Features. = +25 C, With Vee = -5V & VCTL= 0/-5V. Attenuation Range DC GHz 31.5 db

Size: px
Start display at page:

Download "Features. = +25 C, With Vee = -5V & VCTL= 0/-5V. Attenuation Range DC GHz 31.5 db"

Transcription

1 v LSB GaAs MMIC 6-BIT DIGITAL Typical Applications The is ideal for: Basestation Infrastructure Fiber Optics & Broadband Telecom Microwave & VSAT Radios Military & Space Test Instrumentation Functional Diagram Features.5 LSB Steps to 31.5 Single Control Line Per Bit +/-.5 Typical Bit Error mm 2 Leadless SMT Plastic Package General Description The is a broadband 6-bit GaAs IC digital attenuator in a low cost leadless surface mount package. Covering DC to 13 GHz, the insertion loss is less then 4 typical. The attenuator bit values are.5 (LSB), 1, 2, 4, 8, and 16 for a total attenuation of Attenuation accuracy is excellent at ±.5 typical step error with an IIP3 of +32 m. Six control voltage inputs, toggled between and -5V, are used to select each attenuation state. A single Vee bias of -5V allows operation at frequencies down to DC. Electrical Specifications, T A = +25 C, With Vee = -5V & VCTL= /-5V Insertion Loss Parameter Frequency (GHz) Min. Typ. Max. Units DC - 4. GHz GHz GHz Attenuation Range DC GHz 31.5 Return Loss (RF1 & RF2, All Atten. States) DC GHz 12 Attenuation Accuracy: (Referenced to Insertion Loss) States States DC GHz DC GHz ±.3 + 3% of Atten. Setting Max ±.3 + 5% of Atten. Setting Max Input Power for. Compression Ghz 22 m Input Third Order Intercept Point (Two-Tone Input Power= m Each Tone) Switching Characteristics REF State All Other States Ghz DC GHz m m trise, tfall (1/% RF) ton/toff (5% CTL to 1/% RF) 3 5 ns ns Elizabeth Drive, Chelmsford, MA 1824 Phone: Fax:

2 v LSB GaAs MMIC 6-BIT DIGITAL GaAs MMIC SUB-HARMONICALLY PUMPED MIXER GHz Insertion Loss Return Loss RF1, RF2 INSERTION LOSS () NORMALIZED ATTENUATION () C +85 C -4 C Normalized Attenuation RETURN LOSS () BIT ERROR () Bit Error vs. Attenuation State.1 GHz 4 GHz 8 GHz 13 GHz ATTENUATION STATE () Bit Error vs. Frequency 2 Relative Phase vs. Frequency 1 BIT ERROR () RELATIVE PHASE (deg) Elizabeth Drive, Chelmsford, MA 1824 Phone: Fax:

3 v LSB GaAs MMIC 6-BIT DIGITAL Worst Case Step Error Between Successive Attenuation States Bias Voltage & Current STEP ERROR () Truth Table V1 16 V2 Control Voltage Input V3 4 V4 2 V5 V6.5 Low Low Low Low Low Low Attenuation State RF1 - RF2 Reference I.L. Vee (VDC) Control Voltage State Low High Vee Range= -5. Vdc ± 1% Iee (Typ.) (ma) Bias Condition to 7 µa Typ. -5 to 5 µa Typ. Iee (Max.) (ma) Low Low Low Low Low High.5 Low Low Low Low High Low Low Low Low High Low Low 2 Low Low High Low Low Low 4 Low High Low Low Low Low High Low Low Low Low Low 16 High High High High High High 31.5 Any Combination of the above states will provide an attenuation approximately equal to the sum of the bits selected Elizabeth Drive, Chelmsford, MA 1824 Phone: Fax:

4 v LSB GaAs MMIC 6-BIT DIGITAL Absolute Maximum Ratings Control Voltage (V1 to V6) Vee -.5 Vdc Bias Voltage (Vee) -7. Vdc Channel Temperature 15 C Thermal Resistance 14 C/W Storage Temperature -65 to + 15 C Operating Temperature -55 to +85 C RF Input Power ( GHz) +25 m Outline Drawing NOTES: 1. MATERIAL PACKAGE BODY: LOW STRESS INJECTION MOLDED PLASTIC SILICA AND SILICON IMPREGNATED. 2. LEAD AND GROUND PADDLE MATERIAL: COPPER ALLOY 3. LEAD AND GROUND PADDLE PLATING: Sn/Pb SOLDER 4. DIMENSIONS ARE IN INCHES [MILLIMETERS]. 5. LEAD SPACING TOLERANCE IS NON-CUMULATIVE 6. PAD BURR LENGTH SHALL BE.15mm MAXIMUM. PAD BURR HEIGHT SHALL BE.5mm MAXIMUM. 7. PACKAGE WARP SHALL NOT EXCEED.5mm. 8. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.. REFER TO HITTITE APPLICATION NOTE SUGGESTED PCB LAND PATTERN. 12 Elizabeth Drive, Chelmsford, MA 1824 Phone: Fax:

5 v LSB GaAs MMIC 6-BIT DIGITAL Pin Description Pad Number Function Description Interface Schematic 1, 3, 1, 12 GND Package bottom has an exposed metal paddle that must also be connected to RF grount 2, 11 RFIN, RFOUT This pin is DC coupled and matched to 5 Ohm. Blocking capacitors are required if RF line potential is not equal to V. 4, 5, 6, 7, 8, V6 - V1 See truth table and control voltage table. 13, 14, 16 N/C This pin should be connected to PCB RF ground to maximize performance 15 VEE Supply Voltage -5V ± 1% Suggested Driver Circuit (One Circuit Required Per Bit Control Input) Simple driver using inexpensive standard logic ICs provides fast switching using minimum DC current. * Recommended value to suppress unwanted RF signals at V1 - V6 control lines Elizabeth Drive, Chelmsford, MA 1824 Phone: Fax:

6 v LSB GaAs MMIC 6-BIT DIGITAL Evaluation PCB * R1 - R6 = 1 Ohm. These resistors are optional and may be used to enhance decoupling of the RF path from the control inputs. The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 5 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A suffi cient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request. List of Material Item J1 - J2 J3 C1 R1 - R6 U1 PCB* Description PC Mount SMA Connector 8 Pin DC Connector.1 µf Capacitor, 63 Pkg. 1 Ohm Resistor, 63 Pkg. Digital Attenuator Evaluation PCB * Circuit Board Material: Rogers Elizabeth Drive, Chelmsford, MA 1824 Phone: Fax:

7 This datasheet has been download from: Datasheets for electronics components.

= +25 C, With Vee = -5V & VCTL= 0/-5V

= +25 C, With Vee = -5V & VCTL= 0/-5V v.3.5db LSB GaAs MMIC 6-BIT DIGITAL Typical Applications Features The is ideal for: Basestation Infrastructure Fiber Optics & Broadband Telecom Microwave & VSAT Radios Military & Space Test Instrumentation

More information

Features. = +25 C, Vee = -5V & VCTL= 0/Vee GHz GHz GHz. Attenuation Range DC GHz 31 db. DC - 1.

Features. = +25 C, Vee = -5V & VCTL= 0/Vee GHz GHz GHz. Attenuation Range DC GHz 31 db. DC - 1. v5.112 HMC37QS16G 1 LSB GaAs MMIC 5-BIT DIGITAL Typical Applications The HMC37QS16G is ideal for: Cellular PCS, ISM, MMDS Wireless Local Loop Features 1 LSB Steps to 31 Single Control Line Per Bit +/-.5

More information

Features. Parameter Frequency (GHz) Min. Typ. Max. Units GHz GHz GHz. Attenuation Range GHz 15.

Features. Parameter Frequency (GHz) Min. Typ. Max. Units GHz GHz GHz. Attenuation Range GHz 15. v.91.5 db LSB GaAs MMIC 5-BIT DIGITAL ATTENUATOR,.1-33 GHz Typical Applications The HMC941LP4 / HMC941LP4E is ideal for: Fiber Optics & Broadband Telecom Microwave Radio & VSAT Military Radios, Radar &

More information

Parameter Frequency (GHz) Min. Typ. Max. Units DC GHz GHz GHz GHz Attenuation Range DC - 5.

Parameter Frequency (GHz) Min. Typ. Max. Units DC GHz GHz GHz GHz Attenuation Range DC - 5. 5 Typical Applications HMC54LP3 / 54LP3E v.65 1 LSB GaAs MMIC 4-BIT DIGITAL Features The HMC54LP3 / HMC54LP3E is ideal for both RF and IF applications: Cellular Infrastructure ISM, MMDS, WLAN, WiMAX, WiBro

More information

OBSOLETE. Parameter Frequency (GHz) Min. Typ. Max. Units DC GHz GHz GHz Attenuation Range DC - 5.

OBSOLETE. Parameter Frequency (GHz) Min. Typ. Max. Units DC GHz GHz GHz Attenuation Range DC - 5. 5 Typical Applications HMC54LP3 / 54LP3E v.65 1 LSB GaAs MMIC 4-BIT DIGITAL Features The HMC54LP3 / HMC54LP3E is ideal for both RF and IF applications: Cellular Infrastructure ISM, MMDS, WLAN, WiMAX, WiBro

More information

HMC468LP3 / 468LP3E v

HMC468LP3 / 468LP3E v Typical Applications 1 LSB GaAs MMIC 3-BIT DIGITAL Features The HMC468LP3 / HMC468LP3E is ideal for: Cellular; UMTS/3G Infrastructure Fixed Wireless & WLL Microwave Radio & VSAT Test Equipment Functional

More information

OBSOLETE. Parameter Frequency (GHz) Min. Typ. Max. Units DC GHz GHz. Attenuation Range DC - 3 GHz 31 db

OBSOLETE. Parameter Frequency (GHz) Min. Typ. Max. Units DC GHz GHz. Attenuation Range DC - 3 GHz 31 db 5 Typical Applications The HMC47LP3(E) is ideal for: Cellular; UMTS/3G Infrastructure ISM, MMDS, WLAN, WiMAX Microwave Radio & VSAT Test Equipment and Sensors Functional Diagram HMC47LP3 / 47LP3E v4.118

More information

Parameter Frequency (GHz) Min. Typ. Max. Units DC GHz GHz GHz Attenuation Range DC GHz 31.5 db

Parameter Frequency (GHz) Min. Typ. Max. Units DC GHz GHz GHz Attenuation Range DC GHz 31.5 db v..5 LSB GaAs MMIC 6-BIT DIGITAL Typical Applications The is ideal for: 3G Infrastructure & access points Cellular/3G, LTE & UMB WiMAX, WiBN & Fixed Wireless Test Equipment and Sensors GSM, WCDMA & TD-SCDMA

More information

HMC540SLP3E v db LSB SILICON MMIC 4-BIT DIGITAL POSITIVE CONTROL ATTENUATOR, GHz

HMC540SLP3E v db LSB SILICON MMIC 4-BIT DIGITAL POSITIVE CONTROL ATTENUATOR, GHz HMC54SLP3E v.95 LSB SILICON MMIC 4-BIT DIGITAL POSITIVE CONTROL ATTENUATOR,. - 8 GHz Typical Applications Features The HMC54SLP3E is ideal for both RF and IF applications: Cellular Infrastructure Wireless

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK 5 Typical Applications The HMC472LP4(E)

More information

OBSOLETE. = +25 C, With Vdd = +5V & Vctl = 0/+5V. Parameter Frequency Min. Typ. Max. Units DC - 4 GHz GHz Attenuation Range DC - 10 GHz 10 db

OBSOLETE. = +25 C, With Vdd = +5V & Vctl = 0/+5V. Parameter Frequency Min. Typ. Max. Units DC - 4 GHz GHz Attenuation Range DC - 10 GHz 10 db Typical Applications The HMC8LP3E is ideal for: Test Equipment and Sensors ISM, MMDS, WLAN, WiMAX, WiBro Microwave Radio & VSAT Cellular Infrastructure Functional Diagram HMC8LP3E v.11 1 GaAs MMIC 1-BIT

More information

1 db LSB GaAs IC 5 - BIT DIGITAL ATTENUATOR DC - 4 GHz

1 db LSB GaAs IC 5 - BIT DIGITAL ATTENUATOR DC - 4 GHz HMC37QS16G 1 LSB GaAs IC 5 - BIT DIGITAL ATTENUATOR DC - 4 GHz FEBRUARY 1 V4.11 Features 1 LSB STEPS to 31 SINGLE CONTROL LINE PER BIT +/-.5 TYPICAL BIT ERROR MINIATURE QSOP-16 PACKAGE: 9.4 mm² General

More information

HMC542LP4 / 542LP4E v

HMC542LP4 / 542LP4E v 5 Typical Applications The HMC542LP4 / HMC542LP4E is ideal for both RF and IF applications: Cellular/PCS/3G Infrastructure ISM, MMDS, WLAN, WiMAX, & WiBro Microwave Radio & VSAT Test Equipment and Sensors

More information

Insertion Loss INSERTION LOSS () C +85C -4C Normalized Attenuation (Only Major States are Shown)

Insertion Loss INSERTION LOSS () C +85C -4C Normalized Attenuation (Only Major States are Shown) 5 Typical Applications The HMC35LP4 / HMC35LP4E is ideal for: Cellular/3G Infrastructure Fixed Wireless, WiMax & WiBro Test Instrumentation Functional Diagram.5 LSB GaAs MMIC 5-BIT SERIAL Features.5 LSB

More information

HMC307QS16G / 307QS16GE. Features OBSOLETE. = +25 C, Vee = -5V & VCTL= 0/Vee. Parameter Frequency Min. Typical Max. Units DC - 1.

HMC307QS16G / 307QS16GE. Features OBSOLETE. = +25 C, Vee = -5V & VCTL= 0/Vee. Parameter Frequency Min. Typical Max. Units DC - 1. 5 Typical Applications v8.98 HMC37QS16G / 37QS16GE 1 LSB GaAs MMIC 5-BIT DIGITAL Features The HMC37QS16G(E) is ideal for: Cellular PCS, ISM, MMDS Wireless Local Loop Functional Diagram 1 LSB Steps to 31

More information

OBSOLETE. = +25 C, Vdd = Vs= +5V, Vctl= 0/ +5V. Parameter Frequency Min. Typ. Max. Units DC GHz 37. db Gain (Maximum Gain State)

OBSOLETE. = +25 C, Vdd = Vs= +5V, Vctl= 0/ +5V. Parameter Frequency Min. Typ. Max. Units DC GHz 37. db Gain (Maximum Gain State) v.1212.5 db LSB GaAs MMIC 6-BIT DIGITAL Typical Applications The is ideal for: IF & RF Applications Cellular/3G Infrastructure WiBro / WiMAX / 4G Microwave Radio & VSAT Test Equipment and Sensors Functional

More information

Parameter Frequency (GHz) Min. Typ. Max. Units DC GHz GHz GHz Attenuation Range DC GHz 31.5 db

Parameter Frequency (GHz) Min. Typ. Max. Units DC GHz GHz GHz Attenuation Range DC GHz 31.5 db Typical Applications The is ideal for: 3G Infrastructure & access points Cellular/3G, LTE & UMB WiMAX, WiBN & Fixed Wireless Test Equipment and Sensors GSM, WCDMA & TD-SCDMA Functional Diagram Features.5

More information

= +25 C, With Vee = -5V & Vctl = 0/-5V

= +25 C, With Vee = -5V & Vctl = 0/-5V v.46.5db LSB GaAs MMIC 6-BIT DIGITAL Typical Applications Features The HMC44AG6 is ideal for: Telecom Infrastructure Military Radios, Radar & ECM Space Applications Test Instrumentation Functional Diagram.5

More information

Features. Return Loss (RF1, RF2) Off State GHz db. Input Power for 1 db Compression GHz dbm

Features. Return Loss (RF1, RF2) Off State GHz db. Input Power for 1 db Compression GHz dbm POSITIVE CONTROL SWITCH, DC* - 6.0 GHz Typical Applications This switch is suitable for usage in 50-Ohm or 75-Ohm systems: Broadband Fiber Optics Switched Filter Banks Wireless below 6.0 GHz Functional

More information

Parameter Frequency Min. Typ. Max. Units GHz GHz Attenuation Range GHz 31.5 db

Parameter Frequency Min. Typ. Max. Units GHz GHz Attenuation Range GHz 31.5 db v.37. db LSB GaAs MMIC 6-BIT DIGITAL POSITIVE CONTROL ATTENUATOR,. - 8. GHz Typical Applications Features ATTENUATORS - SMT The HMCALP3E is ideal for: WLAN & Point-to-Multi-Point Fiber Optics & Broadband

More information

Features. = +25 C, Vdd1 = Vdd2 = +3.5V, Idd = 80 ma [2]

Features. = +25 C, Vdd1 = Vdd2 = +3.5V, Idd = 80 ma [2] Typical Applications This is ideal for: Features Low Noise Figure: 1.8 db Point-to-Point Radios Point-to-Multi-Point Radios Military & Space Test Instrumentation Functional Diagram High Gain: 19 db High

More information

Features. Parameter Frequency (GHz) Min. Typ. Max. Units GHz GHz GHz. Attenuation Range GHz 15.

Features. Parameter Frequency (GHz) Min. Typ. Max. Units GHz GHz GHz. Attenuation Range GHz 15. v.6.5 LSB GaAs MMIC 5-BIT DIGITAL ATTENUATOR,. - 33 GHz Typical Applications Features The is ideal for: Fiber Optics & Broadband Telecom Microwave Radio & VSAT Military Radios, Radar & ECM Space Applications

More information

HMC349LP4C / 349LP4CE

HMC349LP4C / 349LP4CE Typical Applications The HMC349LP4C / HMC349LP4CE is ideal for: Basestation Infrastructure MMDS & 3.5 GHz WLL CATV/CMTS Test Instrumentation Functional Diagram Features High Isolation: 67 @ 1 GHz 62 @

More information

Features. = +25 C, With Vdd = Vdd1 = +5V, Vss = -5V. Parameter Frequency (GHz) Min. Typ. Max. Units GHz GHz

Features. = +25 C, With Vdd = Vdd1 = +5V, Vss = -5V. Parameter Frequency (GHz) Min. Typ. Max. Units GHz GHz v1.1116 Typical Applications The is ideal for: Features 1. LSB Steps to 3 Fiber Optics & Broadband Telecom Microwave Radio & VSAT Military Radios, Radar & ECM Space Applications Sensors Test & Measurement

More information

Features. = +25 C, 50 Ohm system

Features. = +25 C, 50 Ohm system v6.312 Typical Applications Features The E is ideal for: Point-to-Point Radio VSAT Radio Test Instrumentation Microwave Sensors Military, ECM & Radar Functional Diagram Wide Bandwidth: 5-26.5 GHz Excellent

More information

Features. = +25 C, Vdd = +3V to +5V & Vctl = 0/Vdd (Unless Otherwise Stated)

Features. = +25 C, Vdd = +3V to +5V & Vctl = 0/Vdd (Unless Otherwise Stated) Typical Applications Functional Diagram v1.7 The HMC288MS8 / HMC288MS8E is ideal for: Cellular PCS, ISM, MMDS WLL applications HMC288MS8 / 288MS8E 2 LSB GaAs MMIC 3-BIT DIGITAL ATTENUATOR,.7-3.7 GHz Features

More information

Features. Parameter Frequency Min. Typ. Max. Units. Return Loss Off State DC - 20 GHz 13 db

Features. Parameter Frequency Min. Typ. Max. Units. Return Loss Off State DC - 20 GHz 13 db Typical Applications The is ideal for: Telecom Infrastructure Microwave Radio & VSAT Military & Space Hybrids Test Instrumentation SATCOM & Sensors Functional Diagram Features Broadband Performance: DC

More information

Features OBSOLETE. = +25 C, 50 Ohm system, Vdd = +5V. Parameter Frequency Min. Typ. Max. Units GHz

Features OBSOLETE. = +25 C, 50 Ohm system, Vdd = +5V. Parameter Frequency Min. Typ. Max. Units GHz Typical Applications v.91 ATTENUATOR,.5-6. GHz Features The is ideal for: Point-to-Point Radio Cellular/3G & WiMAX/4G Infrastructure Test Instrumentation Microwave Sensors Military, ECM & Radar Functional

More information

Features. = +25 C, Vdd= 5V. Parameter Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Units. Frequency Range GHz

Features. = +25 C, Vdd= 5V. Parameter Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Units. Frequency Range GHz Typical Applications The HMC62LP / HMC62LPE Wideband LNA is ideal for: Telecom Infrastructure Microwave Radio & VSAT Military EW, ECM & C 3 I Test Instrumentation Fiber Optics Functional Diagram Features

More information

= +25 C, with Vcc = +5V. Parameter Frequency (GHz) Min. Typ. Max. Units DC GHz GHz GHz Attenuation Range DC GHz 31.

= +25 C, with Vcc = +5V. Parameter Frequency (GHz) Min. Typ. Max. Units DC GHz GHz GHz Attenuation Range DC GHz 31. Typical Applications The is ideal for: Cellular/PCS/3G Infrastructure ISM, MMDS, WLAN, WiMAX, & WiBro Microwave Radio & VSAT Test Equipment and Sensors Functional Diagram Features.5 db LSB Steps to 31.5

More information

v3.99 Attenuation vs. Frequency over Vctrl V -1.6 V -.6 V. V Attenuation vs. Vctrl1 Over 1 GHz, Vctrl2

v3.99 Attenuation vs. Frequency over Vctrl V -1.6 V -.6 V. V Attenuation vs. Vctrl1 Over 1 GHz, Vctrl2 5 TEL:755-83396822 FAX:755-83376182 E-MAIL: szss2@163.com Typical Applications v3.99 Features The is ideal for: Point-to-Point Radio VSAT Radio Test Instrumentation Microwave Sensors Military, ECM & Radar

More information

Features OBSOLETE. = +25 C, Vdd = +3V to +5V & Vctl = 0/Vdd (Unless Otherwise Stated) Parameter Frequency Min. Typical Max. Units

Features OBSOLETE. = +25 C, Vdd = +3V to +5V & Vctl = 0/Vdd (Unless Otherwise Stated) Parameter Frequency Min. Typical Max. Units Typical Applications The HMC288MS8 / HMC288MS8E is ideal for: Cellular PCS, ISM, MMDS WLL applications Functional Diagram 2 LSB GaAs MMIC 3-BIT DIGITAL ATTENUATOR,.7-3.7 GHz Features 2 LSB Steps to 14

More information

Features OBSOLETE. = +25 C, With 0/+5V Control, 50 Ohm System

Features OBSOLETE. = +25 C, With 0/+5V Control, 50 Ohm System Typical Applications This switch is suitable for usage in 50- Ohm or 75-Ohm systems: Broadband Fiber Optics Switched Filter Banks Wireless below 8 GHz Functional Diagram Features Broadband Performance:

More information

Features OBSOLETE. = +25 C, Rbias = 0 Ohm. Bypass Mode Failsafe Mode Parameter

Features OBSOLETE. = +25 C, Rbias = 0 Ohm. Bypass Mode Failsafe Mode Parameter 7 Typical Applications The HMC668LP3(E) is ideal for: Cellular/3G and LTE/WiMAX/4G BTS & Infrastructure Repeaters and Femtocells Tower Mounted Amplifiers Test & Measurement Equipment Functional Diagram

More information

= +25 C, Vdd = Vs= P/S= +5V

= +25 C, Vdd = Vs= P/S= +5V v3. HMC68LP5 / 68LP5E.5 db LSB GaAs MMIC 6-BIT DIGITAL VARIABLE GAIN AMPLIFIER w/ SERIAL CONTROL, DC - GHz Variable gain amplifiers - digital - SMT Typical Applications The HMC68LP5(E) is ideal for: IF

More information

Features OBSOLETE. = +25 C, With 0/+5V Control, 50 Ohm System. Parameter Frequency Min. Typ. Max. Units

Features OBSOLETE. = +25 C, With 0/+5V Control, 50 Ohm System. Parameter Frequency Min. Typ. Max. Units v5.85 Typical Applications Features The HMC348LP3 / HMC348LP3E is ideal for: 75 Ohm Systems CATV Signal Distribution, Cable Modem Headend & DBS IF Switching 5 Ohm Systems Basestation Infrastructure & Test

More information

HMC274QS16 / 274QS16E. Features OBSOLETE. = +25 C, Vdd = +3V to +5V & Vctl = 0/Vdd. Parameter Frequency Min. Typical Max. Units

HMC274QS16 / 274QS16E. Features OBSOLETE. = +25 C, Vdd = +3V to +5V & Vctl = 0/Vdd. Parameter Frequency Min. Typical Max. Units Typical Applications Functional Diagram v1. The HMC274QS16 / HMC274QS16E is ideal for: Cellular/PCS/3G Infrastructure 2.4 GHz ISM Radios Wireless Data HMC274QS16 / 274QS16E 1 LSB GaAs IC -BIT DIGITAL ATTENUATOR,.7-2.7

More information

Features. = +25 C, With 0/-5V Control, 50 Ohm System. Parameter Frequency Min. Typ. Max. Units

Features. = +25 C, With 0/-5V Control, 50 Ohm System. Parameter Frequency Min. Typ. Max. Units Typical Applications Features The HMC232ALP4E is ideal for: Telecom Infrastructure Microwave Radio & VSAT Military Radios, Radar & ECM Test Instrumentation Functional Diagram Isolation: 57 @ 3 GHz 50 @

More information

HMC1040LP3CE. Amplifiers - Low Noise - smt. GaAs phemt MMIC LOW NOISE AMPLIFIER, GHz. Features. Typical Applications. General Description

HMC1040LP3CE. Amplifiers - Low Noise - smt. GaAs phemt MMIC LOW NOISE AMPLIFIER, GHz. Features. Typical Applications. General Description v.112 HMC14LP3CE AMPLIFIER, 24-43. GHz Typical Applications This HMC14LP3BE is ideal for: Point-to-Point Radios Test Instrumentation SatCom Transponders & VSAT Industrial Sensors EW & ECM Subsystems Functional

More information

= +25 C, Vdd = Vs= P/S= +5V

= +25 C, Vdd = Vs= P/S= +5V v.3.5 db LSB GaAs MMIC 6-BIT DIGITAL VARIABLE GAIN Typical Applications The HMC68ALP5E is ideal for: IF & RF Applications Cellular/3G Infrastructure WiBro / WiMAX / 4G Microwave Radio & VSAT Test Equipment

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK v3.38 POWER AMPLIFIER, 2-2 GHz Typical

More information

Features. = +25 C, With 0/-5V Control, 50 Ohm System. Parameter Frequency Min. Typ. Max. Units GHz GHz

Features. = +25 C, With 0/-5V Control, 50 Ohm System. Parameter Frequency Min. Typ. Max. Units GHz GHz Typical Applications The is ideal for: Fiber Optics & Broadband Telecom Microwave Radio & VSAT Military Radios, Radar, & ECM Test Instrumentation Functional Diagram Features High Isolation: 45 @ 1 GHz

More information

HMC368LP4 / 368LP4E FREQ. MULTIPLIERS - ACTIVE - SMT. SMT GaAs PHEMT MMIC AMP-DOUBLER-AMP, 9-16 GHz OUTPUT. Typical Applications.

HMC368LP4 / 368LP4E FREQ. MULTIPLIERS - ACTIVE - SMT. SMT GaAs PHEMT MMIC AMP-DOUBLER-AMP, 9-16 GHz OUTPUT. Typical Applications. v3.5 Typical Applications Microwave Radios & VSAT Fiber Optic Infrastructure Military Communications & Radar Functional Diagram Features Output Power: +15 dbm Wide Input Power Range: to +1 dbm 1 khz SSB

More information

Features. = +25 C, With 0/+5V Control, 50 Ohm System

Features. = +25 C, With 0/+5V Control, 50 Ohm System Typical Applications This switch is suitable for usage in 50- Ohm or 75-Ohm systems: Broadband Fiber Optics Switched Filter Banks Wireless below 8 GHz Features Broadband Performance: DC - 8 GHz High Isolation:

More information

Features. = +25 C, With 0/-5V Control, 50 Ohm System. Parameter Frequency Min. Typ. Max. Units DC GHz

Features. = +25 C, With 0/-5V Control, 50 Ohm System. Parameter Frequency Min. Typ. Max. Units DC GHz Typical Applications This switch is suitable for usage in 50- Ohm or 75-Ohm systems: Broadband Fiber Optics Switched Filter Banks Wireless below 8 GHz Functional Diagram Features Broadband Performance:

More information

DC GHz GHz

DC GHz GHz 8 Typical Applications The HMC624LP4(E) is ideal for: Cellular/3G Infrastructure WiBro / WiMAX / 4G Microwave Radio & VSAT Test Equipment and Sensors IF & RF Applications Functional Diagram Features.5

More information

Features. = +25 C, With 0/-5V Control, 50 Ohm System. Parameter Frequency Min. Typ. Max. Units. DC - 20 GHz 2

Features. = +25 C, With 0/-5V Control, 50 Ohm System. Parameter Frequency Min. Typ. Max. Units. DC - 20 GHz 2 Typical Applications The is ideal for: Basestation Infrastructure Fiber Optics & Broadband Telecom Microwave Radio & VSAT Military Radios, Radar, & ECM Test Instrumentation Functional Diagram Features

More information

HMC694LP4 / 694LP4E. Variable gain amplifiers - ANALOG - smt. GaAs MMIC ANALOG VARIABLE GAIN AMPLIFIER, 6-17 GHz. Typical Applications

HMC694LP4 / 694LP4E. Variable gain amplifiers - ANALOG - smt. GaAs MMIC ANALOG VARIABLE GAIN AMPLIFIER, 6-17 GHz. Typical Applications v2.1 Typical Applications The HMC694LP4(E) is ideal for: Point-to-Point Radio Point-to-Multi-Point Radio EW & ECM X-Band Radar Test Equipment Features Wide Gain Control Range: 23 db Single Control Voltage

More information

HMC1095LP4E v db LSB GaAs MMIC 6-BIT 75 Ohms DIGITAL ATTENUATOR, DC - 3 GHz. Typical Applications. Functional Diagram. General Description

HMC1095LP4E v db LSB GaAs MMIC 6-BIT 75 Ohms DIGITAL ATTENUATOR, DC - 3 GHz. Typical Applications. Functional Diagram. General Description v1.713 Typical Applications The is ideal for: CATV/ Sattelite Set Top Boxes CATV Modems CATV Infrastructure Data Network Equipment Functional Diagram Features.5 db LSB Steps to Power-Up State Selection

More information

Features. = +25 C, Vdd= +12V, Vgg2= +5V, Idd= 400 ma*

Features. = +25 C, Vdd= +12V, Vgg2= +5V, Idd= 400 ma* Typical Applications The HMC637LP5(E) wideband PA is ideal for: Features P1dB Output Power: +29 dbm Telecom Infrastructure Microwave Radio & VSAT Military & Space Test Instrumentation Fiber Optics Functional

More information

= +25 C, 50 Ohm System, Vdd = +5V

= +25 C, 50 Ohm System, Vdd = +5V v3.69 HMC68LP4 / 68LP4E VARIABLE GAIN AMPLIFIER, 3-4 MHz Variable gain amplifiers - digital - SMT Typical Applications The HMC68lp4(E) is ideal for: Cellular/3G Infrastructure WiBro / WimaX / 4G Microwave

More information

Features. Parameter Frequency Min. Typ. Max. Units. Return Loss Off State DC - 20 GHz 19 db

Features. Parameter Frequency Min. Typ. Max. Units. Return Loss Off State DC - 20 GHz 19 db Typical Applications The is ideal for: Telecom Infrastructure Microwave Radio & VSAT Military & Space Hybrids Test Instrumentation SATCOM & Sensors Functional Diagram Features Broadband Performance: DC

More information

Features. = +25 C, With 0/-5V Control, 50 Ohm System. Parameter Frequency Min. Typ. Max. Units

Features. = +25 C, With 0/-5V Control, 50 Ohm System. Parameter Frequency Min. Typ. Max. Units Typical Applications The is ideal for: Basestation Infrastructure Fiber Optics & Broadband Telecom Microwave Radio & VSAT Military Radios, Radar, & ECM Test Instrumentation Functional Diagram Features

More information

HMC596LP4 / HMC596LP4E

HMC596LP4 / HMC596LP4E v1.49 HMC596LP4 / HMC596LP4E MATRIX,.2-3. GHz Typical Applications 4x2 Switch Matrix for.2-3. GHz Applications: DBS LNBs & Multiswitches Cable Modem / CATV Cellular Systems Functional Diagram Features

More information

Features. = +25 C, Vcc= 5V

Features. = +25 C, Vcc= 5V v4.21 Typical Applications Active Multiplier for X Band Applications: Fiber Optic Point-to-Point Radios Military Radar Functional Diagram Features Output Power: +4 dbm Sub-Harmonic Suppression: >2 dbc

More information

Parameter Min. Typ. Max. Units Frequency Range GHz

Parameter Min. Typ. Max. Units Frequency Range GHz v.312 27-31. GHz Typical Applications The is ideal for: Point-to-Point Radio Point-to-Multi-Point Radio EW & ECM Subsystems Ka-Band Radar & VSAT Test Equipment Functional Diagram Features Wide Gain Control

More information

HMC486LP5 / 486LP5E LINEAR & POWER AMPLIFIERS - SMT. SURFACE MOUNT PHEMT 2 WATT POWER AMPLIFIER, 7-9 GHz. Typical Applications.

HMC486LP5 / 486LP5E LINEAR & POWER AMPLIFIERS - SMT. SURFACE MOUNT PHEMT 2 WATT POWER AMPLIFIER, 7-9 GHz. Typical Applications. v2. Typical Applications The HMC486LP5(E) is ideal for: Point-to-Point Radios Point-to-Multi-Point Radios Test Equipment and Sensors Military End-Use Features Saturated Power: +33 dbm @ 2% PAE Output IP3:

More information

Features. = +25 C, Vdd = +5V, Rbias = 10 Ohms*

Features. = +25 C, Vdd = +5V, Rbias = 10 Ohms* Typical Applications Functional Diagram The HMC36LP3 / HMC36LP3E is ideal for: Cellular/3G Infrastructure Base Stations & Repeaters CDMA, W-CDMA, & TD-SCDMA Private Land Mobile Radio GSM/GPRS & EDGE UHF

More information

Features +3V +5V GHz

Features +3V +5V GHz Typical Applications The is ideal for: Cellular/4G Infrastructure WiMAX, WiBro & Fixed Wireless Automotive Telematics Mobile Radio Test Equipment Functional Diagram Features High Isolation: up to Single

More information

Gain Control Range db

Gain Control Range db v1.112-12 GHz Typical Applications The is ideal for: Point-to-Point Radio Point-to-Multi-Point Radio EW & ECM Subsystems X-Band Radar Test Equipment & Sensors Functional Diagram Features Wide Gain Control

More information

Features. = +25 C, Vdd = +5V, 5 dbm Drive Level

Features. = +25 C, Vdd = +5V, 5 dbm Drive Level v1.4 Typical Applications The HMC561LP3E are suitable for: Clock Generation Applications: SONET OC-192 & SDH STM-64 Point-to-Point & VSAT Radios Test Instrumentation Military & Space Functional Diagram

More information

HMC695LP4 / HMC695LP4E

HMC695LP4 / HMC695LP4E v.1 Typical Applications The HMC95LP(E) is ideal for: Fiber Optic Applications Point-to-Point Radios Military Radar Functional Diagram Features Output Power: +7 dbm Sub-Harmonic Suppression: >5 dbc SSB

More information

Features OBSOLETE. Parameter Min. Typ. Max. Units. Frequency Range GHz Insertion Loss 5 7 db. Input Return Loss 16 db

Features OBSOLETE. Parameter Min. Typ. Max. Units. Frequency Range GHz Insertion Loss 5 7 db. Input Return Loss 16 db v1.611 Typical Applications The is ideal for: EW Receivers Weather & Military Radar Satellite Communications Beamforming Modules Phase Cancellation Functional Diagram Features Low RMS Phase Error: 1.2

More information

TEL: FAX: HMC3LP / 3LPE v.21 SMT GaAs HBT MMIC x ACTIVE FREQUENCY MULTIPLIER, GHz OUTPUT Evalua

TEL: FAX: HMC3LP / 3LPE v.21 SMT GaAs HBT MMIC x ACTIVE FREQUENCY MULTIPLIER, GHz OUTPUT Evalua TEL:755-83396822 FAX:755-83376182 E-MAIL: szss2@163.com HMC3LP / 3LPE v.21 SMT GaAs HBT MMIC x ACTIVE FREQUENCY MULTIPLIER, 9.8-11.2 GHz OUTPUT Pin Description Pin Number Function Description Interface

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK v2.49 Typical Applications The HMC536LP2(E)

More information

Features. = +25 C, 50 Ohm system. DC - 10GHz DC - 14 Ghz DC - 10 GHz DC - 14 GHz Return Loss DC - 14 GHz 5 10 db

Features. = +25 C, 50 Ohm system. DC - 10GHz DC - 14 Ghz DC - 10 GHz DC - 14 GHz Return Loss DC - 14 GHz 5 10 db Typical Applications v2.717 Features The is ideal for: Basestation Infrastructure Fiber Optics & Broadband Telecom Microwave Radio & VSAT Military Radios, Radar, & ECM Test Instrumentation Functional Diagram

More information

Features. = +25 C, Vdd = +7V, Idd = 1340 ma [1]

Features. = +25 C, Vdd = +7V, Idd = 1340 ma [1] Typical Applications The HMC591LP5 / HMC591LP5E is ideal for use as a power amplifi er for: Point-to-Point Radios Point-to-Multi-Point Radios Test Equipment & Sensors Military End-Use Space Features Saturated

More information

HMC241AQS16 / 241AQS16E

HMC241AQS16 / 241AQS16E v00.1213 Typical Applications Features The HMC241AQS16 & HMC241AQS16E are ideal for: Base Stations & Portable Wireless CATV / DBS Wireless Local Loop Test Equipment Functional Diagram RoHS Compliant Product

More information

Features OBSOLETE. = +25 C, Vcc= 5V [1]

Features OBSOLETE. = +25 C, Vcc= 5V [1] v.41 Typical Applications The is Ideal for: Microwave Radio & VSAT Military Radios, Radar & ECM Test Instrumentation Functional Diagram Electrical Specifications, T A = + C, Vcc= V [1] Features Output

More information

Features. Output Power: 2 dbm Typical Spurious Suppression: >20 dbc SSB Phase Noise: khz Offset Test Instrumentation

Features. Output Power: 2 dbm Typical Spurious Suppression: >20 dbc SSB Phase Noise: khz Offset Test Instrumentation Typical Applications The is Ideal for: Microwave Radio & VSAT Military Radios, Radar & ECM Features Output Power: dbm Typical Spurious Suppression: > dbc SSB Phase Noise: -148 dbc/hz @ 1 khz Offset Test

More information

HMC948LP3E POWER DETECTORS - SMT. 54 db, LOGARITHMIC DETECTOR, 1-23 GHz. Typical Applications. Features. Functional Diagram. General Description

HMC948LP3E POWER DETECTORS - SMT. 54 db, LOGARITHMIC DETECTOR, 1-23 GHz. Typical Applications. Features. Functional Diagram. General Description v.9 HMC948LPE DETECTOR, - GHz Typical Applications The HMC948LPE is ideal for: Point-to-Point Microwave Radio VSAT Wideband Power Monitoring Receiver Signal Strength Indication (RSSI) Test & Measurement

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK v.51 HMC32LC Typical Applications

More information

HMC173MS8 ATTENUATORS - SMT. GaAs MMIC VOLTAGE-VARIABLE ATTENUATOR, GHz. Features. Typical Applications. General Description

HMC173MS8 ATTENUATORS - SMT. GaAs MMIC VOLTAGE-VARIABLE ATTENUATOR, GHz. Features. Typical Applications. General Description v1.81 ATTENUATOR,.8 -. GHz Typical Applications The is ideal for.8 -. GHz Applications: Base Station Infrastructure Portable Wireless Features Single Positive Voltage Control: to +3V High Attenuation Range:

More information

v02.06 Insertion Loss INSERTION LOSS () C +85 C -40 C Isolation ISOLATION () Return Loss RETURN LOSS ()

v02.06 Insertion Loss INSERTION LOSS () C +85 C -40 C Isolation ISOLATION () Return Loss RETURN LOSS () v02.06 Typical Applications The is ideal for: Telecom Infrastructure Microwave Radio & VSAT Military Radios, Radar & ECM Space Systems Test Instrumentation Features Isolation: 55 @ 2 GHz 42 @ 6 GHz Insertion

More information

HMC618ALP3E AMPLIFIERS - LOW NOISE - SMT. GaAs SMT phemt LOW NOISE AMPLIFIER, GHz. Typical Applications. Features. Functional Diagram

HMC618ALP3E AMPLIFIERS - LOW NOISE - SMT. GaAs SMT phemt LOW NOISE AMPLIFIER, GHz. Typical Applications. Features. Functional Diagram 7 Typical Applications The is ideal for: Cellular/3G and LTE/WiMAX/4G BTS & Infrastructure Repeaters and Femto Cells Public Safety Radios Functional Diagram v. Electrical Specifications T A = + C, Rbias

More information

SURFACE MOUNT PHEMT 2 WATT POWER AMPLIFIER,

SURFACE MOUNT PHEMT 2 WATT POWER AMPLIFIER, v2.617 AMPLIFIER, - 12 GHz Typical Applications The is ideal for use as a power amplifier for: Point-to-Point Radios Point-to-Multi-Point Radios Test Equipment and Sensors Military End-Use Features Saturated

More information

Features. = +25 C, With 0/-5V Control, 50 Ohm System. Parameter Frequency Min. Typ. Max. Units

Features. = +25 C, With 0/-5V Control, 50 Ohm System. Parameter Frequency Min. Typ. Max. Units v03.15 Typical Applications The is ideal for: Telecom Infrastructure Microwave Radio & VSAT Military Radios, Radar & ECM Test Instrumentation Features Isolation: 55 @ 2 GHz 43 @ 6 GHz Insertion Loss: 1.6

More information

Features OBSOLETE. Saturated Output Power (Psat) dbm Output Third Order Intercept (IP3) dbm Supply Current (Idd) ma

Features OBSOLETE. Saturated Output Power (Psat) dbm Output Third Order Intercept (IP3) dbm Supply Current (Idd) ma 7 Typical Applications The HMC667LP2(E) is ideal for: WiMAX, WiBro & Fixed Wireless SDARS & WLAN Receivers Infrastructure & Repeaters Access Points Telematics & DMB Functional Diagram v2.11 Electrical

More information

HMC245QS16 / 245QS16E. Features OBSOLETE. Parameter Frequency Min. Typ. Max. Units. DC GHz DC GHz DC GHz

HMC245QS16 / 245QS16E. Features OBSOLETE. Parameter Frequency Min. Typ. Max. Units. DC GHz DC GHz DC GHz Typical Applications The HMC245QS16 / HMC245QS16E is ideal for: Basestation Infrastructure CATV / DBS Wireless Local Loop Test Equipment Functional Diagram Features Low Insertion Loss:.5 @ 2. GHz Non-Refl

More information

Features. = +25 C, Vss= -5V, Vdd= +5V, Control Voltage= 0/ +5V, 50 Ohm System. Frequency Range GHz Insertion Loss* 4 6.

Features. = +25 C, Vss= -5V, Vdd= +5V, Control Voltage= 0/ +5V, 50 Ohm System. Frequency Range GHz Insertion Loss* 4 6. v1.28 HMC647LP6 / 647LP6E Typical Applications The HMC647LP6(E) is ideal for: EW Receivers Weather & Military Radar Satellite Communications Beamforming Modules Phase Cancellation Functional Diagram Features

More information

Features. = +25 C, With 0/-5V Control, 50 Ohm System. Parameter Frequency Min. Typ. Max. Units

Features. = +25 C, With 0/-5V Control, 50 Ohm System. Parameter Frequency Min. Typ. Max. Units Typical Applications The is ideal for: Telecom Infrastructure Microwave Radio & VSAT Military Radios, Radar & ECM Space Systems Test Instrumentation Features Isolation: 48 @ 2 GHz 34 @ 6 GHz Insertion

More information

OBSOLETE. Output Power for 1 db Compression dbm Output Third Order Intercept Point (Two-Tone Output Power= 12 dbm Each Tone)

OBSOLETE. Output Power for 1 db Compression dbm Output Third Order Intercept Point (Two-Tone Output Power= 12 dbm Each Tone) Designer s Kit Available v.211t Typical Applications The is ideal for: Cellular/3G Infrastructure WiBro / WiMAX / 4G Microwave Radio & VSAT Test Equipment and Sensors IF & RF Applications Functional Diagram

More information

HMC662LP3E POWER DETECTORS - SMT. 54 db, LOGARITHMIC DETECTOR, 8-30 GHz. Typical Applications. Features. Functional Diagram. General Description

HMC662LP3E POWER DETECTORS - SMT. 54 db, LOGARITHMIC DETECTOR, 8-30 GHz. Typical Applications. Features. Functional Diagram. General Description Typical Applications The is ideal for: Point-to-Point Microwave Radio VSAT Wideband Power Monitoring Receiver Signal Strength Indication (RSSI) Test & Measurement Functional Diagram Features Wide Input

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK v2.65 HMC455LP3 / 455LP3E Typical

More information

Features. = +25 C, Vdd= 8V, Idd= 75 ma*

Features. = +25 C, Vdd= 8V, Idd= 75 ma* HMC46LC5 Typical Applications v3.11 AMPLIFIER, DC - 2 GHz Features The HMC46LC5 is ideal for: Noise Figure: 2.5 db @ 1 GHz Telecom Infrastructure Microwave Radio & VSAT Military & Space Test Instrumentation

More information

Analog Devices Welcomes Hittite Microwave Corporation

Analog Devices Welcomes Hittite Microwave Corporation Analog Devices Welcomes Hittite Microwave Corporation www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK v.915 GaAs MMIC 6-BIT DIGITAL Typical Applications The HMC648ALP6E is ideal for:

More information

Features. = +25 C, Vdd1 = Vdd2 = +3.5V, Idd = 70 ma

Features. = +25 C, Vdd1 = Vdd2 = +3.5V, Idd = 70 ma v2.61 Typical Applications This is ideal for: Point-to-Point Radios Point-to-Multi-Point Radios Military & Space Test Instrumentation Functional Diagram Features Low Noise Figure: 2.5 db Gain: 13 db P1dB

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK v.51 HMC7LP5E POWER AMPLIFIER,.2

More information

Features. = +25 C, Vdd1 = Vdd2 = +3.5V, Idd = 45 ma

Features. = +25 C, Vdd1 = Vdd2 = +3.5V, Idd = 45 ma v2.61 Typical Applications This is ideal for: Point-to-Point Radios Point-to-Multi-Point Radios Military & Space Test Instrumentation Functional Diagram Features Low Noise Figure: 2. db High Gain: 22 db

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com HMC596* Product Page Quick Links Last Content Update: 11/1/216 Comparable

More information

Features. = +25 C, 50 Ohm System, Vcc= +5V

Features. = +25 C, 50 Ohm System, Vcc= +5V v5.1211 Typical Applications Prescaler for DC to 18 GHz PLL Applications: Point-to-Point / Multi-Point Radios VSAT Radios Fiber Optic Test Equipment Military Functional Diagram Features Ultra Low ssb Phase

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK v.41 Typical Applications The HMC649ALP6E

More information

HMC849ALP4CE SWITCHES - SPDT - SMT. HIGH ISOLATION SPDT NON-REFLECTIVE SWITCH, DC - 6 GHz. Typical Applications. Features. Functional Diagram

HMC849ALP4CE SWITCHES - SPDT - SMT. HIGH ISOLATION SPDT NON-REFLECTIVE SWITCH, DC - 6 GHz. Typical Applications. Features. Functional Diagram Typical Applications The is ideal for: Cellular/4G Infrastructure WiMAX, WiBro & Fixed Wireless Automotive Telematics Mobile Radio Test Equipment Functional Diagram Features High Isolation: up to Single

More information

HMC1013LP4E. SDLVAs - SMT. SUCCESSIVE DETECTION LOG VIDEO AMPLIFIER (SDLVA), GHz

HMC1013LP4E. SDLVAs - SMT. SUCCESSIVE DETECTION LOG VIDEO AMPLIFIER (SDLVA), GHz v.9 HMCLPE AMPLIFIER (SDLVA),.5-8.5 GHz Typical Applications The HMCLPE is ideal for: EW, ELINT & IFM Receivers DF Radar Systems ECM Systems Broadband Test & Measurement Power Measurement & Control Circuits

More information

Features. = +25 C, With 0/-5V Control, 50 Ohm System. Parameter Frequency Min. Typ. Max. Units

Features. = +25 C, With 0/-5V Control, 50 Ohm System. Parameter Frequency Min. Typ. Max. Units Typical Applications The is ideal for: Telecom Infrastructure Microwave Radio & VSAT Military Radios, Radar & ECM Test Instrumentation Features Isolation: 50 @ 2.5 GHz 3 @ 8 GHz Insertion Loss: 2 Typical

More information

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED www.analog.com www.hittite.com THIS PAGE INTENTIONALLY LEFT BLANK v1.14 AMPLIFIER, 18-4 GHz Typical

More information

HMC346MS8G / 346MS8GE

HMC346MS8G / 346MS8GE Typical Applications v7.18 Features This attenuator is ideal for use as a VVA for DC - 8 GHz applications: Point-to-Point Radio VSAT Radio Functional Diagram Wide Bandwidth: DC - 8 GHz Low Phase Shift

More information

OBSOLETE HMC915LP4E. GaAs MMIC MIXER w/ INTEGRATED LO AMPLIFIER, GHz. Typical Applications. Features. Functional Diagram. General Description

OBSOLETE HMC915LP4E. GaAs MMIC MIXER w/ INTEGRATED LO AMPLIFIER, GHz. Typical Applications. Features. Functional Diagram. General Description v1.5 LO AMPLIFIER,.5-2.7 GHz Typical Applications The is ideal for: PCS / 3G Infrastructure Base Stations & Repeaters WiMAX & WiBro ISM & Fixed Wireless Functional Diagram Features Input IP3: +28 dbm Low

More information

Parameter Min. Typ. Max. Units

Parameter Min. Typ. Max. Units v4.112 Typical Applications The is ideal for: Point-to-Point and Point-to-Multi-Point Radio Military Radar, EW & ELINT Satellite Communications Functional Diagram Features General Description The is a

More information

Features OBSOLETE. = +5V in a 50 Ohm System. Parameter Frequency Min. Typ. Max. Units DC GHz DC GHz

Features OBSOLETE. = +5V in a 50 Ohm System. Parameter Frequency Min. Typ. Max. Units DC GHz DC GHz Typical Applications The HMC252QS24 / HMC252QS24E is ideal for: Base Station CATV / DBS MMDS & WirelessLAN Test Equipment Functional Diagram Features Low Insertion Loss (2 GHz):.9 Single Positive Supply:

More information