19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 CHALLENGES OF HIGH SNR (SIGNAL-TO-NOISE) SILICON MICROMACHINED MICROPHONES

Size: px
Start display at page:

Download "19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 CHALLENGES OF HIGH SNR (SIGNAL-TO-NOISE) SILICON MICROMACHINED MICROPHONES"

Transcription

1 19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 CHALLENGES OF HIGH SNR (SIGNAL-TO-NOISE) SILICON MICROMACHINED MICROPHONES PACS: Gy Dr. Füldner, Marc 1 ; Dr. Dehé, Alfons 2 1 Infineon Technologies AG, Automotive, Industrial & Multimarket, Am Campeon 1-12, Neubiberg, Germany; marc.fueldner@infineon.com 2 Infineon Technologies AG, Automotive, Industrial & Multimarket, Am Campeon 1-12, Neubiberg, Germany; alfons.dehe@infineon.com ABSTRACT We present the product development of silicon micromachined microphones towards high reliability and electro-acoustical performance at Infineon. The temperature sensitivity characteristic within the operating temperature range is shown as well as the long-term robustness against temperature extremes of -40 C and +125 C. The challenges of high SNR (signal-to-noise) microphones are discussed in respect to the MEMS (micro-electricalmechanical system) design and packaging technology. Fabricated silicon microphones with SNRs up to 63 db(a) and a flat frequency response up to 20 khz are presented in good agreement with a compact system model. INTRODUCTION Microphones based on silicon semiconductor technology have been subject to research for many years [1] but since 2003 silicon microphones are introduced into mass production for mobile phone applications [2]. Today, Silicon Microphones are gaining strong market share against traditional electret condenser microphones (ECM). With more than 100 million units in 2006, the market for silicon microphones is forecasted to grow rapidly meaning every third microphone in 2009 will be based on silicon MEMS technology [3,4]. Compared to ECMs, a major advantage of condenser silicon microphones is their robustness against high temperatures and humidity. In a condenser silicon microphone, the microphone capacitor build by a flexible membrane and a rigid back plate is charged by a constant voltage supplied by an integrated ASIC (application-specific integrated circuit). Silicon microphones even withstand standard lead free reflow soldering temperatures of up to 260 C in fully automatic surface mount production lines. Offering increased reliability and reduced system costs due to the surface mount technology ability is a benefit that outperforms the ECMs. We exemplify the robustness against high temperatures of the silicon microphone technology on the basis of Infineon s silicon microphone SMM310 [5]. Besides the ability of SMT (surface mount technology) processing, next generation silicon microphones in multimedia applications such as video telephony and voice recording have to satisfy the demand for high audio quality such as high signal-to-noise ratios > 60 db(a) and a flat frequency response up to 20 khz. Introductorily, we will discuss the challenges in the development of high SNR silicon microphones in respect to the MEMS design and assembly technology by means of a lumpedelement network model of condenser microphones. We demonstrate the strong interaction between sensor performance and packaging regarding sensitivity, frequency response and SNR by characterization of fabricated silicon microphone assembly variants: the silicon microphone SMM310 with a small (chip cavity) back volume and the silicon microphone SMM340 with a large (package cavity) back volume. 1

2 TEMPERATUE ROBUSTNESS OF INFINEON S SILICON MICROPHONE SMM310 Construction of silicon microphone SMM310 Infineon s silicon microphone SMM310 (Figure 1) is designed as surface mountable alternative to ECMs with a comparable signal-to noise-ratio of typical 59 db(a) and a sensitivity of typical -42dBV/Pa at smaller size (4.72 mm x 3.76 mm x 1.25 mm). The microphone consists of a MEMS sensor chip and an ASIC chip, both assembled on a printed wiring board (PWB).The current consumption is typically only 75 µa for a power supply voltage range from V. The MEMS sensor chip transforms acoustical sound pressure variations to capacitive variations by the vibration of a flexible membrane in relation to a fixed back plate. Figure 2 shows a crosssectional schematic and electron microscopy images of the MEMS chip. The 2 µm thick rigid back plate on the top side is made of polycrystalline silicon and contains perforation holes covering 30% of the area to reduce squeeze-film damping. The polycrystalline silicon membrane with a thickness of 300 nm and a diameter of 1 mm is spanned over the chip cavity which is etched by an anisotropic DRIE (Deep Reactive Ion Etching) process. The 2 µm height air gap between the electrodes is realized by the sacrificial layer surface micromachining technique. Figure 1.- Open microphone module with MEMS sensor chip, ASIC chip covered by a protective silicon (glob top) and PWB substrate (left), microphone top view with metal lid (middle) and bottom view of the PWB with SMT solder pads (right). The ASIC supplies the charge voltage for the MEMS capacitor and provides the impedance conversion of the high impedance MEMS sensor signal to a low impedance output signal. MEMS, ASIC and top metallisation of the PWB are electrically connected by wire bonding. The connection to the solder pads at the bottom of the device is realized by vias (vertical interconnect access) through the PWB. The whole construction is covered and electromagnetically shielded by a metallic lid with a sound inlet hole. back plate membrane Figure 2.- Cross-sectional schematic and electron microscopy images of the MEMS chip. Temperature characteristic and robustness State-of-the-Art ECMs use fluorinated ethylene-propylene (FEP) as material for the electret foil which is applied to the back electrode and permanently charged. Because of the limited temperature resistance of FEP foils by discharging and as a consequence loss in sensitivity, ECMs typically specify a maximum storage and operating temperature of 85 C and are soldered by hand. 2

3 Compared to EMCs, condenser silicon microphones are biased internally by the ASIC chip. Also, the membrane and back plate are formed by heat resistant silicon layers. Therefore, no degradation over a wide range of operating and processing temperatures is expected. Figure 3 shows the excellent temperature characteristic and long-term temperature robustness exemplary for the microphone sensitivity kHz [dbv/pa] VDD=1.5 V VDD=2.1 V VDD=3.3V Sensitivity [dbv/pa] Measurement after TCT 2000h Initial measurement Temperature [ C] Frequency [Hz] Figure 3.- Microphone sensitivity over operating temperature (left) and comparison of the sensitivity prior and after temperature cycling for 2000 hours. The measurement of the sensitivity at a frequency of 1 khz over the temperature range was performed with the supply voltage VDD as parameter (Figure 3, left graph). Over the whole temperature range from -40 C to +100 C, the maximum change of the sensitivity is merely about 1 dbv/pa. For the evaluation of the long-term temperature stability and robustness against rapid temperature changes, microphones were cyclically exposed to minimum and maximum storage ratings of -40 C and +125 C, respectively. The overall test duration was up to 2000 hours (~3 months), whereby each temperature stage lasted 30 min meaning 2000 cycles. Prior temperature cycling, the devices were initially measured and assembled on test boards. To emulate customer fabrication conditions, the microphones on test boards were pre-aged and 3 times reflow soldered at a peak temperature of 260 C for lead-free soldering. As shown in Figure 3, right graph, the change in sensitivity is less than 1 db over the whole test duration. MICROPHONE COMPACT SYSTEM MODELLING IN CONSIDERATION OF HIGH SNR Microphone system model According to the formal analogy between mechanical, acoustical and electrical systems, the modelling and optimization of silicon microphones is performed by using a mechano-acoustical circuit representation of the MEMS sensor chip and package in combination with the electrical circuit design of the ASIC chip (Figure 4). In the field of microphones, network modelling has been extensively used [6,7]. Mass, stiffness and damping of the MEMS and package are represented by electrical inductors, capacitors and resistors. The elements are calculated analytical or parameterized by finite elements simulation results [8]. The interface between the physical domains is implemented by an ideal transducer element. The network model covers the whole transducer chain from acoustics over micromechanics to the amplifiers output and therefore provide all key parameters like mechanical noise, electrical noise, sensitivity and frequency response. All input parameters of the model are based on known geometrical data, material properties or natural constants which allow first-time-right design without the need of parameter fitting from demonstrator sampling. Due to the simplification to linear lumped elements, the comparable short computation time even allows extensive optimization 3

4 sequences and device variation investigations by Monte Carlo simulations. An enhancement of the model for directional microphones was presented in [9]. p(f) mechano-acoustical network MEMS & package R in M in ideal transducer electrical circuit C in p bp C gap p m M bp M p C bp R p C Rgap m M vent R vent p x U C mic R g R s U(f) M m +M rad R rad C v Figure 4.- Schematic of the microphone compact system model. Simplified solution for the sensitivity A simplified solution for the sensitivity S [V/Pa] is given by U S = x 0 0 C eff with C eff C m C V m = 2 A ρ c + V. (Eq. 1) Here, U 0 is the charge voltage of the microphone capacitor with membrane area A and x 0 is the gap between membrane and back plate. ρ is the density of air and c is the speed of sound. The effective microphone compliance C eff is a combination of the quasi-static membrane compliance C m [m/pa] (averaged deflection of the membrane per quasi-static pressure load) and the equivalent compliance built by the trapped back volume V [m 3 ]. For small back volumes, the sensitivity is dominated by the compliance of the back volume V/(ρ*c 2 ). For large back volumes, the sensitivity is approximately given by the membrane compliance. In equation (1) we neglect the frequency shaping effects of low-pass filtering by squeeze-film damping in the air gap, highpass filtering due to the ventilation hole in the membrane and the resonance peak due to the packaging sound port. Simplified solution for the noise A simplified expression for the microphone noise density N mic [V 2 /Hz] is given by the contribution of the mechano-acoustical noise of the MEMS transducer N MEMS and the electrical noise density of the ASIC N ASIC : 2 N = N + N S (4 k T R ) + N ( R, K, g ). (Eq. 2) mic MEMS ASIC p Main contributions to the noise coming from the ASIC are the design and technology dependent flicker noise (represented by the flicker noise coefficient K f ), noise from the bias element represented by R g and transistor channel noise (depending on the transconductance g m ). Calculations and optimizations of the ASIC contributions are described in [7, 10]. The mechano-acoustical noise voltage is proportional to the microphone sensitivity and the fluidic element R p representing the air streaming equivalent resistance of the perforation holes in the back plate. In equation (2), mechano-acoustical noise contributions from the ventilation hole, sound port and the radiation resistance are neglected. Challenges of High SNR In respect to MEMS Design and Assembly, high SNR is achievable with high quasi-static membrane compliance C m at comparable small membrane areas and large back volumes. Exemplary, Figure 5 shows the SNR depending on the quasi-static membrane compliance C m and the available back volume V. Independently, the fluidic resistance R p needs to be reduced to a minimum by the perforation design. This can be achieved by an increased number of perforation holes and/or larger hole 4 ASIC g f m

5 cross section. Limiting constrains are sufficient mechanical robustness of a highly perforated back plate and the trade-off due to the loss of active capacitance. V [mm 3 ] Cm [nm/pa] SNR [db(a)] Figure 5.- Signal-to-noise as a function of membrane compliance C m and back volume V. For increased available back volumes, the sensitivity and SNR is higher in any case. But, the optimum SNR is only achieved with adjusted membrane compliances. In the calculation it was taken into account that due to the electrostatic pull-in effect, the charge voltage U 0 has to be lowered for increasing membrane sensitivities at a given air gap height. The optimum compliance can be approximated by the relation C m =V/(Aρc 2 ). Beyond this optimum compliance, the advantage of increased membrane compliance is overcompensated by the need of a reduced strength of the electrostatic field in the air gap (term U 0 /x 0 in equation (1)) due to the pull-in effect. For the example of Figure 5, the parameter field of maximum SNR is relative widely spread indicating that the acoustical noise is dominant and the SNR is given by the microphone self-noise depending on the fluidic resistance R p. By the integration of more function into the ASIC like pre-amplification stages, differential outputs or analog-to-digitalconverting, then again the optimum SNR plateau will be reached only at higher back volume and membrane compliances. The relation between SNR and back volume is not specific for the silicon microphone technology but also valid for ECMs. For ECMs, the membrane area is typically even larger which means according equation (1) the need for higher back volumes assuming comparable membrane compliances. CHARACTERIZATION OF MICROPHONE SMM340 WITH PACKAGE CAVITY BACK VOLUME COMPARED TO MICROPHONE SMM310 WITH CHIP CAVITY BACK VOLUME Construction of silicon microphone SMM340 Besides already above described silicon microphone SMM310 with a back volume equal to the back side etched MEMS chip cavity, silicon microphones SMM340 with the package volume serving as back volume are fabricated and characterized (Figure 6). Figure 6.- Silicon microphone module SMM340 (4.72 mm x 3.76 mm x 1.25 mm) with sound port hole below the MEMS sensor chip for maximum back volume. 5

6 In this assembly configuration the MEMS sensor is directly attached above a sound inlet hole in the PWB of the package. Thereby, the back volume is increased to ~8 mm 3 compared to the SMM310 chip cavity volume of ~0.25mm 3. MEMS and ASIC chip are identical to the SMM310 microphone module. As expected by the simulation, the sensitivity and SNR is strongly increased due to the increased back volume (Figure 7). Besides the SNR, the sensitivity and frequency response is improved. Typically, the mechanical resonance of the membrane is far above the packaging Helmholtz resonator formed by the sound hole in the cap and the air volume in front of the microphone chip. Since the front volume is smaller in the SMM340 package, the resonance frequency is shifted to a higher frequency resulting in an almost flat frequency response in the audio band up to 20 khz. SNR [db(a)] Simulation Measurement Back volume Sensitivity [dbv/pa] normalized sensitivity [dbv/pa] Simulation Measurement SMM310, V=0.25mm 3 SMM340, V=8mm Frequency [Hz] Figure 7.- Simulated SNR, sensitivity and frequency response depending on the back volume and measurements with back volumes of 0.25 mm 3 and 8 mm 3, respectively. CONCLUSIONS AND OUTLOOK As a key advantage in contrast to ECMs, condenser silicon microphones show excellent temperature behaviour. High performance silicon microphones need accurate modelling and optimization of the system. In particular, the packaging in combination with the MEMS design strongly influences the acoustics. Using identical chip-sets, an improvement in SNR of 3 db by the packaging technology was demonstrated. Calculations on basis of a lumped-element model of silicon microphones give an estimated additional improvement by 3 db if the membrane compliance is adjusted to a higher membrane compliance (> 10 nm/pa), too. This compliance would correspond to a membrane tensile stress below 10 MPa which is expected to be difficult to handle technologically in terms of process stability. Taking into account the limited area in advanced small packages, an increase of the membrane compliance by enlarged membrane diameters is also limited. A promising approach is the use of advanced membrane designs having spring-type structures or corrugations as reported in [8]. References: [1] G.M. Sessler: Silicon microphones, Journal of the Audio Engineering Society 44, p.16-22, [2] [3] Wicht Technology Consulting, Think Small, Issue 1, Volume 1, April 2006 [4] ABI Research, Micro-Electro-Mechanical Systems (MEMS) in Mobile Phones, 2006 [5] [6] M. Persen, W. Olthuis, P. Bergveld: High-Performance Condenser Microphone with Fully Integrated CMOS Amplifier and DC-DC Voltage Converter, Journal of Microelectromechanical Systems, Vol. 7, No. 4, 1988, pp [7] M. Füldner: Modellierung und Herstellung kapazitiver Mikrofone in BiCMOS-Technologier, Phd thesis, University of Erlangen, 2004, Dissertation_Fueldner.pdf [8] M. Füldner, A. Dehe, R. Aigner, and R. Lerch: Analytical Analysis and Finite Element Simulation of Advanced Membranes for Silicon Microphones. IEEE Sensors Journal, 5(5): , [9] M. Füldner and A. Dehé, Development of Directional Silicon Microphones, CFA-DAGA2004/208 Strassbourg, 23th March, 2004 [10] M. Brauer, A Dehé, M. Füldner, S. Barzen and R. Laur: Improved signal-to-noise ratio of Silicon microphones by a high-impedance resistor, J. Micromech. Microeng. 14 (2004), pp

Proceedings A Comb-Based Capacitive MEMS Microphone with High Signal-to-Noise Ratio: Modeling and Noise-Level Analysis

Proceedings A Comb-Based Capacitive MEMS Microphone with High Signal-to-Noise Ratio: Modeling and Noise-Level Analysis Proceedings A Comb-Based Capacitive MEMS Microphone with High Signal-to-Noise Ratio: Modeling and Noise-Level Analysis Sebastian Anzinger 1,2, *, Johannes Manz 1, Alfons Dehe 2 and Gabriele Schrag 1 1

More information

A HIGH SENSITIVITY POLYSILICON DIAPHRAGM CONDENSER MICROPHONE

A HIGH SENSITIVITY POLYSILICON DIAPHRAGM CONDENSER MICROPHONE To be presented at the 1998 MEMS Conference, Heidelberg, Germany, Jan. 25-29 1998 1 A HIGH SENSITIVITY POLYSILICON DIAPHRAGM CONDENSER MICROPHONE P.-C. Hsu, C. H. Mastrangelo, and K. D. Wise Center for

More information

Data Sheet, V1.0, Aug SMM310. Silicon MEMS Microphone. Small Signal Discretes

Data Sheet, V1.0, Aug SMM310. Silicon MEMS Microphone. Small Signal Discretes Data Sheet, V1.0, Aug. 2007 Small Signal Discretes Edition 2007-08-31 Published by Infineon Technologies AG 81726 München, Germany Infineon Technologies AG 2007. All Rights Reserved. Legal Disclaimer The

More information

Micro-nanosystems for electrical metrology and precision instrumentation

Micro-nanosystems for electrical metrology and precision instrumentation Micro-nanosystems for electrical metrology and precision instrumentation A. Bounouh 1, F. Blard 1,2, H. Camon 2, D. Bélières 1, F. Ziadé 1 1 LNE 29 avenue Roger Hennequin, 78197 Trappes, France, alexandre.bounouh@lne.fr

More information

SMA100. Top Port Analog MEMS Microphone. Datasheet. Rev. 2.0

SMA100. Top Port Analog MEMS Microphone. Datasheet. Rev. 2.0 Top Port Analog MEMS Microphone Datasheet Rev. 2.0 This specification is subject to change without notice. Senodia Technologies Corporation assumes no responsibility for any errors contained herein. Copyright

More information

Design And Fabrication of Condenser Microphone Using Wafer Transfer And Micro-electroplating Technique

Design And Fabrication of Condenser Microphone Using Wafer Transfer And Micro-electroplating Technique Design And Fabrication of Condenser Microphone Using Wafer Transfer And Micro-electroplating Technique Zhen-Zhun Shu, Ming-Li Ke, Guan-Wei Chen, Ray Hua Horng, Chao-Chih Chang, Jean-Yih Tsai, Chung-Ching

More information

VM2000. Low-Noise Bottom Port Piezoelectric MEMS Microphone Data Sheet Vesper Technologies Inc. Differential Analog Output

VM2000. Low-Noise Bottom Port Piezoelectric MEMS Microphone Data Sheet Vesper Technologies Inc. Differential Analog Output VM2000 2017 Data Sheet Vesper Technologies Inc. Low-Noise Bottom Port Piezoelectric MEMS Microphone VM2000 Vesper offers the world s first differential analog piezoelectric MEMS microphone. VM2000 provides

More information

MEMS in ECE at CMU. Gary K. Fedder

MEMS in ECE at CMU. Gary K. Fedder MEMS in ECE at CMU Gary K. Fedder Department of Electrical and Computer Engineering and The Robotics Institute Carnegie Mellon University Pittsburgh, PA 15213-3890 fedder@ece.cmu.edu http://www.ece.cmu.edu/~mems

More information

2018 Data Sheet Vesper Technologies Inc. VM1000. Low-Noise Bottom Port

2018 Data Sheet Vesper Technologies Inc. VM1000. Low-Noise Bottom Port 2018 Data Sheet VM1000 Low-Noise Bottom Port ACE Awards Winner Annual Creativity In Electronics 2016 VM1000 The VM1000 is a low noise, high dynamic range, single ended analog output piezoelectric MEMS

More information

IN-CHIP DEVICE-LAYER THERMAL ISOLATION OF MEMS RESONATOR FOR LOWER POWER BUDGET

IN-CHIP DEVICE-LAYER THERMAL ISOLATION OF MEMS RESONATOR FOR LOWER POWER BUDGET Proceedings of IMECE006 006 ASME International Mechanical Engineering Congress and Exposition November 5-10, 006, Chicago, Illinois, USA IMECE006-15176 IN-CHIP DEVICE-LAYER THERMAL ISOLATION OF MEMS RESONATOR

More information

Zero-Bias Resonant Sensor with an Oxide-Nitride Layer as Charge Trap

Zero-Bias Resonant Sensor with an Oxide-Nitride Layer as Charge Trap Zero-Bias Resonant Sensor with an Oxide-Nitride Layer as Charge Trap Kwan Kyu Park, Mario Kupnik, Hyunjoo J. Lee, Ömer Oralkan, and Butrus T. Khuri-Yakub Edward L. Ginzton Laboratory, Stanford University

More information

BROADBAND CAPACITIVE MICROMACHINED ULTRASONIC TRANSDUCERS RANGING

BROADBAND CAPACITIVE MICROMACHINED ULTRASONIC TRANSDUCERS RANGING BROADBAND CAPACITIVE MICROMACHINED ULTRASONIC TRANSDUCERS RANGING FROM 1 KHZ TO 6 MHZ FOR IMAGING ARRAYS AND MORE Arif S. Ergun, Yongli Huang, Ching-H. Cheng, Ömer Oralkan, Jeremy Johnson, Hemanth Jagannathan,

More information

SILICON BASED CAPACITIVE SENSORS FOR VIBRATION CONTROL

SILICON BASED CAPACITIVE SENSORS FOR VIBRATION CONTROL SILICON BASED CAPACITIVE SENSORS FOR VIBRATION CONTROL Shailesh Kumar, A.K Meena, Monika Chaudhary & Amita Gupta* Solid State Physics Laboratory, Timarpur, Delhi-110054, India *Email: amita_gupta/sspl@ssplnet.org

More information

Super Low Noise Preamplifier

Super Low Noise Preamplifier PR-E 3 Super Low Noise Preamplifier - Datasheet - Features: Outstanding Low Noise (< 1nV/ Hz, 15fA/ Hz, 245 e - rms) Small Size Dual and Single Channel Use Room temperature and cooled operation down to

More information

PERFORMANCE OF A NEW MEMS MEASUREMENT MICROPHONE AND ITS POTENTIAL APPLICATION

PERFORMANCE OF A NEW MEMS MEASUREMENT MICROPHONE AND ITS POTENTIAL APPLICATION PERFORMANCE OF A NEW MEMS MEASUREMENT MICROPHONE AND ITS POTENTIAL APPLICATION R Barham M Goldsmith National Physical Laboratory, Teddington, Middlesex, UK Teddington, Middlesex, UK 1 INTRODUCTION In deciding

More information

ISSCC 2006 / SESSION 16 / MEMS AND SENSORS / 16.1

ISSCC 2006 / SESSION 16 / MEMS AND SENSORS / 16.1 16.1 A 4.5mW Closed-Loop Σ Micro-Gravity CMOS-SOI Accelerometer Babak Vakili Amini, Reza Abdolvand, Farrokh Ayazi Georgia Institute of Technology, Atlanta, GA Recently, there has been an increasing demand

More information

High-speed wavefront control using MEMS micromirrors T. G. Bifano and J. B. Stewart, Boston University [ ] Introduction

High-speed wavefront control using MEMS micromirrors T. G. Bifano and J. B. Stewart, Boston University [ ] Introduction High-speed wavefront control using MEMS micromirrors T. G. Bifano and J. B. Stewart, Boston University [5895-27] Introduction Various deformable mirrors for high-speed wavefront control have been demonstrated

More information

INF 5490 RF MEMS. LN10: Micromechanical filters. Spring 2011, Oddvar Søråsen Jan Erik Ramstad Department of Informatics, UoO

INF 5490 RF MEMS. LN10: Micromechanical filters. Spring 2011, Oddvar Søråsen Jan Erik Ramstad Department of Informatics, UoO INF 5490 RF MEMS LN10: Micromechanical filters Spring 2011, Oddvar Søråsen Jan Erik Ramstad Department of Informatics, UoO 1 Today s lecture Properties of mechanical filters Visualization and working principle

More information

Most Reliable Component for Microwave. Data sheet Rev. 00 AM4311R38A0. Analog MEMS Microphone (Rear/ Bottom type)

Most Reliable Component for Microwave. Data sheet Rev. 00 AM4311R38A0. Analog MEMS Microphone (Rear/ Bottom type) Rev. 00 Most Reliable Component for Microwave AM4311R38A0 (Rear/ Bottom type) ` 3 Contents Page 1. Specification Revisions 2. Description and Application 3. Marking Numbering Standards 4. Part Numbering

More information

INF 5490 RF MEMS. LN10: Micromechanical filters. Spring 2012, Oddvar Søråsen Department of Informatics, UoO

INF 5490 RF MEMS. LN10: Micromechanical filters. Spring 2012, Oddvar Søråsen Department of Informatics, UoO INF 5490 RF MEMS LN10: Micromechanical filters Spring 2012, Oddvar Søråsen Department of Informatics, UoO 1 Today s lecture Properties of mechanical filters Visualization and working principle Modeling

More information

MP34DT06J. MEMS audio sensor omnidirectional digital microphone. Datasheet. Features. Applications. Description

MP34DT06J. MEMS audio sensor omnidirectional digital microphone. Datasheet. Features. Applications. Description Datasheet MEMS audio sensor omnidirectional digital microphone Features Single supply voltage Low power consumption AOP = 122.5 dbspl 64 db signal-to-noise ratio Omnidirectional sensitivity 26 dbfs ± 1

More information

MP23AB01DH. High-performance MEMS audio sensor: fully differential analog bottom-port microphone. Description. Features

MP23AB01DH. High-performance MEMS audio sensor: fully differential analog bottom-port microphone. Description. Features High-performance MEMS audio sensor: fully differential analog bottom-port microphone Datasheet - production data Features Single supply voltage operation Fully differential output Omnidirectional sensitivity

More information

INF 5490 RF MEMS. LN12: RF MEMS inductors. Spring 2011, Oddvar Søråsen Department of informatics, UoO

INF 5490 RF MEMS. LN12: RF MEMS inductors. Spring 2011, Oddvar Søråsen Department of informatics, UoO INF 5490 RF MEMS LN12: RF MEMS inductors Spring 2011, Oddvar Søråsen Department of informatics, UoO 1 Today s lecture What is an inductor? MEMS -implemented inductors Modeling Different types of RF MEMS

More information

Micro-sensors - what happens when you make "classical" devices "small": MEMS devices and integrated bolometric IR detectors

Micro-sensors - what happens when you make classical devices small: MEMS devices and integrated bolometric IR detectors Micro-sensors - what happens when you make "classical" devices "small": MEMS devices and integrated bolometric IR detectors Dean P. Neikirk 1 MURI bio-ir sensors kick-off 6/16/98 Where are the targets

More information

1-D EQUIVALENT CIRCUIT FOR RF MEMS CAPACITIVE SWITCH

1-D EQUIVALENT CIRCUIT FOR RF MEMS CAPACITIVE SWITCH POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 80 Electrical Engineering 014 Sebastian KULA* 1-D EQUIVALENT CIRCUIT FOR RF MEMS CAPACITIVE SWITCH In this paper the equivalent circuit for an accurate

More information

MEMS for RF, Micro Optics and Scanning Probe Nanotechnology Applications

MEMS for RF, Micro Optics and Scanning Probe Nanotechnology Applications MEMS for RF, Micro Optics and Scanning Probe Nanotechnology Applications Part I: RF Applications Introductions and Motivations What are RF MEMS? Example Devices RFIC RFIC consists of Active components

More information

MEMS audio sensor omnidirectional digital microphone for industrial applications

MEMS audio sensor omnidirectional digital microphone for industrial applications Datasheet MEMS audio sensor omnidirectional digital microphone for industrial applications Features Single supply voltage Low power consumption AOP = 122.5 dbspl 64 db signal-to-noise ratio Omnidirectional

More information

INF 5490 RF MEMS. L12: Micromechanical filters. S2008, Oddvar Søråsen Department of Informatics, UoO

INF 5490 RF MEMS. L12: Micromechanical filters. S2008, Oddvar Søråsen Department of Informatics, UoO INF 5490 RF MEMS L12: Micromechanical filters S2008, Oddvar Søråsen Department of Informatics, UoO 1 Today s lecture Properties of mechanical filters Visualization and working principle Design, modeling

More information

SPM0408LE5H-TB. Amplified Zero-Height SiSonic TM Microphone With Enhanced RF Protection. The SPM0408LE5H-TB is a miniature, highperformance,

SPM0408LE5H-TB. Amplified Zero-Height SiSonic TM Microphone With Enhanced RF Protection. The SPM0408LE5H-TB is a miniature, highperformance, SPM0408LE5H-TB Amplified Zero-Height SiSonic TM Microphone With Enhanced RF Protection The SPM0408LE5H-TB is a miniature, highperformance, low power, bottom port silicon microphone. Using Knowles proven

More information

Industrialization of Micro-Electro-Mechanical Systems. Werner Weber Infineon Technologies

Industrialization of Micro-Electro-Mechanical Systems. Werner Weber Infineon Technologies Industrialization of Micro-Electro-Mechanical Systems Werner Weber Infineon Technologies Semiconductor-based MEMS market MEMS Market 2004 (total 22.7 BUS$) Others mostly Digital Light Projection IR Sensors

More information

AN ELECTRET-BASED PRESSURE SENSITIVE MOS TRANSISTOR

AN ELECTRET-BASED PRESSURE SENSITIVE MOS TRANSISTOR 587 AN ELECTRET-BASED PRESSURE SENSITIVE MOS TRANSISTOR J.A. Voorthuyzen and P. Bergveld Twente University, P.O. Box 217, 7500 AE Enschede The Netherlands ABSTRACT The operation of the Metal Oxide Semiconductor

More information

NOISE IN MEMS PIEZORESISTIVE CANTILEVER

NOISE IN MEMS PIEZORESISTIVE CANTILEVER NOISE IN MEMS PIEZORESISTIVE CANTILEVER Udit Narayan Bera Mechatronics, IIITDM Jabalpur, (India) ABSTRACT Though pezoresistive cantilevers are very popular for various reasons, they are prone to noise

More information

High sensitivity acoustic transducers with thin p q membranes and gold back-plate

High sensitivity acoustic transducers with thin p q membranes and gold back-plate Ž. Sensors and Actuators 78 1999 138 142 www.elsevier.nlrlocatersna High sensitivity acoustic transducers with thin p q membranes and gold back-plate A.E. Kabir a, R. Bashir b,), J. Bernstein c, J. De

More information

SPECIFICATION. PRODUCT: Relative Humidity&Temperature Sensor System

SPECIFICATION. PRODUCT: Relative Humidity&Temperature Sensor System SPECIFICATION PRODUCT: Relative Humidity&Temperature Sensor System Relative humidity and temperature sensors Dew point Fully calibrated, digital output Excellent long-term stability No external components

More information

Design and simulation of a membranes-based acoustic sensors array for cochlear implant applications

Design and simulation of a membranes-based acoustic sensors array for cochlear implant applications Design and simulation of a membranes-based acoustic sensors array for cochlear implant applications Quiroz G.*, Báez H., Mendoza S., Alemán M., Villa L. National Polytechnic Institute Computing Research

More information

SPU0409LE5H-QB. Zero-Height SiSonic TM Microphone With Enhanced RF Protection. The SPU0409LE5H-QB is a miniature, highperformance,

SPU0409LE5H-QB. Zero-Height SiSonic TM Microphone With Enhanced RF Protection. The SPU0409LE5H-QB is a miniature, highperformance, Zero-Height SiSonic TM Microphone With Enhanced RF Protection The SPU0409LE5H-QB is a miniature, highperformance, low power, bottom port silicon microphone. Using Knowles proven high performance SiSonic

More information

Product Specification ML-3865-B1 MEMS silicon microphone

Product Specification ML-3865-B1 MEMS silicon microphone Product Specification ML-3865-B1 MEMS silicon microphone Description ML-3865-3729-B1 is high-performance analog bottom-port silicon microphone that receives the sound signal from the hole on PCB. By using

More information

Wafer-level Vacuum Packaged X and Y axis Gyroscope Using the Extended SBM Process for Ubiquitous Robot applications

Wafer-level Vacuum Packaged X and Y axis Gyroscope Using the Extended SBM Process for Ubiquitous Robot applications Proceedings of the 17th World Congress The International Federation of Automatic Control Wafer-level Vacuum Packaged X and Y axis Gyroscope Using the Extended SBM Process for Ubiquitous Robot applications

More information

IM69D120. Description. Features. Typical applications. High performance digital XENSIVTM MEMS microphone

IM69D120. Description. Features. Typical applications. High performance digital XENSIVTM MEMS microphone IM69D120 High performance digital XENSIVTM MEMS microphone Description The IM69D120 is designed for applications where low self-noise (high SNR), wide dynamic range, low distortions and a high acoustic

More information

Design & Simulation of Multi Gate Piezoelectric FET Devices for Sensing Applications

Design & Simulation of Multi Gate Piezoelectric FET Devices for Sensing Applications Design & Simulation of Multi Gate Piezoelectric FET Devices for Sensing Applications Sunita Malik 1, Manoj Kumar Duhan 2 Electronics & Communication Engineering Department, Deenbandhu Chhotu Ram University

More information

A Tutorial on Acoustical Transducers: Microphones and Loudspeakers

A Tutorial on Acoustical Transducers: Microphones and Loudspeakers A Tutorial on Acoustical Transducers: Microphones and Loudspeakers Robert C. Maher Montana State University EELE 217 Science of Sound Spring 2012 Test Sound Outline Introduction: What is sound? Microphones

More information

MEMS Sensors: From Automotive. CE Applications. MicroNanoTec Forum Innovations for Industry April 19 th Hannover, Germany

MEMS Sensors: From Automotive. CE Applications. MicroNanoTec Forum Innovations for Industry April 19 th Hannover, Germany MEMS Sensors: From Automotive to CE Applications MicroNanoTec Forum Innovations for Industry 2010 April 19 th Hannover, Germany Oliver Schatz, CTO 1 Engineering April 2010 GmbH 2009. All rights reserved,

More information

Product Specification ML T1 MEMS silicon microphone

Product Specification ML T1 MEMS silicon microphone Product Specification ML-3865-3526-T1 MEMS silicon microphone Description ML-3865-3526-T1 is high-performance analog top-port silicon microphone that receives the sound signal from the hole on PCB. By

More information

MP34DB02. MEMS audio sensor omnidirectional digital microphone. Description. Features. Applications

MP34DB02. MEMS audio sensor omnidirectional digital microphone. Description. Features. Applications MP34DB02 MEMS audio sensor omnidirectional digital microphone Datasheet - production data Speech recognition A/V elearning devices Gaming and virtual reality input devices Digital still and video cameras

More information

MICROMACHINED INTERFEROMETER FOR MEMS METROLOGY

MICROMACHINED INTERFEROMETER FOR MEMS METROLOGY MICROMACHINED INTERFEROMETER FOR MEMS METROLOGY Byungki Kim, H. Ali Razavi, F. Levent Degertekin, Thomas R. Kurfess G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta,

More information

The study on the woofer speaker characteristics due to design parameters

The study on the woofer speaker characteristics due to design parameters The study on the woofer speaker characteristics due to design parameters Byoung-sam Kim 1 ; Jin-young Park 2 ; Xu Yang 3 ; Tae-keun Lee 4 ; Hongtu Sun 5 1 Wonkwang University, South Korea 2 Wonkwang University,

More information

SPA2629LR5H-B. Low Noise Zero-Height SiSonic TM Microphone. The SPA2629LR5H-B is a miniature, highperformance,

SPA2629LR5H-B. Low Noise Zero-Height SiSonic TM Microphone. The SPA2629LR5H-B is a miniature, highperformance, Low Noise Zero-Height SiSonic TM Microphone The SPA2629LR5H-B is a miniature, highperformance, low power, bottom port silicon microphone. Using Knowles proven high performance SiSonic TM MEMS technology,

More information

Fabrication and application of a wireless inductance-capacitance coupling microsensor with electroplated high permeability material NiFe

Fabrication and application of a wireless inductance-capacitance coupling microsensor with electroplated high permeability material NiFe Journal of Physics: Conference Series Fabrication and application of a wireless inductance-capacitance coupling microsensor with electroplated high permeability material NiFe To cite this article: Y H

More information

VHDL-AMS Behavioural Modelling of a CMUT Element Samuel Frew University of British Columbia

VHDL-AMS Behavioural Modelling of a CMUT Element Samuel Frew University of British Columbia VHDL-AMS Behavioural Modelling of a CMUT Element Samuel Frew University of British Columbia frews@ece.ubc.ca Hadi Najar University of British Columbia motieian@ece.ubc.ca Edmond Cretu University of British

More information

SPU0414HR5H-SB. Amplified SiSonic TM Microphone. The SPU0414HR5H-SB is a miniature, highperformance,

SPU0414HR5H-SB. Amplified SiSonic TM Microphone. The SPU0414HR5H-SB is a miniature, highperformance, SPU0414HR5H-SB Amplified SiSonic TM Microphone The SPU0414HR5H-SB is a miniature, highperformance, low power, top port silicon microphone. Using Knowles proven high performance SiSonic TM MEMS technology,

More information

MEMS: THEORY AND USAGE IN INDUSTRIAL AND CONSUMER APPLICATIONS

MEMS: THEORY AND USAGE IN INDUSTRIAL AND CONSUMER APPLICATIONS MEMS: THEORY AND USAGE IN INDUSTRIAL AND CONSUMER APPLICATIONS Manoj Kumar STMicroelectronics Private Limited, Greater Noida manoj.kumar@st.com Abstract: MEMS is the integration of mechanical elements

More information

MEMS Real-Time Clocks: small footprint timekeeping. Paolo Frigerio November 15 th, 2018

MEMS Real-Time Clocks: small footprint timekeeping. Paolo Frigerio November 15 th, 2018 : small footprint timekeeping Paolo Frigerio paolo.frigerio@polimi.it November 15 th, 2018 Who? 2 Paolo Frigerio paolo.frigerio@polimi.it BSc & MSc in Electronics Engineering PhD with Prof. Langfelder

More information

Application Note 5012

Application Note 5012 MGA-61563 High Performance GaAs MMIC Amplifier Application Note 5012 Application Information The MGA-61563 is a high performance GaAs MMIC amplifier fabricated with Avago Technologies E-pHEMT process and

More information

F4-(A)HDMOE-J098R3627-5P

F4-(A)HDMOE-J098R3627-5P High AOP / Multiple Clock Mode / Narrow Sensitivity OMNI-DIRECTIONAL BOTTOM PORT 1. INTRODUCTION Digital MEMS Microphone - ½ Cycle PDM 24bit, Full Scale=128dBSPL Bottom Port Type Sensitivity is Typical

More information

ICS Ultra-Low Noise Microphone with Differential Output

ICS Ultra-Low Noise Microphone with Differential Output Ultra-Low Noise Microphone with Differential Output GENERAL DESCRIPTION The ICS-40720* is an ultra-low noise, differential analog output, bottom-ported MEMS microphone. The ICS-40720 includes a MEMS microphone

More information

ICS Ultra-Low Noise Microphone with Differential Output

ICS Ultra-Low Noise Microphone with Differential Output Ultra-Low Noise Microphone with Differential Output GENERAL DESCRIPTION The ICS-40730 is an ultra-low noise, differential analog output, bottom-ported MEMS microphone. The ICS-40730 includes a MEMS microphone

More information

OBSOLETE. High Accuracy 1 g to 5 g Single Axis imems Accelerometer with Analog Input ADXL105*

OBSOLETE. High Accuracy 1 g to 5 g Single Axis imems Accelerometer with Analog Input ADXL105* a FEATURES Monolithic IC Chip mg Resolution khz Bandwidth Flat Amplitude Response ( %) to khz Low Bias and Sensitivity Drift Low Power ma Output Ratiometric to Supply User Scalable g Range On-Board Temperature

More information

High Accuracy 1 g to 5 g Single Axis imems Accelerometer with Analog Input ADXL105*

High Accuracy 1 g to 5 g Single Axis imems Accelerometer with Analog Input ADXL105* a FEATURES Monolithic IC Chip mg Resolution khz Bandwidth Flat Amplitude Response ( %) to khz Low Bias and Sensitivity Drift Low Power ma Output Ratiometric to Supply User Scalable g Range On-Board Temperature

More information

MP45DT02. MEMS audio sensor omnidirectional digital microphone. Description. Features. Applications

MP45DT02. MEMS audio sensor omnidirectional digital microphone. Description. Features. Applications MEMS audio sensor omnidirectional digital microphone Datasheet - production data HLGA (4.72 x 3.76 mm) 6LD Features Single supply voltage Low power consumption 120 dbspl acoustic overload point Omnidirectional

More information

ICS Ultra-Low Noise Microphone with Differential Output

ICS Ultra-Low Noise Microphone with Differential Output Ultra-Low Noise Microphone with Differential Output GENERAL DESCRIPTION The is an ultra-low noise, differential analog output, bottom-ported MEMS microphone. The includes a MEMS microphone element, an

More information

PROBLEM SET #7. EEC247B / ME C218 INTRODUCTION TO MEMS DESIGN SPRING 2015 C. Nguyen. Issued: Monday, April 27, 2015

PROBLEM SET #7. EEC247B / ME C218 INTRODUCTION TO MEMS DESIGN SPRING 2015 C. Nguyen. Issued: Monday, April 27, 2015 Issued: Monday, April 27, 2015 PROBLEM SET #7 Due (at 9 a.m.): Friday, May 8, 2015, in the EE C247B HW box near 125 Cory. Gyroscopes are inertial sensors that measure rotation rate, which is an extremely

More information

MEMS-Based AC Voltage Reference

MEMS-Based AC Voltage Reference PUBLICATION III MEMS-Based AC Voltage Reference In: IEEE Transactions on Instrumentation and Measurement 2005. Vol. 54, pp. 595 599. Reprinted with permission from the publisher. IEEE TRANSACTIONS ON INSTRUMENTATION

More information

77 GHz VCO for Car Radar Systems T625_VCO2_W Preliminary Data Sheet

77 GHz VCO for Car Radar Systems T625_VCO2_W Preliminary Data Sheet 77 GHz VCO for Car Radar Systems Preliminary Data Sheet Operating Frequency: 76-77 GHz Tuning Range > 1 GHz Output matched to 50 Ω Application in Car Radar Systems ESD: Electrostatic discharge sensitive

More information

PR-E 3 -SMA. Super Low Noise Preamplifier. - Datasheet -

PR-E 3 -SMA. Super Low Noise Preamplifier. - Datasheet - PR-E 3 -SMA Super Low Noise Preamplifier - Datasheet - Features: Low Voltage Noise (0.6nV/ Hz, @ 1MHz single channel mode) Low Current Noise (12fA/ Hz @ 10kHz) f = 0.5kHz to 4MHz, A = 250V/V (customizable)

More information

Micro and Smart Systems

Micro and Smart Systems Micro and Smart Systems Lecture - 39 (1)Packaging Pressure sensors (Continued from Lecture 38) (2)Micromachined Silicon Accelerometers Prof K.N.Bhat, ECE Department, IISc Bangalore email: knbhat@gmail.com

More information

SPM0404HE5H-PB. SiSonic TM Microphone With Enhanced RF Protection. The SPM0404HE5H-PB is a miniature, highperformance,

SPM0404HE5H-PB. SiSonic TM Microphone With Enhanced RF Protection. The SPM0404HE5H-PB is a miniature, highperformance, SiSonic TM Microphone With Enhanced RF Protection The SPM0404HE5H-PB is a miniature, highperformance, low power, top port silicon microphone. Using Knowles proven high performance SiSonic TM MEMS technology,

More information

SPECIFICATION OF ELECTRET CONDENSER MICROPHONE ( TO : ) All Parts are Halogen Free Material. Microphone Technology Leadership

SPECIFICATION OF ELECTRET CONDENSER MICROPHONE ( TO : ) All Parts are Halogen Free Material. Microphone Technology Leadership SPECIFICATION OF ELECTRET CONDENSER MICROPHONE ( TO : ) MODEL NO. : ASMO-C110T42-3P H/F DIRECTIVITY : OMNI-DIRECTIONAL Prepared Checked Approved USER Name Sign. Prepared Checked Approved BSE Name HJ Kim

More information

RF MEMS Simulation High Isolation CPW Shunt Switches

RF MEMS Simulation High Isolation CPW Shunt Switches RF MEMS Simulation High Isolation CPW Shunt Switches Authored by: Desmond Tan James Chow Ansoft Corporation Ansoft 2003 / Global Seminars: Delivering Performance Presentation #4 What s MEMS Micro-Electro-Mechanical

More information

Vibrating MEMS resonators

Vibrating MEMS resonators Vibrating MEMS resonators Vibrating resonators can be scaled down to micrometer lengths Analogy with IC-technology Reduced dimensions give mass reduction and increased spring constant increased resonance

More information

DAMPING, NOISE, AND IN-PLANE RESPONSE OF MEMS ACOUSTIC EMISSION SENSORS

DAMPING, NOISE, AND IN-PLANE RESPONSE OF MEMS ACOUSTIC EMISSION SENSORS DAMPING, NOISE, AND IN-PLANE RESPONSE OF MEMS ACOUSTIC EMISSION SENSORS AMELIA P. WRIGHT, WEI WU*, IRVING J. OPPENHEIM and DAVID W. GREVE* Dept. of Civil & Environmental Engineering, *Dept. of Electrical

More information

Electrically coupled MEMS bandpass filters Part I: With coupling element

Electrically coupled MEMS bandpass filters Part I: With coupling element Sensors and Actuators A 122 (2005) 307 316 Electrically coupled MEMS bandpass filters Part I: With coupling element Siavash Pourkamali, Farrokh Ayazi School of Electrical and Computer Engineering, Georgia

More information

Resonant MEMS Acoustic Switch Package with Integral Tuning Helmholtz Cavity

Resonant MEMS Acoustic Switch Package with Integral Tuning Helmholtz Cavity Resonant MEMS Acoustic Switch Package with Integral Tuning Helmholtz Cavity J. Bernstein, M. Bancu, D. Gauthier, M. Hansberry, J. LeBlanc, O. Rappoli, M. Tomaino-Iannucci, M. Weinberg May 1, 2018 Outline

More information

SPS SERIES. SPS Series

SPS SERIES. SPS Series SPS SERIES INTRODUCTION Based on the in-house expertise in vibration characteristics of piezoceramic material and micro-acoustics, Sonitron successfully developed the SPS-series piezoceramic speakers for

More information

Application Note 5011

Application Note 5011 MGA-62563 High Performance GaAs MMIC Amplifier Application Note 511 Application Information The MGA-62563 is a high performance GaAs MMIC amplifier fabricated with Avago Technologies E-pHEMT process and

More information

BMC s heritage deformable mirror technology that uses hysteresis free electrostatic

BMC s heritage deformable mirror technology that uses hysteresis free electrostatic Optical Modulator Technical Whitepaper MEMS Optical Modulator Technology Overview The BMC MEMS Optical Modulator, shown in Figure 1, was designed for use in free space optical communication systems. The

More information

Low Power Systems for Wireless Microsensors

Low Power Systems for Wireless Microsensors Low Power Systems for Wireless Microsensors K. Bult, A. Burstein, D. Chang, M. Dong, M. Fielding, E. Kruglick, J. Ho, F. Lin, T. H. Lin, W. J. Kaiser, H. Marcy*, R. Mukai, P. Nelson, F. L. Newburg, K.

More information

Multi-field Microphone when the Sound Field is unknown

Multi-field Microphone when the Sound Field is unknown Multi-field Microphone when the Sound Field is unknown Svend Gade, Niels V. Bøgholm Brüel & Kjær Sound & Vibration A/S, Skodsborgvej 307 2850 Nærum, Denmark ABSTRACT Only a small percentage of all acoustical

More information

ICS High SPL Analog Microphone with Extended Low Frequency Response

ICS High SPL Analog Microphone with Extended Low Frequency Response High SPL Analog Microphone with Extended Low Frequency Response GENERAL DESCRIPTION The ICS-40300* is a low-noise, high SPL MEMS microphone with extended low frequency response. The ICS-40300 consists

More information

Optical MEMS pressure sensor based on a mesa-diaphragm structure

Optical MEMS pressure sensor based on a mesa-diaphragm structure Optical MEMS pressure sensor based on a mesa-diaphragm structure Yixian Ge, Ming WanJ *, and Haitao Yan Jiangsu Key Lab on Opto-Electronic Technology, School of Physical Science and Technology, Nanjing

More information

SPEAKER SC-COBRA-PEEK-WP

SPEAKER SC-COBRA-PEEK-WP 2403 260 00132 SPEAKER-1115-3.5-SC-COBRA-PEEK-WP The 11 15 3.5 mm COBRA-PEEK-WP is an advanced miniature speaker of rectangular shape, specifically is a high end miniature speaker specifically designed

More information

A Micro-Machined Microphone Based on a Combination of Electret and Field-Effect Transistor

A Micro-Machined Microphone Based on a Combination of Electret and Field-Effect Transistor Sensors 2015, 15, 20232-20249; doi:10.3390/s150820232 Article OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors A Micro-Machined Microphone Based on a Combination of Electret and Field-Effect

More information

DISCONTINUED PC3232TB BIPOLAR ANALOG INTEGRATED CIRCUIT 5 V, SILICON GERMANIUM MMIC MEDIUM OUTPUT POWER AMPLIFIER DESCRIPTION FEATURES APPLICATIONS

DISCONTINUED PC3232TB BIPOLAR ANALOG INTEGRATED CIRCUIT 5 V, SILICON GERMANIUM MMIC MEDIUM OUTPUT POWER AMPLIFIER DESCRIPTION FEATURES APPLICATIONS DESCRIPTION BIPOLAR ANALOG INTEGRATED CIRCUIT PC3232TB 5 V, SILICON GERMANIUM MMIC MEDIUM OUTPUT POWER AMPLIFIER The PC3232TB is a silicon germanium (SiGe) monolithic integrated circuit designed as IF

More information

Knowles Acoustics 1151 Maplewood Drive Itasca, IL 60143

Knowles Acoustics 1151 Maplewood Drive Itasca, IL 60143 Amplified Mini SiSonic Microphone Specification With Enhanced RF Protection Halogen Free Knowles Acoustics 1151 Maplewood Drive Itasca, IL 60143 1of 10 1. DESCRIPTION AND APPLICATION 1.1 Description Amplified

More information

Tri (X,Y,Z) Axis Accelerometer Specifications

Tri (X,Y,Z) Axis Accelerometer Specifications 36 Thornwood Drive APPROVED BY DATE Ithaca, New York 14850 PROD. MGR. Scott Miller 4/25/06 Tel: 607-257-1080 MEMS MGR. Scott Miller 4/25/06 Fax: 607-257-1146 ASIC MGR. Jim Groves 7/12/05 www.kionix.com

More information

DESIGN FOR MOSIS EDUCATIONAL RESEARCH PROGRAM REPORT CMOS MAGNETIC FIELD STRUCTURES AND READ-OUT CIRCUIT. Prepared By: B.

DESIGN FOR MOSIS EDUCATIONAL RESEARCH PROGRAM REPORT CMOS MAGNETIC FIELD STRUCTURES AND READ-OUT CIRCUIT. Prepared By: B. Grupo de Microsensores y Circuitos Integrados DESIGN FOR MOSIS EDUCATIONAL RESEARCH PROGRAM REPORT CMOS MAGNETIC FIELD STRUCTURES AND READ-OUT CIRCUIT Prepared By: B. Susana Soto Cruz Senior Research Institution:

More information

Tri (X,Y,Z) Axis Accelerometer Specifications

Tri (X,Y,Z) Axis Accelerometer Specifications 36 Thornwood Drive APPROVED BY DATE Ithaca, New York 14850 PROD. MGR. S. Miller 3/12/07 Tel: 607-257-1080 TECH. MGR. K. Foust 3/12/07 Fax: 607-257-1146 TEST MGR. J. Chong 3/12/07 www.kionix.com VP ENG.

More information

Chapter 2. Literature Review

Chapter 2. Literature Review Chapter 2 Literature Review 2.1 Development of Electronic Packaging Electronic Packaging is to assemble an integrated circuit device with specific function and to connect with other electronic devices.

More information

Product Specification

Product Specification Product Specification SCA620-EF8H1A SINGLE AXIS ACCELEROMETER WITH ANALOG INTERFACE The SCA620 accelerometer consists of a silicon bulk micro machined sensing element chip and a signal conditioning ASIC.

More information

Circular Piezoelectric Accelerometer for High Band Width Application

Circular Piezoelectric Accelerometer for High Band Width Application Downloaded from orbit.dtu.dk on: Apr 27, 2018 Circular Piezoelectric Accelerometer for High Band Width Application Hindrichsen, Christian Carstensen; Larsen, Jack; Lou-Møller, Rasmus; Hansen, K.; Thomsen,

More information

MEMS Processes at CMP

MEMS Processes at CMP MEMS Processes at CMP MEMS Processes Bulk Micromachining MUMPs from MEMSCAP Teledyne DALSA MIDIS Micralyne MicraGEM-Si CEA/LETI Photonic Si-310 PHMP2M 2 Bulk micromachining on CMOS Compatible with electronics

More information

Improved Low Cost ±5 g Dual-Axis Accelerometer with Ratiometric Analog Outputs MXR7305VF

Improved Low Cost ±5 g Dual-Axis Accelerometer with Ratiometric Analog Outputs MXR7305VF Improved Low Cost ±5 g Dual-Axis Accelerometer with Ratiometric Analog Outputs MXR7305VF FEATURES Dual axis accelerometer fabricated on a single CMOS IC Monolithic design with mixed mode signal processing

More information

Technical Data Measurement Microphones

Technical Data Measurement Microphones Technical Data s Consisting of Type Classification according IEC 61672 and ANSI S1.4 Capsule / Transducer Maximum SPL @ THD 3%, 1 khz 22 Certified MA220 + MC230 or MC230A Capsule Certified -WP Outdoor

More information

SPW2430HR5H-B. Top Port SiSonic TM Microphone. The SPW2430HR5H-B is a miniature, highperformance,

SPW2430HR5H-B. Top Port SiSonic TM Microphone. The SPW2430HR5H-B is a miniature, highperformance, Top Port SiSonic TM Microphone The SPW2430HR5H-B is a miniature, highperformance, low power, top port silicon microphone. Using Knowles proven high performance SiSonic TM MEMS technology, the SPW2430HR5H-B

More information

5 V, SILICON GERMANIUM MMIC MEDIUM OUTPUT POWER AMPLIFIER. Part Number Order Number Package Marking Supplying Form

5 V, SILICON GERMANIUM MMIC MEDIUM OUTPUT POWER AMPLIFIER. Part Number Order Number Package Marking Supplying Form DESCRIPTION BIPOLAR ANALOG INTEGRATED CIRCUIT UPC3226TB 5 V, SILICON GERMANIUM MMIC MEDIUM OUTPUT POWER AMPLIFIER The PC3226TB is a silicon germanium (SiGe) monolithic integrated circuit designed as IF

More information

F2-(A)HCDMO-B125T26-6CP

F2-(A)HCDMO-B125T26-6CP High SNR Mini OMNI-DIRECTIONAL TOP PORT 1. INTRODUCTION Digital MEMS Microphone - ½ PDM 16bit, Full Scale=120dBSPL Top Port Type - Sensitivity is Typical -26dBFS High Signal to Noise Ratio(SNR) Typical

More information

Filterless 3W Class- D Mono Audio Amplifier

Filterless 3W Class- D Mono Audio Amplifier Preliminary Datasheet LPA00 Filterless 3W Class- D Mono Audio Amplifier General Description The LPA00 is a 3W, class-d audio amplifier. It offers low THD+N, allowing it to achieve high-quality Power Supply

More information

Design and Fabrication of RF MEMS Switch by the CMOS Process

Design and Fabrication of RF MEMS Switch by the CMOS Process Tamkang Journal of Science and Engineering, Vol. 8, No 3, pp. 197 202 (2005) 197 Design and Fabrication of RF MEMS Switch by the CMOS Process Ching-Liang Dai 1 *, Hsuan-Jung Peng 1, Mao-Chen Liu 1, Chyan-Chyi

More information

Low-Cost Far-Infrared FPA based on High-Volume Pressure Sensor Process

Low-Cost Far-Infrared FPA based on High-Volume Pressure Sensor Process Low-Cost Far-Infrared FPA based on High-Volume Pressure Sensor Process Michael Krueger 1, Ingo Herrmann 1 Robert Bosch GmbH - Automotive Electronics, Tuebinger Str. 13, D-776 Reutlingen, Germany, michael.krueger@de.bosch.com

More information

Two-Dimensional Capacitive Micromachined Ultrasonic Transducer (CMUT) Arrays for a Miniature Integrated Volumetric Ultrasonic Imaging System

Two-Dimensional Capacitive Micromachined Ultrasonic Transducer (CMUT) Arrays for a Miniature Integrated Volumetric Ultrasonic Imaging System Two-Dimensional Capacitive Micromachined Ultrasonic Transducer (CMUT) Arrays for a Miniature Integrated Volumetric Ultrasonic Imaging System X. Zhuang, I. O. Wygant, D. T. Yeh, A. Nikoozadeh, O. Oralkan,

More information

Capacitive Versus Thermal MEMS for High-Vibration Applications James Fennelly

Capacitive Versus Thermal MEMS for High-Vibration Applications James Fennelly Capacitive Versus Thermal MEMS for High-Vibration Applications James Fennelly Design engineers involved in the development of heavy equipment that operate in high shock and vibration environments need

More information