5 handouts: course info, project info, schedule, slides, asst 1 Wheeler Ruml (UNH) Lecture 1, CS 730 1 / 23 My Definition

More information

Assignment 1 IN5480: interaction with AI s

Assignment 1 IN5480: interaction with AI s Assignment 1 IN5480: interaction with AI s Artificial Intelligence definitions 1. Artificial intelligence (AI) is an area of computer science that emphasizes the creation of intelligent machines that work

More information

Evolving Robot Empathy through the Generation of Artificial Pain in an Adaptive Self-Awareness Framework for Human-Robot Collaborative Tasks

Evolving Robot Empathy through the Generation of Artificial Pain in an Adaptive Self-Awareness Framework for Human-Robot Collaborative Tasks Evolving Robot Empathy through the Generation of Artificial Pain in an Adaptive Self-Awareness Framework for Human-Robot Collaborative Tasks Muh Anshar Faculty of Engineering and Information Technology

More information

The robots are coming, but the humans aren't leaving

The robots are coming, but the humans aren't leaving The robots are coming, but the humans aren't leaving Fernando Aguirre de Oliveira Júnior Partner Services, Outsourcing & Automation Advisory May, 2017 Call it what you want, digital labor is no longer

More information

Artificial Intelligence: Implications for Autonomous Weapons. Stuart Russell University of California, Berkeley

Artificial Intelligence: Implications for Autonomous Weapons. Stuart Russell University of California, Berkeley Artificial Intelligence: Implications for Autonomous Weapons Stuart Russell University of California, Berkeley Outline AI and autonomy State of the art Likely future developments Conclusions What is AI?

More information

THE MECA SAPIENS ARCHITECTURE

THE MECA SAPIENS ARCHITECTURE THE MECA SAPIENS ARCHITECTURE J E Tardy Systems Analyst Sysjet inc. jetardy@sysjet.com The Meca Sapiens Architecture describes how to transform autonomous agents into conscious synthetic entities. It follows

More information

Ethics in Artificial Intelligence

Ethics in Artificial Intelligence Ethics in Artificial Intelligence By Jugal Kalita, PhD Professor of Computer Science Daniels Fund Ethics Initiative Ethics Fellow Sponsored by: This material was developed by Jugal Kalita, MPA, and is

More information

Cognitive Robotics 2017/2018

Cognitive Robotics 2017/2018 Cognitive Robotics 2017/2018 Course Introduction Matteo Matteucci matteo.matteucci@polimi.it Artificial Intelligence and Robotics Lab - Politecnico di Milano About me and my lectures Lectures given by

More information

Using Dynamic Capability Evaluation to Organize a Team of Cooperative, Autonomous Robots

Using Dynamic Capability Evaluation to Organize a Team of Cooperative, Autonomous Robots Using Dynamic Capability Evaluation to Organize a Team of Cooperative, Autonomous Robots Eric Matson Scott DeLoach Multi-agent and Cooperative Robotics Laboratory Department of Computing and Information

More information

MACHINE EXECUTION OF HUMAN INTENTIONS. Mark Waser Digital Wisdom Institute

MACHINE EXECUTION OF HUMAN INTENTIONS. Mark Waser Digital Wisdom Institute MACHINE EXECUTION OF HUMAN INTENTIONS Mark Waser Digital Wisdom Institute MWaser@DigitalWisdomInstitute.org TEAMWORK To be truly useful, robotic systems must be designed with their human users in mind;

More information

TRB Workshop on the Future of Road Vehicle Automation

TRB Workshop on the Future of Road Vehicle Automation TRB Workshop on the Future of Road Vehicle Automation Steven E. Shladover University of California PATH Program ITFVHA Meeting, Vienna October 21, 2012 1 Outline TRB background Workshop organization Automation

More information

AGENT PLATFORM FOR ROBOT CONTROL IN REAL-TIME DYNAMIC ENVIRONMENTS. Nuno Sousa Eugénio Oliveira

AGENT PLATFORM FOR ROBOT CONTROL IN REAL-TIME DYNAMIC ENVIRONMENTS. Nuno Sousa Eugénio Oliveira AGENT PLATFORM FOR ROBOT CONTROL IN REAL-TIME DYNAMIC ENVIRONMENTS Nuno Sousa Eugénio Oliveira Faculdade de Egenharia da Universidade do Porto, Portugal Abstract: This paper describes a platform that enables

More information

The Behavior Evolving Model and Application of Virtual Robots

The Behavior Evolving Model and Application of Virtual Robots The Behavior Evolving Model and Application of Virtual Robots Suchul Hwang Kyungdal Cho V. Scott Gordon Inha Tech. College Inha Tech College CSUS, Sacramento 253 Yonghyundong Namku 253 Yonghyundong Namku

More information

Key elements of meaningful human control

Key elements of meaningful human control Key elements of meaningful human control BACKGROUND PAPER APRIL 2016 Background paper to comments prepared by Richard Moyes, Managing Partner, Article 36, for the Convention on Certain Conventional Weapons

More information

UNIT-III LIFE-CYCLE PHASES

UNIT-III LIFE-CYCLE PHASES INTRODUCTION: UNIT-III LIFE-CYCLE PHASES - If there is a well defined separation between research and development activities and production activities then the software is said to be in successful development

More information

ES 492: SCIENCE IN THE MOVIES

ES 492: SCIENCE IN THE MOVIES UNIVERSITY OF SOUTH ALABAMA ES 492: SCIENCE IN THE MOVIES LECTURE 5: ROBOTICS AND AI PRESENTER: HANNAH BECTON TODAY'S AGENDA 1. Robotics and Real-Time Systems 2. Reacting to the environment around them

More information

Robots Autonomy: Some Technical Challenges

Robots Autonomy: Some Technical Challenges Foundations of Autonomy and Its (Cyber) Threats: From Individuals to Interdependence: Papers from the 2015 AAAI Spring Symposium Robots Autonomy: Some Technical Challenges Catherine Tessier ONERA, Toulouse,

More information

The challenges raised by increasingly autonomous weapons

The challenges raised by increasingly autonomous weapons The challenges raised by increasingly autonomous weapons Statement 24 JUNE 2014. On June 24, 2014, the ICRC VicePresident, Ms Christine Beerli, opened a panel discussion on The Challenges of Increasingly

More information

Emerging biotechnologies. Nuffield Council on Bioethics Response from The Royal Academy of Engineering

Emerging biotechnologies. Nuffield Council on Bioethics Response from The Royal Academy of Engineering Emerging biotechnologies Nuffield Council on Bioethics Response from The Royal Academy of Engineering June 2011 1. How would you define an emerging technology and an emerging biotechnology? How have these

More information

Cognitive Robotics 2016/2017

Cognitive Robotics 2016/2017 Cognitive Robotics 2016/2017 Course Introduction Matteo Matteucci matteo.matteucci@polimi.it Artificial Intelligence and Robotics Lab - Politecnico di Milano About me and my lectures Lectures given by

More information

Should AI be Granted Rights?

Should AI be Granted Rights? Lv 1 Donald Lv 05/25/2018 Should AI be Granted Rights? Ask anyone who is conscious and self-aware if they are conscious, they will say yes. Ask any self-aware, conscious human what consciousness is, they

More information

Social Norms in Artefact Use: Proper Functions and Action Theory

Social Norms in Artefact Use: Proper Functions and Action Theory Scheele, Social Norms in Artefact Use /65 Social Norms in Artefact Use: Proper Functions and Action Theory Marcel Scheele Abstract: The use of artefacts by human agents is subject to human standards or

More information

Interacting Agent Based Systems

Interacting Agent Based Systems Interacting Agent Based Systems Dean Petters 1. What is an agent? 2. Architectures for agents 3. Emailing agents 4. Computer games 5. Robotics 6. Sociological simulations 7. Psychological simulations What

More information

USING A FUZZY LOGIC CONTROL SYSTEM FOR AN XPILOT COMBAT AGENT ANDREW HUBLEY AND GARY PARKER

USING A FUZZY LOGIC CONTROL SYSTEM FOR AN XPILOT COMBAT AGENT ANDREW HUBLEY AND GARY PARKER World Automation Congress 21 TSI Press. USING A FUZZY LOGIC CONTROL SYSTEM FOR AN XPILOT COMBAT AGENT ANDREW HUBLEY AND GARY PARKER Department of Computer Science Connecticut College New London, CT {ahubley,

More information

Towards affordance based human-system interaction based on cyber-physical systems

Towards affordance based human-system interaction based on cyber-physical systems Towards affordance based human-system interaction based on cyber-physical systems Zoltán Rusák 1, Imre Horváth 1, Yuemin Hou 2, Ji Lihong 2 1 Faculty of Industrial Design Engineering, Delft University

More information

Definitions and Application Areas

Definitions and Application Areas Definitions and Application Areas Ambient intelligence: technology and design Fulvio Corno Politecnico di Torino, 2013/2014 http://praxis.cs.usyd.edu.au/~peterris Summary Definition(s) Application areas

More information

ICT4 Manuf. Competence Center

ICT4 Manuf. Competence Center ICT4 Manuf. Competence Center Prof. Yacine Ouzrout University Lumiere Lyon 2 ICT 4 Manufacturing Competence Center AI and CPS for Manufacturing Robot software testing Development of software technologies

More information

STRATEGO EXPERT SYSTEM SHELL

STRATEGO EXPERT SYSTEM SHELL STRATEGO EXPERT SYSTEM SHELL Casper Treijtel and Leon Rothkrantz Faculty of Information Technology and Systems Delft University of Technology Mekelweg 4 2628 CD Delft University of Technology E-mail: L.J.M.Rothkrantz@cs.tudelft.nl

More information

Development of an Intelligent Agent based Manufacturing System

Development of an Intelligent Agent based Manufacturing System Development of an Intelligent Agent based Manufacturing System Hong-Seok Park 1 and Ngoc-Hien Tran 2 1 School of Mechanical and Automotive Engineering, University of Ulsan, Ulsan 680-749, South Korea 2

More information

Executive Summary Industry s Responsibility in Promoting Responsible Development and Use:

Executive Summary Industry s Responsibility in Promoting Responsible Development and Use: Executive Summary Artificial Intelligence (AI) is a suite of technologies capable of learning, reasoning, adapting, and performing tasks in ways inspired by the human mind. With access to data and the

More information

What drives energy consumers?

What drives energy consumers? faculty of behavioural and social sciences psychology 14-Oct-17 1 14-Oct-17 1 What drives energy consumers? Motivations behind sustainable energy behaviours and beliefs Thijs Bouman, PhD t.bouman@rug.nl

More information

Don t shoot until you see the whites of their eyes. Combat Policies for Unmanned Systems

Don t shoot until you see the whites of their eyes. Combat Policies for Unmanned Systems Don t shoot until you see the whites of their eyes Combat Policies for Unmanned Systems British troops given sunglasses before battle. This confuses colonial troops who do not see the whites of their eyes.

More information

Application of AI Technology to Industrial Revolution

Application of AI Technology to Industrial Revolution Application of AI Technology to Industrial Revolution By Dr. Suchai Thanawastien 1. What is AI? Artificial Intelligence or AI is a branch of computer science that tries to emulate the capabilities of learning,

More information

Committee on the Internal Market and Consumer Protection. of the Committee on the Internal Market and Consumer Protection

Committee on the Internal Market and Consumer Protection. of the Committee on the Internal Market and Consumer Protection European Parliament 2014-2019 Committee on the Internal Market and Consumer Protection 2018/2088(INI) 7.12.2018 OPINION of the Committee on the Internal Market and Consumer Protection for the Committee

More information

Neuro-Fuzzy and Soft Computing: Fuzzy Sets. Chapter 1 of Neuro-Fuzzy and Soft Computing by Jang, Sun and Mizutani

Neuro-Fuzzy and Soft Computing: Fuzzy Sets. Chapter 1 of Neuro-Fuzzy and Soft Computing by Jang, Sun and Mizutani Chapter 1 of Neuro-Fuzzy and Soft Computing by Jang, Sun and Mizutani Outline Introduction Soft Computing (SC) vs. Conventional Artificial Intelligence (AI) Neuro-Fuzzy (NF) and SC Characteristics 2 Introduction

More information

A DIALOGUE-BASED APPROACH TO MULTI-ROBOT TEAM CONTROL

A DIALOGUE-BASED APPROACH TO MULTI-ROBOT TEAM CONTROL A DIALOGUE-BASED APPROACH TO MULTI-ROBOT TEAM CONTROL Nathanael Chambers, James Allen, Lucian Galescu and Hyuckchul Jung Institute for Human and Machine Cognition 40 S. Alcaniz Street Pensacola, FL 32502

More information

One computer theorist s view of cognitive systems

One computer theorist s view of cognitive systems One computer theorist s view of cognitive systems Jiri Wiedermann Institute of Computer Science, Prague Academy of Sciences of the Czech Republic Partially supported by grant 1ET100300419 Outline 1. The

More information

SECOND YEAR PROJECT SUMMARY

SECOND YEAR PROJECT SUMMARY SECOND YEAR PROJECT SUMMARY Grant Agreement number: 215805 Project acronym: Project title: CHRIS Cooperative Human Robot Interaction Systems Period covered: from 01 March 2009 to 28 Feb 2010 Contact Details

More information

A future for agent programming?

A future for agent programming? A future for agent programming? Brian Logan! School of Computer Science University of Nottingham, UK This should be our time increasing interest in and use of autonomous intelligent systems (cars, UAVs,

More information

8 Executive summary. Intelligent Software Agent Technologies: Turning a Privacy Threat into a Privacy Protector

8 Executive summary. Intelligent Software Agent Technologies: Turning a Privacy Threat into a Privacy Protector 8 Executive summary Intelligent Software Agent Technologies: Turning a Privacy Threat into a Privacy Protector The hectic demands of modern lifestyles, combined with the growing power of information technology,

More information

II. ROBOT SYSTEMS ENGINEERING

II. ROBOT SYSTEMS ENGINEERING Mobile Robots: Successes and Challenges in Artificial Intelligence Jitendra Joshi (Research Scholar), Keshav Dev Gupta (Assistant Professor), Nidhi Sharma (Assistant Professor), Kinnari Jangid (Assistant

More information

Agents for Serious gaming: Challenges and Opportunities

Agents for Serious gaming: Challenges and Opportunities Agents for Serious gaming: Challenges and Opportunities Frank Dignum Utrecht University Contents Agents for games? Connecting agent technology and game technology Challenges Infrastructural stance Conceptual

More information

Stanford Center for AI Safety

Stanford Center for AI Safety Stanford Center for AI Safety Clark Barrett, David L. Dill, Mykel J. Kochenderfer, Dorsa Sadigh 1 Introduction Software-based systems play important roles in many areas of modern life, including manufacturing,

More information

The use of armed drones must comply with laws

The use of armed drones must comply with laws The use of armed drones must comply with laws Interview 10 MAY 2013. The use of drones in armed conflicts has increased significantly in recent years, raising humanitarian, legal and other concerns. Peter

More information

CPS331 Lecture: Agents and Robots last revised November 18, 2016

CPS331 Lecture: Agents and Robots last revised November 18, 2016 CPS331 Lecture: Agents and Robots last revised November 18, 2016 Objectives: 1. To introduce the basic notion of an agent 2. To discuss various types of agents 3. To introduce the subsumption architecture

More information

Practical and Ethical Implications of Artificial General Intelligence (AGI)

Practical and Ethical Implications of Artificial General Intelligence (AGI) Practical and Ethical Implications of Artificial General Intelligence (AGI) Thomas Metzinger Gutenberg Research College Philosophisches Seminar Johannes Gutenberg-Universität Mainz D-55099 Mainz Frankfurt

More information

A Conceptual Modeling Method to Use Agents in Systems Analysis

A Conceptual Modeling Method to Use Agents in Systems Analysis A Conceptual Modeling Method to Use Agents in Systems Analysis Kafui Monu 1 1 University of British Columbia, Sauder School of Business, 2053 Main Mall, Vancouver BC, Canada {Kafui Monu kafui.monu@sauder.ubc.ca}

More information

Elements of Artificial Intelligence and Expert Systems

Elements of Artificial Intelligence and Expert Systems Elements of Artificial Intelligence and Expert Systems Master in Data Science for Economics, Business & Finance Nicola Basilico Dipartimento di Informatica Via Comelico 39/41-20135 Milano (MI) Ufficio

More information

Outline. What is AI? A brief history of AI State of the art

Outline. What is AI? A brief history of AI State of the art Introduction to AI Outline What is AI? A brief history of AI State of the art What is AI? AI is a branch of CS with connections to psychology, linguistics, economics, Goal make artificial systems solve

More information

Why we need to know what AI is. Overview. Artificial Intelligence is it finally arriving?

Why we need to know what AI is. Overview. Artificial Intelligence is it finally arriving? Artificial Intelligence is it finally arriving? Artificial Intelligence is it finally arriving? Are we nearly there yet? Leslie Smith Computing Science and Mathematics University of Stirling May 2 2013.

More information

A SURVEY OF SOCIALLY INTERACTIVE ROBOTS

A SURVEY OF SOCIALLY INTERACTIVE ROBOTS A SURVEY OF SOCIALLY INTERACTIVE ROBOTS Terrence Fong, Illah Nourbakhsh, Kerstin Dautenhahn Presented By: Mehwish Alam INTRODUCTION History of Social Robots Social Robots Socially Interactive Robots Why

More information

CYCLIC GENETIC ALGORITHMS FOR EVOLVING MULTI-LOOP CONTROL PROGRAMS

CYCLIC GENETIC ALGORITHMS FOR EVOLVING MULTI-LOOP CONTROL PROGRAMS CYCLIC GENETIC ALGORITHMS FOR EVOLVING MULTI-LOOP CONTROL PROGRAMS GARY B. PARKER, CONNECTICUT COLLEGE, USA, parker@conncoll.edu IVO I. PARASHKEVOV, CONNECTICUT COLLEGE, USA, iipar@conncoll.edu H. JOSEPH

More information

Norm creation, spreading and emergence: A survey of simulation models of norms in multi-agent systems

Norm creation, spreading and emergence: A survey of simulation models of norms in multi-agent systems Multiagent and Grid Systems An International Journal 7 (2011) 21 54 21 DOI 10.3233/MGS-2011-0167 IOS Press Norm creation, spreading and emergence: A survey of simulation models of norms in multi-agent

More information

Appendices master s degree programme Human Machine Communication

Appendices master s degree programme Human Machine Communication Appendices master s degree programme Human Machine Communication 2015-2016 Appendix I Teaching outcomes of the degree programme (art. 1.3) 1. The master demonstrates knowledge, understanding and the ability

More information

Eleonora Escalante, MBA - MEng Strategic Corporate Advisory Services Creating Corporate Integral Value (CIV)

Eleonora Escalante, MBA - MEng Strategic Corporate Advisory Services Creating Corporate Integral Value (CIV) Eleonora Escalante, MBA - MEng Strategic Corporate Advisory Services Creating Corporate Integral Value (CIV) Leg 7. Trends in Competitive Advantage. 21 March 2018 Drawing Source: Edx, Delft University.

More information

ULS Systems Research Roadmap

ULS Systems Research Roadmap ULS Systems Research Roadmap Software Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213 2008 Carnegie Mellon University Roadmap Intent Help evaluate the ULS systems relevance of existing

More information

CSC384 Intro to Artificial Intelligence* *The following slides are based on Fahiem Bacchus course lecture notes.

CSC384 Intro to Artificial Intelligence* *The following slides are based on Fahiem Bacchus course lecture notes. CSC384 Intro to Artificial Intelligence* *The following slides are based on Fahiem Bacchus course lecture notes. Artificial Intelligence A branch of Computer Science. Examines how we can achieve intelligent

More information

CPE/CSC 580: Intelligent Agents

CPE/CSC 580: Intelligent Agents CPE/CSC 580: Intelligent Agents Franz J. Kurfess Computer Science Department California Polytechnic State University San Luis Obispo, CA, U.S.A. 1 Course Overview Introduction Intelligent Agent, Multi-Agent

More information

in the New Zealand Curriculum

in the New Zealand Curriculum Technology in the New Zealand Curriculum We ve revised the Technology learning area to strengthen the positioning of digital technologies in the New Zealand Curriculum. The goal of this change is to ensure

More information

Mobile Tourist Guide Services with Software Agents

Mobile Tourist Guide Services with Software Agents Mobile Tourist Guide Services with Software Agents Juan Pavón 1, Juan M. Corchado 2, Jorge J. Gómez-Sanz 1 and Luis F. Castillo Ossa 2 1 Dep. Sistemas Informáticos y Programación Universidad Complutense

More information

Radio Frequency Management and Cognitive Engine Initial Results of the C-PMSE Project

Radio Frequency Management and Cognitive Engine Initial Results of the C-PMSE Project Radio Frequency Management and Cognitive Engine Initial Results of the C-PMSE Project Leonid Tomaschpolski Institute of Communications Technology Leibniz Universität Hannover December 7, 2011 C-PMSE System

More information

Distributed Robotics: Building an environment for digital cooperation. Artificial Intelligence series

Distributed Robotics: Building an environment for digital cooperation. Artificial Intelligence series Distributed Robotics: Building an environment for digital cooperation Artificial Intelligence series Distributed Robotics March 2018 02 From programmable machines to intelligent agents Robots, from the

More information

MULTI-LAYERED HYBRID ARCHITECTURE TO SOLVE COMPLEX TASKS OF AN AUTONOMOUS MOBILE ROBOT

MULTI-LAYERED HYBRID ARCHITECTURE TO SOLVE COMPLEX TASKS OF AN AUTONOMOUS MOBILE ROBOT MULTI-LAYERED HYBRID ARCHITECTURE TO SOLVE COMPLEX TASKS OF AN AUTONOMOUS MOBILE ROBOT F. TIECHE, C. FACCHINETTI and H. HUGLI Institute of Microtechnology, University of Neuchâtel, Rue de Tivoli 28, CH-2003

More information

Responsible AI & National AI Strategies

Responsible AI & National AI Strategies Responsible AI & National AI Strategies European Union Commission Dr. Anand S. Rao Global Artificial Intelligence Lead Today s discussion 01 02 Opportunities in Artificial Intelligence Risks of Artificial

More information

CS594, Section 30682:

CS594, Section 30682: CS594, Section 30682: Distributed Intelligence in Autonomous Robotics Spring 2003 Tuesday/Thursday 11:10 12:25 http://www.cs.utk.edu/~parker/courses/cs594-spring03 Instructor: Dr. Lynne E. Parker ½ TA:

More information

The ALA and ARL Position on Access and Digital Preservation: A Response to the Section 108 Study Group

The ALA and ARL Position on Access and Digital Preservation: A Response to the Section 108 Study Group The ALA and ARL Position on Access and Digital Preservation: A Response to the Section 108 Study Group Introduction In response to issues raised by initiatives such as the National Digital Information

More information

AI for Autonomous Ships Challenges in Design and Validation

AI for Autonomous Ships Challenges in Design and Validation VTT TECHNICAL RESEARCH CENTRE OF FINLAND LTD AI for Autonomous Ships Challenges in Design and Validation ISSAV 2018 Eetu Heikkilä Autonomous ships - activities in VTT Autonomous ship systems Unmanned engine

More information

AI AND SAFETY: 6 RULES FOR REIMAGINING JOBS IN THE AGE OF SMART MACHINES H. JAMES WILSON MANAGING DIRECTOR, ACCENTURE

AI AND SAFETY: 6 RULES FOR REIMAGINING JOBS IN THE AGE OF SMART MACHINES H. JAMES WILSON MANAGING DIRECTOR, ACCENTURE AI AND SAFETY: 6 RULES FOR REIMAGINING JOBS IN THE AGE OF SMART MACHINES H. JAMES WILSON MANAGING DIRECTOR, ACCENTURE CO-AUTHOR, HUMAN + MACHINE: REIMAGINING WORK IN THE AGE OF AI (HARVARD BUSINESS REVIEW

More information

Dipartimento di Elettronica Informazione e Bioingegneria Robotics

Dipartimento di Elettronica Informazione e Bioingegneria Robotics Dipartimento di Elettronica Informazione e Bioingegneria Robotics Behavioral robotics @ 2014 Behaviorism behave is what organisms do Behaviorism is built on this assumption, and its goal is to promote

More information

By Marek Perkowski ECE Seminar, Friday January 26, 2001

By Marek Perkowski ECE Seminar, Friday January 26, 2001 By Marek Perkowski ECE Seminar, Friday January 26, 2001 Why people build Humanoid Robots? Challenge - it is difficult Money - Hollywood, Brooks Fame -?? Everybody? To build future gods - De Garis Forthcoming

More information