Experiments with wave, using low-cost amplitude modulated ultrasonic techniques

Size: px
Start display at page:

Download "Experiments with wave, using low-cost amplitude modulated ultrasonic techniques"

Transcription

1 Experiments with wave, using low-cost amplitude modulated ultrasonic techniques Motivation: It is usually difficult to demonstrate the wave nature of light. The wavelength of visible light is pretty small, therefore one needs objects of very small dimensions (optical gratings, etc.) to show the wave nature of light. Moreover, there is also a didactical challenge that usually the pupils are not familiar even with the wave phenomena! With other words, we would like to demonstrate the wave nature of light with phenomena that they do not know. The main idea of this workshop is to demonstrate wave phenomena with waves that have macroscopic wavelengths; therefore macroscopic objects (slits, gratings etc.) can be used. As soon as the pupils understand what these wave phenomana are, they will better understand what they see when we perform wave-experiments with light. The waves used in this workshop are 40 khz ultrasound waves, which have about 8,5 mm wavelength. 1

2 Low-cost ultrasonic devices Today the ultrasonic devices are in the home, industrial and medicinal applications. These devices use the low-cost (1 EUR) 40 khz piezoelectric ultrasound transducers (Figure 1). Figure 1. Ultrasonic Sensor Distance Measuring Module for Arduino They are used in remote controls, in parking sensors for cars, or in materials control. Despite of it s low-cost it can be well used for studying waves, because ultrasound has macroscopic size wavelength of 8.5 mm at 25 C. In this workshop, we describe how 40 khz piezoelectric ultrasound transducers can be used to study wave phenomena. We give hints for general usage and tips for individual experiments as well. In this workshop we will conduct wave experiments with macroscopic wavelengths, using the amplitude modulation technique for the purpose of detection by the ear. We use 2 frequencies in these experiments. We need ultrasound (40 khz) carrier signal for the optimum wavelengths (about 8.5 mm), and the 440 Hz modulating frequency so we can use our ears as inexpensive sensor (detector). We try to present easily reproducible sample results for all. In my transmitter we will use 40 KHz ultrasound what allows us to use clearly visible slits, and other diffraction elements. The dispersion elements used during the experiments can be made from paper with laser cutting techniques or even from a pair of scissors. This technique allows us to examine the wave phenomenon easily which would be hard to do otherwise with e.g. light, because of the short wavelength. 2

3 What is the amplitude modulation? Amplitude Modulation (AM) is the modulation technique used in electronic communication. In the amplitude modulation, the amplitude of the carrier wave is proportional to the waveform of the modulation signal. This technique was used in early radio transmitter stations. Modulated sound Figure 2. The operating principle of the transmitter Sound Figure 3. The operating principle of the receiver In the next pages, we will show You some sample experiments. 3

4 1. Lloyd's mirror experiment With the help of the Lloyd's mirror experiment you can observe the effect of interference between a sound wave travelling through direct path A,C and a sound wave travelling through indirect (reflected) ABC path. The reflected sound wave interferes with the coherent direct sound from the source. Figure 4. Sketch of the Lloyd's mirror experiment The amplitude of the received signal on the detector depends on the x. The path difference between AC and ABC path: s = 2 d 2 + x 2 2 d Because the sound waves on the mirror get the phase (180 ) change when they reflect, the criterion of the constructive interference: s=(2 k + 1) λ 2 And the destructive interference s=2 k λ 2 Type here results of your measurements! type x [mm] d [mm] s λ constructive 1. x 1 : s 1 1 constructive 2. x 2 : s 2 2 constructive 3. x 3 : s 3 3 destructive 1. x 4 : s 4 4 destructive 2. x 5 : s 5 5 destructive 3. x 6 : s 6 6 f=40 khz Average of the :.. Speed of sound: The mirror design for laser cutting can be downloaded from the following link 4

5 250 mv 200 mv 150 mv 100 mv 50 mv 0 mv 0 mm 20 mm 40 mm 60 mm 80 mm 100 mm Figure 5. U(x) diagram of Lloyd s 2. Ultrasound transmitted by a waveguide Figure 6. Sketch of the waveguide experiment It is known that the intensity of the sound waves decreases with the square of the distance! The range of audio-signal transmission can be increased by a waveguide [1]. In this way, a standing wave is set up inside the pipe. My waveguide is made from an electrical insulation tube. The length of this tube is 50 cm, and the diameter is about 1,5 cm. In this experiment we will use the hole in the cardboard mirror, with a diameter of 1.5 cm. 5

6 3. Young s double slit experiment in ultra sound range The basic version of this experiment is a coherent light source, such as a laser beam, which illuminates a plate pierced by two parallel slits, and the light passing through the slits is observed on a screen behind the plate. This experiment can be repeated with ultrasounds. The configuration of this experiment can be seen on the figure 6. To obtain constructive interference for a double slit, the path length s difference must be an integer multiple of the wavelength! Figure 7. Sketch of the Young s double slit experiment Type here results of your measurements! x:.. h:.. x:.. x:.. h:.. h:.. Figure 8. Detector signal as a function of x 6 d x λ = h λ:.. The slit design for laser cutting can be downloaded from the following link

7 4. Michelson-interferometer A semi-permeable mirror (A paper-fired grid with laser-cut technique, or a prototype universal PCB Breadboard d=1 mm holes) divides the ultrasonic wave into two partial packets which travels to right angles to each other (Figure 8.). They are subsequently reflected at different cardboard paper mirrors, one of (M1) which is fixed in position, and the other (M2) which can be displaced in the direction of the beam, before being reunited. Shifting the displaceable reflector changes the path length of the corresponding packet, so that super positioning of the reunited partial packets gives maximum and minimum of the alternating sound intensity according to the difference in the distance travelled. The wavelength of the ultrasound can be measured from these data. [2] It is interesting to note that the detection of the gravitational waves (LIGO experiment) is also based on this principle. However, they work with light. Figure 9. Michelson-interferometer We are measuring the places of the constructive interference. d is an distance between two peek. 2 d = λ f=40 khz Average of the :.. Speed of sound: The mirror design for laser cutting can be downloaded from the following link 7

8 5. Fresnel-zone plates A zone plate is a device used to focus light or other things which are exhibiting wave character [3]. So if an ultrasonic plane wave strikes a Fresnel zone plate, the intensity of the ultrasound is a function of the distance behind the plate. Very few tools can better illustrate the Huygens-Fresnel principle than the Fresnel Zone Plate. On the zone plate, opaque and transparent concentric rings follow each other. To get constructive interference at the focus, the zones should switch from opaque to transparent at radii where r n = n λ f + n2 λ 2 where n is an integer, λ is the wavelength of the ultrasound, the zone plate is meant to focus and f is the distance from the center of the zone plate to the focus. 4 Figure 10. Calculate the place of constructive interference [4] The length of the road traveled by the ring of the r n radius: f + n λ 2 Constructive interference: r n 2 + f 2 = (f + n λ 2 ) 2 8

9 This way we can calculate the radius of the circles to be cut. In the next table you can see my calculated Fresnel zones when the frequency is 40 khz and the planned focal length is 5 cm. n R n [mm] 21 30,4 37,9 44,6 50,8 56,6 62,1 67,5 72,7 77,8 82,8 87,8 Figure 11. Detector on focus Measure the focal length of your lens! Measure the gain value in db! The lens design for laser cutting can be downloaded from the following link 9

10 After the experiments If you would like to repeat these experiments, we will help you to build up the transceiver, and design the diffraction elements. If you want to rebuild the transmitter you can use the next circuit diagram (Figure 12.). For more than one instance, it is worth using printed circuit technology, but if you build just a few instances it is worth using the wire wrapping technique. You only need a universal PCB, or a Breadboard and a creative student, who can place the electric components (figure 15). My simple AM (amplitude-modulated) transmitter circuit is based on a cheap NE556 (two NE555) timer IC. Figure 12. Circuit diagram of my ultrasonic transmitter The 40 khz carrier signal for the AM is generated by an IC U2. The U2 side of the NE 556 timer acts as an astable multivibrator. The vibration frequency of 40 khz can be set by P1. A 440 Hz audio signal is generated by the NE 556 circuit (U1). This signal modulates the carrier frequencies (40 khz). The modulated signal is generated by the transistor Q1. An external modulation sources can be also used. This signal can be connected to the audio by jack. The modulated signal is supplied to the piezoelectric transmitter (TR). [5] 10

11 The receiver circuit (figure 13.) consists of an ultrasound piezoelectric sensor which is resonant at 40 khz and tunes the receiver. [6] Figure 13. The receiver circuit The signal of the sensor is amplified by an inverting amplifier U3 (TL062) with a gain of near 100. The D1 diode demodulates the received AM signals. The demodulated signals can be connected to an active PC speaker system or an earphone. This audio signal can be perceived by the ear. The amplitude of the modulated signal can be measured objectively by a free computerized program called Vu Meter connected to the J1. You can also use the smartphone application LED VU meter sense the intensity of sound by an internal microphone. Figure 14. The Vu Meter program 11

12 Figure 15. The breadboard of the transmitter The design of PCB, Breadboard can be downloaded from the following link References [1] Mak Se-yuen Wave experiments using low-cost 40 khz ultrasonic transducers Department of Curriculum and Instruction, Faculty of Education, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR [2] Ultrasonic Michelson-Interferometer ( ) PHYWE catalogue page 81 [3] [4] Interferencia a hangok világában: Vitkóczi Fanni ELTE TTK Budapest Szakdolgozat [5] 40 khz Ultrasound Transmitter: [6] 40 khz Ultrasound AM Receiver: 12

Experiments with wave, using low-cost amplitude modulated ultrasonic techniques

Experiments with wave, using low-cost amplitude modulated ultrasonic techniques Experiments with wave, using low-cost amplitude modulated ultrasonic techniques 1 Low-cost ultrasonic devices Today the ultrasonic devices are in the home, industrial and medicinal applications. These

More information

R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad.

R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad. R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad. DEPARTMENT OF PHYSICS QUESTION BANK FOR SEMESTER III PAPER III OPTICS UNIT I: 1. MATRIX METHODS IN PARAXIAL OPTICS 2. ABERATIONS UNIT II

More information

PHY 431 Homework Set #5 Due Nov. 20 at the start of class

PHY 431 Homework Set #5 Due Nov. 20 at the start of class PHY 431 Homework Set #5 Due Nov. 0 at the start of class 1) Newton s rings (10%) The radius of curvature of the convex surface of a plano-convex lens is 30 cm. The lens is placed with its convex side down

More information

Interference and Diffraction of Microwaves

Interference and Diffraction of Microwaves Interference and Diffraction of Microwaves References: Equipment: Ford, Kenneth W., Classical and Modern Physics Vol2 Xerox College Publishing 1972 pp. 850-871. Pasco Instruction Manual and Experiment

More information

6 Experiment II: Law of Reflection

6 Experiment II: Law of Reflection Lab 6: Microwaves 3 Suggested Reading Refer to the relevant chapters, 1 Introduction Refer to Appendix D for photos of the apparatus This lab allows you to test the laws of reflection, refraction and diffraction

More information

Practice Problems for Chapter 25-26

Practice Problems for Chapter 25-26 Practice Problems for Chapter 25-26 1. What are coherent waves? 2. Describe diffraction grating 3. What are interference fringes? 4. What does monochromatic light mean? 5. What does the Rayleigh Criterion

More information

... frequency, f speed, v......

... frequency, f speed, v...... PhysicsAndMathsTutor.com 1 1. Define the terms wavelength, frequency and speed used to describe a progressive wave. wavelength, λ... frequency, f... speed, v... Hence derive the wave equation v = fλ which

More information

Chapter Wave Optics. MockTime.com. Ans: (d)

Chapter Wave Optics. MockTime.com. Ans: (d) Chapter Wave Optics Q1. Which one of the following phenomena is not explained by Huygen s construction of wave front? [1988] (a) Refraction Reflection Diffraction Origin of spectra Q2. Which of the following

More information

LOS 1 LASER OPTICS SET

LOS 1 LASER OPTICS SET LOS 1 LASER OPTICS SET Contents 1 Introduction 3 2 Light interference 5 2.1 Light interference on a thin glass plate 6 2.2 Michelson s interferometer 7 3 Light diffraction 13 3.1 Light diffraction on a

More information

Copyright 2009 Pearson Education, Inc.

Copyright 2009 Pearson Education, Inc. Chapter 16 Sound 16-1 Characteristics of Sound Sound can travel through h any kind of matter, but not through a vacuum. The speed of sound is different in different materials; in general, it is slowest

More information

Section 1: Sound. Sound and Light Section 1

Section 1: Sound. Sound and Light Section 1 Sound and Light Section 1 Section 1: Sound Preview Key Ideas Bellringer Properties of Sound Sound Intensity and Decibel Level Musical Instruments Hearing and the Ear The Ear Ultrasound and Sonar Sound

More information

Physical Optics. Diffraction.

Physical Optics. Diffraction. Physical Optics. Diffraction. Interference Young s interference experiment Thin films Coherence and incoherence Michelson interferometer Wave-like characteristics of light Huygens-Fresnel principle Interference.

More information

Imaging Systems Laboratory II. Laboratory 8: The Michelson Interferometer / Diffraction April 30 & May 02, 2002

Imaging Systems Laboratory II. Laboratory 8: The Michelson Interferometer / Diffraction April 30 & May 02, 2002 1051-232 Imaging Systems Laboratory II Laboratory 8: The Michelson Interferometer / Diffraction April 30 & May 02, 2002 Abstract. In the last lab, you saw that coherent light from two different locations

More information

Exercise 8: Interference and diffraction

Exercise 8: Interference and diffraction Physics 223 Name: Exercise 8: Interference and diffraction 1. In a two-slit Young s interference experiment, the aperture (the mask with the two slits) to screen distance is 2.0 m, and a red light of wavelength

More information

Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: Signature:

Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: Signature: Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: PID: Signature: CLOSED BOOK. TWO 8 1/2 X 11 SHEET OF NOTES (double sided is allowed), AND SCIENTIFIC POCKET CALCULATOR

More information

9. Microwaves. 9.1 Introduction. Safety consideration

9. Microwaves. 9.1 Introduction. Safety consideration MW 9. Microwaves 9.1 Introduction Electromagnetic waves with wavelengths of the order of 1 mm to 1 m, or equivalently, with frequencies from 0.3 GHz to 0.3 THz, are commonly known as microwaves, sometimes

More information

Chapter 25. Optical Instruments

Chapter 25. Optical Instruments Chapter 25 Optical Instruments Optical Instruments Analysis generally involves the laws of reflection and refraction Analysis uses the procedures of geometric optics To explain certain phenomena, the wave

More information

Lamb Wave Ultrasonic Stylus

Lamb Wave Ultrasonic Stylus Lamb Wave Ultrasonic Stylus 0.1 Motivation Stylus as an input tool is used with touchscreen-enabled devices, such as Tablet PCs, to accurately navigate interface elements, send messages, etc. They are,

More information

Laser Telemetric System (Metrology)

Laser Telemetric System (Metrology) Laser Telemetric System (Metrology) Laser telemetric system is a non-contact gauge that measures with a collimated laser beam (Refer Fig. 10.26). It measure at the rate of 150 scans per second. It basically

More information

Diffraction. Interference with more than 2 beams. Diffraction gratings. Diffraction by an aperture. Diffraction of a laser beam

Diffraction. Interference with more than 2 beams. Diffraction gratings. Diffraction by an aperture. Diffraction of a laser beam Diffraction Interference with more than 2 beams 3, 4, 5 beams Large number of beams Diffraction gratings Equation Uses Diffraction by an aperture Huygen s principle again, Fresnel zones, Arago s spot Qualitative

More information

S.No Description/Specifications Qty 01. Post office box Trainer.

S.No Description/Specifications Qty 01. Post office box Trainer. Specification of Equipments for Physics lab S.No Description/Specifications Qty 01. Post office box Trainer. 06 The trainer should have: On Board DC Power Supply : 5V Galvanometer ; Deflection : 30 0 30

More information

Chapter-15. Communication systems -1 mark Questions

Chapter-15. Communication systems -1 mark Questions Chapter-15 Communication systems -1 mark Questions 1) What are the three main units of a Communication System? 2) What is meant by Bandwidth of transmission? 3) What is a transducer? Give an example. 4)

More information

Date Period Name. Write the term that corresponds to the description. Use each term once. beat

Date Period Name. Write the term that corresponds to the description. Use each term once. beat Date Period Name CHAPTER 15 Study Guide Sound Vocabulary Review Write the term that corresponds to the description. Use each term once. beat Doppler effect closed-pipe resonator fundamental consonance

More information

Lloyd s Mirror. Understand the nature of sound-waves. Calculate the frequency of ultrasonic sound-waves by Lloyd s Mirror Interference.

Lloyd s Mirror. Understand the nature of sound-waves. Calculate the frequency of ultrasonic sound-waves by Lloyd s Mirror Interference. Lloyd s Mirror 1 Objective Understand the nature of sound-waves. Calculate the frequency of ultrasonic sound-waves by Lloyd s Mirror Interference. 2 Prelab Questions 1. What is meant by an ultrasonic sound-wave

More information

Lab 12 Microwave Optics.

Lab 12 Microwave Optics. b Lab 12 Microwave Optics. CAUTION: The output power of the microwave transmitter is well below standard safety levels. Nevertheless, do not look directly into the microwave horn at close range when the

More information

Electricity. Interference of microwaves Electromagnetic Oscillations and Waves. What you need:

Electricity. Interference of microwaves Electromagnetic Oscillations and Waves. What you need: Electromagnetic Oscillations and Waves Electricity What you can learn about Wavelength Standing wave Reflection Transmission Michelson interferometer Principle: A microwave beam, after reflection from

More information

NEW LASER ULTRASONIC INTERFEROMETER FOR INDUSTRIAL APPLICATIONS B.Pouet and S.Breugnot Bossa Nova Technologies; Venice, CA, USA

NEW LASER ULTRASONIC INTERFEROMETER FOR INDUSTRIAL APPLICATIONS B.Pouet and S.Breugnot Bossa Nova Technologies; Venice, CA, USA NEW LASER ULTRASONIC INTERFEROMETER FOR INDUSTRIAL APPLICATIONS B.Pouet and S.Breugnot Bossa Nova Technologies; Venice, CA, USA Abstract: A novel interferometric scheme for detection of ultrasound is presented.

More information

Chapter 4: Fourier Optics

Chapter 4: Fourier Optics Chapter 4: Fourier Optics P4-1. Calculate the Fourier transform of the function rect(2x)rect(/3) The rectangular function rect(x) is given b 1 x 1/2 rect( x) when 0 x 1/2 P4-2. Assume that ( gx (, )) G

More information

Tuesday, Nov. 9 Chapter 12: Wave Optics

Tuesday, Nov. 9 Chapter 12: Wave Optics Tuesday, Nov. 9 Chapter 12: Wave Optics We are here Geometric optics compared to wave optics Phase Interference Coherence Huygens principle & diffraction Slits and gratings Diffraction patterns & spectra

More information

N.N.Soboleva, S.M.Kozel, G.R.Lockshin, MA. Entin, K.V. Galichsky, P.L. Lebedinsky, P.M. Zhdanovich. Moscow Institute ofphysics and Technology

N.N.Soboleva, S.M.Kozel, G.R.Lockshin, MA. Entin, K.V. Galichsky, P.L. Lebedinsky, P.M. Zhdanovich. Moscow Institute ofphysics and Technology Computer assisted optics teaching at the Moscow Institute ofphysics and Technology N.N.Soboleva, S.M.Kozel, G.R.Lockshin, MA. Entin, K.V. Galichsky, P.L. Lebedinsky, P.M. Zhdanovich Moscow Institute ofphysics

More information

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS 3B SCIENTIFIC PHYSICS Equipment Set for Wave Optics with Laser U17303 Instruction sheet 10/08 Alf 1. Safety instructions The laser emits visible radiation at a wavelength of 635 nm with a maximum power

More information

Physics 476LW. Advanced Physics Laboratory - Microwave Optics

Physics 476LW. Advanced Physics Laboratory - Microwave Optics Physics 476LW Advanced Physics Laboratory Microwave Radiation Introduction Setup The purpose of this lab is to better understand the various ways that interference of EM radiation manifests itself. However,

More information

Module 5: Experimental Modal Analysis for SHM Lecture 36: Laser doppler vibrometry. The Lecture Contains: Laser Doppler Vibrometry

Module 5: Experimental Modal Analysis for SHM Lecture 36: Laser doppler vibrometry. The Lecture Contains: Laser Doppler Vibrometry The Lecture Contains: Laser Doppler Vibrometry Basics of Laser Doppler Vibrometry Components of the LDV system Working with the LDV system file:///d /neha%20backup%20courses%2019-09-2011/structural_health/lecture36/36_1.html

More information

Chapter 34 The Wave Nature of Light; Interference. Copyright 2009 Pearson Education, Inc.

Chapter 34 The Wave Nature of Light; Interference. Copyright 2009 Pearson Education, Inc. Chapter 34 The Wave Nature of Light; Interference 34-7 Luminous Intensity The intensity of light as perceived depends not only on the actual intensity but also on the sensitivity of the eye at different

More information

PHYS102 Previous Exam Problems. Sound Waves. If the speed of sound in air is not given in the problem, take it as 343 m/s.

PHYS102 Previous Exam Problems. Sound Waves. If the speed of sound in air is not given in the problem, take it as 343 m/s. PHYS102 Previous Exam Problems CHAPTER 17 Sound Waves Sound waves Interference of sound waves Intensity & level Resonance in tubes Doppler effect If the speed of sound in air is not given in the problem,

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science Student Name Date MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.161 Modern Optics Project Laboratory Laboratory Exercise No. 3 Fall 2005 Diffraction

More information

A Level. A Level Physics. WAVES: Combining Waves (Answers) AQA. Name: Total Marks: /30

A Level. A Level Physics. WAVES: Combining Waves (Answers) AQA. Name: Total Marks: /30 Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources. AQA A Level A Level Physics WAVES: Combining Waves (Answers) Name: Total Marks: /30 Maths Made Easy Complete Tuition Ltd 2017 1. To produce

More information

Recording and reconstruction of holograms

Recording and reconstruction of holograms Recording and reconstruction of holograms LEP Related topics Dispersion, reflection, object beam, reference beam, real and virtual image, volume hologram, Lippmann-Bragg hologram, Bragg reflection. Principle

More information

CHAPTER 12 SOUND ass/sound/soundtoc. html. Characteristics of Sound

CHAPTER 12 SOUND  ass/sound/soundtoc. html. Characteristics of Sound CHAPTER 12 SOUND http://www.physicsclassroom.com/cl ass/sound/soundtoc. html Characteristics of Sound Intensity of Sound: Decibels The Ear and Its Response; Loudness Sources of Sound: Vibrating Strings

More information

ABC Math Student Copy. N. May ABC Math Student Copy. Physics Week 13(Sem. 2) Name. Light Chapter Summary Cont d 2

ABC Math Student Copy. N. May ABC Math Student Copy. Physics Week 13(Sem. 2) Name. Light Chapter Summary Cont d 2 Page 1 of 12 Physics Week 13(Sem. 2) Name Light Chapter Summary Cont d 2 Lens Abberation Lenses can have two types of abberation, spherical and chromic. Abberation occurs when the rays forming an image

More information

OPTICS DIVISION B. School/#: Names:

OPTICS DIVISION B. School/#: Names: OPTICS DIVISION B School/#: Names: Directions: Fill in your response for each question in the space provided. All questions are worth two points. Multiple Choice (2 points each question) 1. Which of the

More information

Chapter 36: diffraction

Chapter 36: diffraction Chapter 36: diffraction Fresnel and Fraunhofer diffraction Diffraction from a single slit Intensity in the single slit pattern Multiple slits The Diffraction grating X-ray diffraction Circular apertures

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Mechanical Engineering Department. 2.71/2.710 Final Exam. May 21, Duration: 3 hours (9 am-12 noon)

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Mechanical Engineering Department. 2.71/2.710 Final Exam. May 21, Duration: 3 hours (9 am-12 noon) MASSACHUSETTS INSTITUTE OF TECHNOLOGY Mechanical Engineering Department 2.71/2.710 Final Exam May 21, 2013 Duration: 3 hours (9 am-12 noon) CLOSED BOOK Total pages: 5 Name: PLEASE RETURN THIS BOOKLET WITH

More information

ABC Math Student Copy

ABC Math Student Copy Page 1 of 17 Physics Week 9(Sem. 2) Name Chapter Summary Waves and Sound Cont d 2 Principle of Linear Superposition Sound is a pressure wave. Often two or more sound waves are present at the same place

More information

Option G 4:Diffraction

Option G 4:Diffraction Name: Date: Option G 4:Diffraction 1. This question is about optical resolution. The two point sources shown in the diagram below (not to scale) emit light of the same frequency. The light is incident

More information

Period 3 Solutions: Electromagnetic Waves Radiant Energy II

Period 3 Solutions: Electromagnetic Waves Radiant Energy II Period 3 Solutions: Electromagnetic Waves Radiant Energy II 3.1 Applications of the Quantum Model of Radiant Energy 1) Photon Absorption and Emission 12/29/04 The diagrams below illustrate an atomic nucleus

More information

Microwave Optics. Department of Physics & Astronomy Texas Christian University, Fort Worth, TX. January 16, 2014

Microwave Optics. Department of Physics & Astronomy Texas Christian University, Fort Worth, TX. January 16, 2014 Microwave Optics Department of Physics & Astronomy Texas Christian University, Fort Worth, TX January 16, 2014 1 Introduction Optical phenomena may be studied at microwave frequencies. Visible light has

More information

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name:

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name: EE119 Introduction to Optical Engineering Spring 2003 Final Exam Name: SID: CLOSED BOOK. THREE 8 1/2 X 11 SHEETS OF NOTES, AND SCIENTIFIC POCKET CALCULATOR PERMITTED. TIME ALLOTTED: 180 MINUTES Fundamental

More information

Installation and Characterization of the Advanced LIGO 200 Watt PSL

Installation and Characterization of the Advanced LIGO 200 Watt PSL Installation and Characterization of the Advanced LIGO 200 Watt PSL Nicholas Langellier Mentor: Benno Willke Background and Motivation Albert Einstein's published his General Theory of Relativity in 1916,

More information

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS 3B SCIENTIFIC PHYSICS Equipment Set for Wave Optics with Laser 1003053 Instruction sheet 06/18 Alf 1. Safety instructions The laser emits visible radiation at a wavelength of 635 nm with a maximum power

More information

EXAM NYC-05 Waves, optics and modern physics

EXAM NYC-05 Waves, optics and modern physics EXAM 2 203-NYC-05 Waves, optics and modern physics Fall 2017 Prof: Jean-Raphaël Carrier Name: Instructions For questions 1 to 10, only the correct answer(s) is(are) needed. For questions 11 to 14, clearly

More information

Unit-23 Michelson Interferometer I

Unit-23 Michelson Interferometer I Unit-23 Michelson Interferometer I Objective: Study the theory and the design of Michelson Interferometer. And use it to measure the wavelength of a light source. Apparatus: Michelson interferometer (include

More information

LEOK-3 Optics Experiment kit

LEOK-3 Optics Experiment kit LEOK-3 Optics Experiment kit Physical optics, geometrical optics and fourier optics Covering 26 experiments Comprehensive documents Include experiment setups, principles and procedures Cost effective solution

More information

visibility values: 1) V1=0.5 2) V2=0.9 3) V3=0.99 b) In the three cases considered, what are the values of FSR (Free Spectral Range) and

visibility values: 1) V1=0.5 2) V2=0.9 3) V3=0.99 b) In the three cases considered, what are the values of FSR (Free Spectral Range) and EXERCISES OF OPTICAL MEASUREMENTS BY ENRICO RANDONE AND CESARE SVELTO EXERCISE 1 A CW laser radiation (λ=2.1 µm) is delivered to a Fabry-Pérot interferometer made of 2 identical plane and parallel mirrors

More information

Acoustic Yagi Uda Antenna Using Resonance Tubes

Acoustic Yagi Uda Antenna Using Resonance Tubes Acoustic Yagi Uda Antenna Using Resonance Tubes Yuki TAMURA 1 ; Kohei YATABE 2 ; Yasuhiro OUCHI 3 ; Yasuhiro OIKAWA 4 ; Yoshio YAMASAKI 5 1 5 Waseda University, Japan ABSTRACT A Yagi Uda antenna gets high

More information

PC1141 Physics I. Speed of Sound. Traveling waves of speed v, frequency f and wavelength λ are described by

PC1141 Physics I. Speed of Sound. Traveling waves of speed v, frequency f and wavelength λ are described by PC1141 Physics I Speed of Sound 1 Objectives Determination of several frequencies of the signal generator at which resonance occur in the closed and open resonance tube respectively. Determination of the

More information

Exp No.(8) Fourier optics Optical filtering

Exp No.(8) Fourier optics Optical filtering Exp No.(8) Fourier optics Optical filtering Fig. 1a: Experimental set-up for Fourier optics (4f set-up). Related topics: Fourier transforms, lenses, Fraunhofer diffraction, index of refraction, Huygens

More information

LECTURE 13 DIFFRACTION. Instructor: Kazumi Tolich

LECTURE 13 DIFFRACTION. Instructor: Kazumi Tolich LECTURE 13 DIFFRACTION Instructor: Kazumi Tolich Lecture 13 2 Reading chapter 33-4 & 33-6 to 33-7 Single slit diffraction Two slit interference-diffraction Fraunhofer and Fresnel diffraction Diffraction

More information

Optics and Lasers. Matt Young. Including Fibers and Optical Waveguides

Optics and Lasers. Matt Young. Including Fibers and Optical Waveguides Matt Young Optics and Lasers Including Fibers and Optical Waveguides Fourth Revised Edition With 188 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest Contents

More information

PHYS2090 OPTICAL PHYSICS Laboratory Microwaves

PHYS2090 OPTICAL PHYSICS Laboratory Microwaves PHYS2090 OPTICAL PHYSICS Laboratory Microwaves Reference Hecht, Optics, (Addison-Wesley) 1. Introduction Interference and diffraction are commonly observed in the optical regime. As wave-particle duality

More information

Sonic Distance Sensors

Sonic Distance Sensors Sonic Distance Sensors Introduction - Sound is transmitted through the propagation of pressure in the air. - The speed of sound in the air is normally 331m/sec at 0 o C. - Two of the important characteristics

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY. 2.71/2.710 Optics Spring 14 Practice Problems Posted May 11, 2014

MASSACHUSETTS INSTITUTE OF TECHNOLOGY. 2.71/2.710 Optics Spring 14 Practice Problems Posted May 11, 2014 MASSACHUSETTS INSTITUTE OF TECHNOLOGY 2.71/2.710 Optics Spring 14 Practice Problems Posted May 11, 2014 1. (Pedrotti 13-21) A glass plate is sprayed with uniform opaque particles. When a distant point

More information

College Physics II Lab 3: Microwave Optics

College Physics II Lab 3: Microwave Optics ACTIVITY 1: RESONANT CAVITY College Physics II Lab 3: Microwave Optics Taner Edis with Peter Rolnick Spring 2018 We will be dealing with microwaves, a kind of electromagnetic radiation with wavelengths

More information

Wave optics and interferometry

Wave optics and interferometry 11b, 2013, lab 7 Wave optics and interferometry Note: The optical surfaces used in this experiment are delicate. Please do not touch any of the optic surfaces to avoid scratches and fingerprints. Please

More information

Chapter Ray and Wave Optics

Chapter Ray and Wave Optics 109 Chapter Ray and Wave Optics 1. An astronomical telescope has a large aperture to [2002] reduce spherical aberration have high resolution increase span of observation have low dispersion. 2. If two

More information

Waves, sound and light

Waves, sound and light Waves, sound and light PAGE PAGE PAGE PAGE PAGE 26 30 32 35 37 26 Waves, sound and light Ripple tank Whether you are dealing with the wave properties of electromagnetic waves (including light), sound or

More information

Holography (A13) Christopher Bronner, Frank Essenberger Freie Universität Berlin Tutor: Dr. Fidder. July 1, 2007 Experiment on July 2, 2007

Holography (A13) Christopher Bronner, Frank Essenberger Freie Universität Berlin Tutor: Dr. Fidder. July 1, 2007 Experiment on July 2, 2007 Holography (A13) Christopher Bronner, Frank Essenberger Freie Universität Berlin Tutor: Dr. Fidder July 1, 2007 Experiment on July 2, 2007 1 Preparation 1.1 Normal camera If we take a picture with a camera,

More information

Amateur Wireless Station Operators License Exam

Amateur Wireless Station Operators License Exam Amateur Wireless Station Operators License Exam Study material 2017 South India Amateur Radio Society, Chennai CHAPTER 5 1 Chapter 5 Amateur Wireless Station Operators License Exam Study Material Chapter

More information

28 The diagram shows an experiment which has been set up to demonstrate two-source interference, using microwaves of wavelength λ.

28 The diagram shows an experiment which has been set up to demonstrate two-source interference, using microwaves of wavelength λ. PhysicsndMathsTutor.com 28 The diagram shows an experiment which has been set up to demonstrate two-source interference, using microwaves of wavelength λ. 9702/1/M/J/02 X microwave transmitter S 1 S 2

More information

Introduction. Learning Objectives. On completion of this class you will be able to. 1. Define fiber sensor. 2. List the different types fiber sensors

Introduction. Learning Objectives. On completion of this class you will be able to. 1. Define fiber sensor. 2. List the different types fiber sensors Introduction Learning Objectives On completion of this class you will be able to 1. Define fiber sensor 2. List the different types fiber sensors 3. Mech-Zender Fiber optic interferometer Fiber optic sensor

More information

MICROWAVE OPTICS. Instruction Manual and Experiment Guide for the PASCO scientific Model WA-9314B G

MICROWAVE OPTICS. Instruction Manual and Experiment Guide for the PASCO scientific Model WA-9314B G Includes Teacher's Notes and Typical Experiment Results Instruction Manual and Experiment Guide for the PASCO scientific Model WA-9314B 012-04630G MICROWAVE OPTICS 10101 Foothills Blvd. Roseville, CA 95678-9011

More information

The Development of Laser Ultrasonic Visualization Equipment and its Application in Nondestructive Inspection

The Development of Laser Ultrasonic Visualization Equipment and its Application in Nondestructive Inspection 17th World Conference on Nondestructive Testing, 25-28 Oct 2008, Shanghai, China The Development of Laser Ultrasonic Visualization Equipment and its Application in Nondestructive Inspection Bo WANG 1,

More information

INTERFERENCE OF SOUND WAVES

INTERFERENCE OF SOUND WAVES 01/02 Interference - 1 INTERFERENCE OF SOUND WAVES The objectives of this experiment are: To measure the wavelength, frequency, and propagation speed of ultrasonic sound waves. To observe interference

More information

TA/TI survey. Phy Phy

TA/TI survey.   Phy Phy TA/TI survey https://webapps.pas.rochester.edu/secure/phpq/ Phy121 7 60 73 81 Phy123 1 6 11 18 Chapter 35 Diffraction and Polarization Double- Slit Experiment destructive interference Two sources of light

More information

ULTRASONIC TRANSDUCER PEAK-TO-PEAK OPTICAL MEASUREMENT

ULTRASONIC TRANSDUCER PEAK-TO-PEAK OPTICAL MEASUREMENT ULTRASONIC TRANSDUCER PEAK-TO-PEAK OPTICAL MEASUREMENT Pavel SKARVADA 1, Pavel TOFEL 1, Pavel TOMANEK 1 1 Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of

More information

Exam 3--PHYS 102--S10

Exam 3--PHYS 102--S10 ame: Exam 3--PHYS 02--S0 Multiple Choice Identify the choice that best completes the statement or answers the question.. At an intersection of hospital hallways, a convex mirror is mounted high on a wall

More information

Will contain image distance after raytrace Will contain image height after raytrace

Will contain image distance after raytrace Will contain image height after raytrace Name: LASR 51 Final Exam May 29, 2002 Answer all questions. Module numbers are for guidance, some material is from class handouts. Exam ends at 8:20 pm. Ynu Raytracing The first questions refer to the

More information

Experiment 1: Fraunhofer Diffraction of Light by a Single Slit

Experiment 1: Fraunhofer Diffraction of Light by a Single Slit Experiment 1: Fraunhofer Diffraction of Light by a Single Slit Purpose 1. To understand the theory of Fraunhofer diffraction of light at a single slit and at a circular aperture; 2. To learn how to measure

More information

Chapter 16. Waves and Sound

Chapter 16. Waves and Sound Chapter 16 Waves and Sound 16.1 The Nature of Waves 1. A wave is a traveling disturbance. 2. A wave carries energy from place to place. 1 16.1 The Nature of Waves Transverse Wave 16.1 The Nature of Waves

More information

Exam 4. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Exam 4. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Exam 4 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Mirages are a result of which physical phenomena a. interference c. reflection

More information

GEOMETRICAL OPTICS Practical 1. Part I. BASIC ELEMENTS AND METHODS FOR CHARACTERIZATION OF OPTICAL SYSTEMS

GEOMETRICAL OPTICS Practical 1. Part I. BASIC ELEMENTS AND METHODS FOR CHARACTERIZATION OF OPTICAL SYSTEMS GEOMETRICAL OPTICS Practical 1. Part I. BASIC ELEMENTS AND METHODS FOR CHARACTERIZATION OF OPTICAL SYSTEMS Equipment and accessories: an optical bench with a scale, an incandescent lamp, matte, a set of

More information

A Level. A Level Physics. WAVES: Combining Waves (Answers) OCR. Name: Total Marks: /30

A Level. A Level Physics. WAVES: Combining Waves (Answers) OCR. Name: Total Marks: /30 Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources. OCR A Level A Level Physics WAVES: Combining Waves (Answers) Name: Total Marks: /30 Maths Made Easy Complete Tuition Ltd 2017 1. To produce

More information

MEASUREMENT APPLICATION GUIDE OUTER/INNER

MEASUREMENT APPLICATION GUIDE OUTER/INNER MEASUREMENT APPLICATION GUIDE OUTER/INNER DIAMETER Measurement I N D E X y Selection Guide P.2 y Measurement Principle P.3 y P.4 y X and Y Axes Synchronous Outer Diameter Measurement P.5 y of a Large Diameter

More information

Quiz on Chapters 13-15

Quiz on Chapters 13-15 Quiz on Chapters 13-15 Chapter 16 Waves and Sound continued Final Exam, Thursday May 3, 8:00 10:00PM ANH 1281 (Anthony Hall). Seat assignments TBD RCPD students: Thursday May 3, 5:00 9:00PM, BPS 3239.

More information

The Virgo detector. L. Rolland LAPP-Annecy GraSPA summer school L. Rolland GraSPA2013 Annecy le Vieux

The Virgo detector. L. Rolland LAPP-Annecy GraSPA summer school L. Rolland GraSPA2013 Annecy le Vieux The Virgo detector The Virgo detector L. Rolland LAPP-Annecy GraSPA summer school 2013 1 Table of contents Principles Effect of GW on free fall masses Basic detection principle overview Are the Virgo mirrors

More information

INDEX OF REFRACTION index of refraction n = c/v material index of refraction n

INDEX OF REFRACTION index of refraction n = c/v material index of refraction n INDEX OF REFRACTION The index of refraction (n) of a material is the ratio of the speed of light in vacuuo (c) to the speed of light in the material (v). n = c/v Indices of refraction for any materials

More information

Name: Lab Partner: Section:

Name: Lab Partner: Section: Chapter 11 Wave Phenomena Name: Lab Partner: Section: 11.1 Purpose Wave phenomena using sound waves will be explored in this experiment. Standing waves and beats will be examined. The speed of sound will

More information

MICROMACHINED INTERFEROMETER FOR MEMS METROLOGY

MICROMACHINED INTERFEROMETER FOR MEMS METROLOGY MICROMACHINED INTERFEROMETER FOR MEMS METROLOGY Byungki Kim, H. Ali Razavi, F. Levent Degertekin, Thomas R. Kurfess G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta,

More information

Physics 3340 Spring Fourier Optics

Physics 3340 Spring Fourier Optics Physics 3340 Spring 011 Purpose Fourier Optics In this experiment we will show how the Fraunhofer diffraction pattern or spatial Fourier transform of an object can be observed within an optical system.

More information

page page page Waves, sound and light page page science

page page page Waves, sound and light page page science 25 page 26 page 30 page 32 page 35 Waves, sound and light page 37 26 waves, sound and light Ripple tank Whether you are dealing with the wave properties of electromagnetic waves (including light), sound

More information

DEVELOPMENT OF STABILIZED AND HIGH SENSITIVE OPTICAL FI- BER ACOUSTIC EMISSION SYSTEM AND ITS APPLICATION

DEVELOPMENT OF STABILIZED AND HIGH SENSITIVE OPTICAL FI- BER ACOUSTIC EMISSION SYSTEM AND ITS APPLICATION DEVELOPMENT OF STABILIZED AND HIGH SENSITIVE OPTICAL FI- BER ACOUSTIC EMISSION SYSTEM AND ITS APPLICATION HIDEO CHO, RYOUHEI ARAI and MIKIO TAKEMOTO Faculty of Mechanical Engineering, Aoyama Gakuin University,

More information

Experiment 19. Microwave Optics 1

Experiment 19. Microwave Optics 1 Experiment 19 Microwave Optics 1 1. Introduction Optical phenomena may be studied at microwave frequencies. Using a three centimeter microwave wavelength transforms the scale of the experiment. Microns

More information

Physics 102 Exam 3 Fall Last Name: First Name Network-ID

Physics 102 Exam 3 Fall Last Name: First Name Network-ID Physics 102 Exam 3 Fall 2013 Last Name: First Name Network-ID Discussion Section: Discussion TA Name: Turn off your cell phone and put it out of sight. Keep your calculator on your own desk. Calculators

More information

Lab in a Box Microwave Interferometer

Lab in a Box Microwave Interferometer In 1887 Michelson and Morley used an optical interferometer (a device invented by Michelson to accurately detect aether flow) to try and detect the relative motion of light through the luminous either.

More information

Sensing. Autonomous systems. Properties. Classification. Key requirement of autonomous systems. An AS should be connected to the outside world.

Sensing. Autonomous systems. Properties. Classification. Key requirement of autonomous systems. An AS should be connected to the outside world. Sensing Key requirement of autonomous systems. An AS should be connected to the outside world. Autonomous systems Convert a physical value to an electrical value. From temperature, humidity, light, to

More information

PHYS 3153 Methods of Experimental Physics II O2. Applications of Interferometry

PHYS 3153 Methods of Experimental Physics II O2. Applications of Interferometry Purpose PHYS 3153 Methods of Experimental Physics II O2. Applications of Interferometry In this experiment, you will study the principles and applications of interferometry. Equipment and components PASCO

More information

Theory and Applications of Frequency Domain Laser Ultrasonics

Theory and Applications of Frequency Domain Laser Ultrasonics 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications July 16-18 2008, Montreal, Canada Theory and Applications of Frequency Domain Laser Ultrasonics Todd W. MURRAY 1,

More information

ECE137b Third Design Project Option

ECE137b Third Design Project Option ECE137b Third Design Project Option You must purchase lead-free solder from the electronics shop. Do not purchase solder elsewhere, as it will likely be tin/lead solder, which is toxic. "Solder-sucker"

More information

Optics and Images. Lenses and Mirrors. Matthew W. Milligan

Optics and Images. Lenses and Mirrors. Matthew W. Milligan Optics and Images Lenses and Mirrors Light: Interference and Optics I. Light as a Wave - wave basics review - electromagnetic radiation II. Diffraction and Interference - diffraction, Huygen s principle

More information

Components of Optical Instruments. Chapter 7_III UV, Visible and IR Instruments

Components of Optical Instruments. Chapter 7_III UV, Visible and IR Instruments Components of Optical Instruments Chapter 7_III UV, Visible and IR Instruments 1 Grating Monochromators Principle of operation: Diffraction Diffraction sources: grooves on a reflecting surface Fabrication:

More information